Simulate integrations and score results

public public 1yr ago 0 bookmarks

This repository was moved on 02/12/2021! Find the latest version here . The old code has been left here, but no new updates will be made.

Code Snippets

 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
from sys import argv
from os import path, SEEK_CUR
from scipy.stats import norm
from collections import defaultdict
import argparse
import csv
import pysam

import pdb

genome_length = int(3e9)

def main(argv):
	#get arguments
	parser = argparse.ArgumentParser(description='simulate viral integrations')
	parser.add_argument('--sim-info', help='information from simulation', required = True, type=str)
	parser.add_argument('--sim-bam', help='bam file from read simulation (must be sorted, indexed)', required = True, type=str)
	parser.add_argument('--soft-threshold', help='threshold for number of bases that must be mapped when finding integrations in soft-clipped reads', type=int, default=20)
	parser.add_argument('--discordant-threshold', help='threshold for number of bases that may be unmapped when finding integrations in discordant read pairs', type=int, default=20)
	parser.add_argument('--mean-frag-len', help='mean framgement length used when simulating reads', type=int, default=500)
	parser.add_argument('--sd-frag-len', help='standard devation of framgement length used when simulating reads', type=int, default=30)
	parser.add_argument('--window-frac', help='fraction of the distribution of fragment sizes to use when searching for discordant read pairs', type=float, default=0.99)
	parser.add_argument('--output', help='output file', required=False, default='annotated.tsv')
	args = parser.parse_args()

	# read in bam file
	samfile = pysam.AlignmentFile(args.sim_bam)

	# iterate over integrations in info file and pull out reads crossing each one
	# the sam/bam file has the same coordinates as the info file
	# so just use the coordinates of the left and right junctions from this files
	with open(args.sim_info, newline='') as info_file, open(args.output, 'w', newline='') as output:

		# use csv to read and write files
		reader = csv.DictReader(info_file, delimiter = '\t')

		writer_fieldnames = list(reader.fieldnames) + ['left_chimeric', 'right_chimeric', 'left_discord', 'right_discord', 'multiple_discord', 'fake_discord', 'discordant_and_chimeric']

		writer = csv.DictWriter(output, delimiter = '\t', fieldnames = writer_fieldnames)
		writer.writeheader()


		# set window size for looking for discordant pairs and 
		# looking for multiple ints with the same discordant pair
		window_width = window_size(args.mean_frag_len, args.sd_frag_len, args.window_frac)

		# create a buffer of integrations that all fall within this window width 
		buffer = [next(reader)]
		while True:

			buffer, next_buffer = get_ints_in_window(buffer, window_width, reader, info_file)

			# find reads crossing each integration in the buffer
			buffer = find_reads_crossing_ints(buffer, samfile, args, window_width)

			# check for read pairs that cross multiple junctions
			buffer = find_multiple_discordant(buffer)

			# check for read pairs that are discordant at one integration and chimeric at another integration
			# assume that integrations are independent (even though they aren't in simulation), so these are not detectable
			buffer = find_multiple_chimeric_discordant(buffer)

			# write rows in buffer
			for row in buffer:
				writer.writerow(row)

			buffer = next_buffer

			# check if we've reached the end of the file
			if len(buffer) == 0:
				break

	samfile.close()

def find_multiple_chimeric_discordant(buffer):
	"""
	Assume that in real data, integrations are independent, so two integrations do not
	occur close enough to each other in the same cell that we can detect them.  This may
	or may not be the case, but the number of these kinds of pairs of integrations is assumed
	to be small enough that they're not worth worrying about. 

	If a read pair has one read that is chimeric, but it's also discordant about the same
	or a different integration, only the chimeric read will be detected 
	(and it won't be flagged as a discordant read pair). Assuming that
	these events are a tiny minority in real data, here don't flag the discordant pairs
	as something that should be detected (but instead add them to the 'discordant_and_chimeric'
	category)
	"""	
	to_delete = {}
	for i, row in enumerate(buffer):

		# for each row, find reads that are both chimeric
		# and discordant for any other integration
		left_discord = row['left_discord'].split(';')
		right_discord =  row['right_discord'].split(';')
		to_delete[i] = {'left' : [], 'right' : []}


		# check for these reads in other rows
		for row_2 in buffer:
			# skip if this is the same as the one we're looking at
			if row_2 == row:
				continue

			# get read names for chimeric reads for this row
			chimeric = row_2['left_chimeric'].split(";")
			chimeric += row_2['right_chimeric'].split(";")
			chimeric = [read[:-2] for read in chimeric]

			# check if chimeric reads in row_2 also occur in the list
			# of discordant reads in row
			for read in chimeric:
				if read in left_discord:
					to_delete[i]['left'].append(read)
				if read in right_discord:
					to_delete[i]['right'].append(read)

