Snakemake pipeline for paired-end sanger sequences of 16s rRNA
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
This pipeline implements an analysis for bacterial 16S rRNA produced by Sanger sequencing reads. It trims reads, merge them and generates a genus list using
blast
and
classifier classify
from the RDP project. Also, it has quality control steps and summarize them pre and post trimming using
multiqc
. See the picture of the DAG at the end of this document for more details.
Authors
- Jose Maturana (@matrs)
Usage
Simple
Step 1: Install workflow
If you simply want to use this workflow, download and extract the latest release . If you intend to modify and further extend this workflow or want to work under version control, fork this repository as outlined in Advanced . The latter way is recommended.
In any case, if you use this workflow in a paper, don't forget to give credits to the authors by citing the URL of this repository and, if available, its DOI (see above).
Step 2: Configure workflow
Configure the workflow according to your needs via editing the file
config.yaml
.
Step 3: Execute workflow
Test your configuration by performing a dry-run via
snakemake --use-conda -n
Execute the workflow locally via
snakemake --use-conda --cores $N
using
$N
cores or run it in a cluster environment via
snakemake --use-conda --cluster qsub --jobs 100
or
snakemake --use-conda --drmaa --jobs 100
If you not only want to fix the software stack but also the underlying OS, use
snakemake --use-conda --use-singularity
in combination with any of the modes above. See the Snakemake documentation for further details.
Advanced
The following recipe provides established best practices for running and extending this workflow in a reproducible way.
-
Fork the repo to a personal or lab account.
-
Clone the fork to the desired working directory for the concrete project/run on your machine.
-
Create a new branch (the project-branch) within the clone and switch to it. The branch will contain any project-specific modifications (e.g. to configuration, but also to code).
-
Modify the config, and any necessary sheets (and probably the workflow) as needed.
-
Commit any changes and push the project-branch to your fork on github.
-
Run the analysis.
-
Optional: Merge back any valuable and generalizable changes to the upstream repo via a pull request . This would be greatly appreciated .
-
Optional: Push results (plots/tables) to the remote branch on your fork.
-
Optional: Create a self-contained workflow archive for publication along with the paper (snakemake --archive).
-
Optional: Delete the local clone/workdir to free space.
Pipeline's directed acyclic graph
Code Snippets
7 8 | script: "../scripts/abi_to_fastq.py" |
22 23 | script: "../scripts/blast_top_hits.py" |
6 7 | shell: "seqtk seq -r {input} > {output}" |
7 8 | wrapper: "0.35.1/bio/fastqc" |
16 17 | shell: "seqtk trimfq -q 0.05 {input} | seqtk seq -q 13 -n N > {output}" |
25 26 | wrapper: "0.35.1/bio/fastqc" |
38 39 | wrapper: "0.35.1/bio/multiqc" |
48 49 | script: "../scripts/merger_qc_plot.py" |
10 11 | shell: "SequenceMatch seqmatch {params.trainee} {input} > {output}" |
22 23 | shell: "classifier classify {input} -o {output[0]} -h {output[1]}" |
38 39 | script: "../scripts/tree_top_seqmatch.py" |
1 2 3 4 5 6 7 | from Bio import SeqIO, Seq from pathlib import Path for abi in snakemake.input: abi_name=Path(abi).name out_fastq= "{0}/{1}".format("fastq", abi_name.replace("ab1", "fastq")) SeqIO.convert(abi, "abi", out_fastq, "fastq") |
1 2 3 4 5 6 7 8 9 10 11 12 13 | def Read_blast(blast_tab): import pandas as pd blast_table = pd.read_csv(blast_tab, sep="\t", comment="#", names=['QAcc', 'SubAcc', 'Perc_ident', 'Align_len', 'Num_mis','Num_gaps','Q_start', 'Q_stop', 'Sub_start', 'Sub_end', 'Evalue','Bitscore', 'Sub_len','Q_cov', 'Q_covhsp', 'Q_covus','S_taxid', 'S_sci_names']) return blast_table table_name = snakemake.output[0] df = Read_blast(snakemake.input[0]) print("table {} already read".format(table_name)) df.sort_values(by=['Bitscore','Q_cov','Perc_ident','Align_len'], axis=0, ascending=False).head(10).to_csv(path_or_buf=table_name, sep='\t',index=False,float_format = "%.3f") |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 | import re from collections import defaultdict import pandas as pd import sys import matplotlib matplotlib.use("agg") import matplotlib.pyplot as plt from pathlib import Path import seaborn as sns # matplotlib.use("agg") sys.stdout = open(snakemake.log[0], 'w') print("pandas version:", pd.__version__) merger_files =snakemake.input #glob("*[1-9]*.merger") pat = re.compile(r'([0-9]+\.[0-9]+)%') parse_dic = defaultdict(list) for f in merger_files: print("merger_files", repr(f)) with open(f, mode='r', encoding='utf8') as fh: for line in fh: match = re.search(pat, line) if match: idx_name = Path(f).name parse_dic[idx_name].append(match.group(1)) print(parse_dic) df = pd.DataFrame.from_dict(parse_dic, orient='index',columns=["Identity %","Similarity %","number of Gaps"]).astype(float) print(df) # fig, ax = plt.subplots(figsize=(8,6)) # plot = df.plot(rot=60, alpha=0.5, ax=ax, title="Phred quality") # ax.set_xlabel("Merged reads") # #fig = plot.get_figure() # locs, labels = plt.xticks() # plt.setp(labels, rotation=50) fig, ax = plt.subplots(figsize=(8,6)) sns.lineplot(data=df, sort=False, alpha=0.6) locs, labels = plt.xticks() plt.setp(labels, rotation=50) plt.tight_layout() fig.savefig(snakemake.output[0]) |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | from ete3 import NCBITaxa #The first time this will download the taxonomic NCBI database and save a parsed version #of it in `~/.etetoolkit/taxa.sqlite`.May take some minutes ncbi = NCBITaxa() print("ncbi.dbfile", ncbi.dbfile) with open(snakemake.input[0], 'r', encoding='utf8') as fh: genus_list = fh.read().strip().split('\n') genus_to_taxid = ncbi.get_name_translator(genus_list) tax_id_vals = genus_to_taxid.values() tree = ncbi.get_topology([genus_id for subls in tax_id_vals for genus_id in subls], intermediate_nodes=True) # `get_ascii()` has a bug, prints the taxons before to genus without any separation between them, so a way to avoid that is using extra attribues, `dist` seems to be less invasive. Also, numbers from 'dist' are replaced with open(snakemake.output[0], mode='w', encoding='utf8') as fh: print(tree.get_ascii(attributes=["dist", "sci_name"]).replace('1.0,','-'), file=fh) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 | __author__ = "Julian de Ruiter" __copyright__ = "Copyright 2017, Julian de Ruiter" __email__ = "julianderuiter@gmail.com" __license__ = "MIT" from os import path from tempfile import TemporaryDirectory from snakemake.shell import shell log = snakemake.log_fmt_shell(stdout=False, stderr=True) def basename_without_ext(file_path): """Returns basename of file path, without the file extension.""" base = path.basename(file_path) split_ind = 2 if base.endswith(".gz") else 1 base = ".".join(base.split(".")[:-split_ind]) return base # Run fastqc, since there can be race conditions if multiple jobs # use the same fastqc dir, we create a temp dir. with TemporaryDirectory() as tempdir: shell("fastqc {snakemake.params} --quiet " "--outdir {tempdir} {snakemake.input[0]}" " {log}") # Move outputs into proper position. output_base = basename_without_ext(snakemake.input[0]) html_path = path.join(tempdir, output_base + "_fastqc.html") zip_path = path.join(tempdir, output_base + "_fastqc.zip") if snakemake.output.html != html_path: shell("mv {html_path} {snakemake.output.html}") if snakemake.output.zip != zip_path: shell("mv {zip_path} {snakemake.output.zip}") |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | __author__ = "Julian de Ruiter" __copyright__ = "Copyright 2017, Julian de Ruiter" __email__ = "julianderuiter@gmail.com" __license__ = "MIT" from os import path from snakemake.shell import shell input_dirs = set(path.dirname(fp) for fp in snakemake.input) output_dir = path.dirname(snakemake.output[0]) output_name = path.basename(snakemake.output[0]) log = snakemake.log_fmt_shell(stdout=True, stderr=True) shell( "multiqc" " {snakemake.params}" " --force" " -o {output_dir}" " -n {output_name}" " {input_dirs}" " {log}") |
Support
- Future updates
Related Workflows