	# remove reads in to_delete
	for row_num in to_delete.keys():

		# remove reads from left_discord
		left_discord = buffer[row_num]['left_discord'].split(';')
		left_discord = [read for read in left_discord if read not in to_delete[row_num]['left']]
		buffer[row_num]['left_discord'] = ";".join(left_discord)

		# remove reads from right_discord
		right_discord = buffer[row_num]['right_discord'].split(';')
		right_discord = [read for read in right_discord if read not in to_delete[row_num]['right']]
		buffer[row_num]['right_discord'] = ";".join(right_discord)		

		# removed reads go to 'discordant_and_chimeric'
		buffer[row_num]['discordant_and_chimeric'] = [f"{read}_left" for read in to_delete[row_num]['left']]
		buffer[row_num]['discordant_and_chimeric'] += [f"{read}_right" for read in to_delete[row_num]['right']]
		buffer[row_num]['discordant_and_chimeric'] = ";".join(buffer[row_num]['discordant_and_chimeric'])

	return buffer

def find_multiple_discordant(buffer):
	"""
	a read might be discordant about two or more integration sites
	for example, if a read pair crosses the right border of one integration and the left
	border of a close by integration, both read pairs will be mapped to the virus
	and therefore this pair won't be detected as an integration

	deal with discordant pairs that cross multiple integrations in one of two ways:
		1. if a pair is discordant about the right side of one integration and the left side
		of a close by integration, then both reads are mapped to the virus and this read should
		be removed from both.  Keep track of these in a different category ('fake_discord')
		2. if a pair crosses right side of one integration, and both sides of a nearby integration,
		then one read maps to virus (in the first integration), and the other maps to host (after the second)
		and therefore this pair should be indicated to be an integration.  However, if we want to score based
		on integration position, we need to decide which integration this read 'belongs' to.  Keep
		these reads in a seperate category ('multiple_discord') for all the integrations that they cross,
		to reflect the fact that the 'belong' to multiple integrations
	"""
	# keep track of which reads we've already seen
	seen = dict()

	# for reads that we find at multiple junctions, 
	# keep track of which junctions so we can work out what to do with that read
	multiples = dict()

	for i, row in enumerate(buffer):
		# check reads found around left side
		for read in row['left_discord'].split(';'):
			if read == '':
				continue
			if read in seen.keys():
				# if this is the first double, add the entry from seen
				if read not in multiples:
					multiples[read] = []
					multiples[read].append(seen[read])

				# add entry to multiples for this time we found the read
				multiples[read].append({'int_id' : row['id'], 'side' : 'left' , 'buffer_row' : i})

			else:
				seen[read] = {'int_id' : row['id'], 'side' : 'left', 'buffer_row' : i}
		# check right side
		for read in row['right_discord'].split(';'):
			if read == '':
				continue
			if read in seen.keys():
				# if this is the first double, add the entry from seen
				if read not in multiples:
					multiples[read] = []
					multiples[read].append(seen[read])

				# add entry to multiples for this time we found the read
				multiples[read].append({'int_id' : row['id'], 'side' : 'right', 'buffer_row' : i})
			else:
				seen[read] = {'int_id' : row['id'], 'side' : 'right', 'buffer_row' : i}


		# add extra keys to dicts 
		row['multiple_discord'] = []
		row['fake_discord'] = []

	# deal with reads crossing multiple integrations
	for read in multiples:

		# if the side of the first junction matches the side of the last junction
		# this is a 'multiple_discord'
		sides = [find['side'] for find in multiples[read]]
		if sides[0] == sides[-1]:
			new_type = 'multiple_discord'
		else:
			new_type = 'fake_discord'

		for find in multiples[read]:

			# find row and side
			buffer_row = find['buffer_row']
			old_type = f"{find['side']}_discord"

			# remove from list of reads of old type
			reads = buffer[buffer_row][old_type].split(";")
			reads.remove(read)
			buffer[buffer_row][old_type] = ";".join(reads)

			# add to list of new type
			buffer[buffer_row][new_type].append(f"{read}_{find['side']}")

	# for each row, join lists of 'multiple_disord' and 'fake_discord'
	for row in buffer:
		row['multiple_discord'] = ";".join(row['multiple_discord'])
		row['fake_discord'] = ";".join(row['fake_discord'])

	return buffer

def times_already_found(read, multiples):
	"""
	check how many times a read has already been found when checking for discordant about multiple integration sides
	"""	
	if read in multiples:
		return len(multiples[read])
	else:
		return 0

def find_reads_crossing_ints(buffer, samfile, args, window_width):
	"""
	find reads crossing the integration site, and add them to the row
	reads crossing the integration site can be chimeric about the left or right junction
	or discordant about the left or right junction
	if they're discordant about both junctions, they actually go from host sequence to host sequence
	and	therefore aren't actually discordant
	"""
	for row in buffer:

		# get information about integration site location
		chr = row['chr']
		left_start = int(row['leftStart']) 
		left_stop = int(row['leftStop'])
		right_start = int(row['rightStart']) 
		right_stop = int(row['rightStop'])

		assert left_start >= 0 and right_start >= 0

		# find chimeric reads
		left_chimeric = get_chimeric(chr, left_start, left_stop, samfile, args.soft_threshold, buffer)
		right_chimeric = get_chimeric(chr, right_start, right_stop, samfile, args.soft_threshold, buffer)

		row['left_chimeric'] = ";".join(left_chimeric)
		row['right_chimeric'] = ";".join(right_chimeric)

		# find discordant read pairs	
		left_discord = get_discordant(chr, left_start, left_stop, samfile, args.discordant_threshold, window_width, buffer)
		right_discord = get_discordant(chr, right_start, right_stop, samfile, args.discordant_threshold, window_width, buffer)

		# if a read is both chimeric and discordant, chimeric takes priority 
		# (but it shouldn't be both if the clipping threshold is the same for both read types)
		left_chimeric, left_discord = remove_chimeric_from_discord(left_chimeric, left_discord)
		right_chimeric, right_discord = remove_chimeric_from_discord(right_chimeric, right_discord)

		left_chimeric, right_discord = remove_chimeric_from_discord(left_chimeric, right_discord)
		right_chimeric, left_discord = remove_chimeric_from_discord(right_chimeric, left_discord)


		row['left_discord'] = ";".join(left_discord)
		row['right_discord'] = ";".join(right_discord)

	return buffer	

def get_ints_in_window(buffer, window_width, reader, reader_handle):
	"""
	get a list of integrations (dicts corresponding to one row from the int-info file)
	that are within window_width of each other
	"""	

	assert len(buffer) == 1

	# get position and chromosome from buffer
	start = int(buffer[0]['rightStop'])
	chr = buffer[0]['chr']

	# get more integraions until we're not in the window anymore or we're at the end of the file
	# to avoid having to go back a line, save the first line not added to 'next_buffer'
	while True:	

		# get next row
		try:
			row = next(reader)
		except StopIteration:
			next_buffer = []
			break

		# compare previous integration with this integration
		prev_start = start
		prev_chr = chr
		start =  int(row['leftStart'])
		chr = row['chr']

		# check if next row is a window width away
		if (start - prev_start < window_width) and prev_chr == chr:
			# add to buffer
			buffer.append(row)
			start = int(row['rightStop'])
		else:
			# don't add the row but this will be the start of the next buffer
			next_buffer = [row]
			break

	return buffer, next_buffer	

def get_discordant(chr, start, stop, samfile, threshold, window_width, buffer):
	"""
	Get any discordant read pairs which cross an integration site
	In other words, get pairs where one mate is mapped on the host side, and the other on the virus side
	A read is considered mapped if it has at most threshold (default 20) unmapped bases

	This includes any pairs where the integration site falls within threshold (default 20) bases 
	of the end of the read (for a read mapped on the left of the integration), 
	or within threshold bases of the start of the read for a read on the mapped on the right
	of the integration

	Avoid an exhaustive search by extracting only the reads in a window around the integration site
	Set this window based on the mean length and standard deviation of fragment size used in simulation
	and the fraction of the fragment length distribution we want to cover.  Find discordant
	pairs by finding pairs for which an integration (start, stop) falls between the 20th
	base from the end of the left read and the 20th base of the right read

	Current criteria in discordant.pl is that a pair must have one read mapped and the other
	unmapped to be considered a discordant read pair.  To be considered 'mapped', a read must
	have 20 or fewer unmapped bases.  To be considered 'unmapped', a read must have
	less than 20 unmapped bases

	Note that a read pair might have one integration fall between read1 and read2, but read1 or read2
	might also cross a second integration.  This pair is therefore both discordant about one integration, and
	also one member of the pair is chimeric  A consequence of this is that one read maps only to vector or host, 
	but the other maps to both.  This discordant pair cannot currently be detected, since
	the pipeline currently detects discordant read-pairs only if one read is mapped to vector and
	not host, and vice versa for the other read.  However, this pair really is evidence
	for integration at the first site (as a discordant read-pair), so include it in the
	output as such.
	"""

	reads = []

	# extract read pairs in the desired window
	# pysam numbering is 0-based, with the only exception being the region string in the fetch() and pileup() methods. 
	window_start = start - window_width
	if window_start < 1:

		window_start = 1

	window_stop = stop + window_width
	if window_stop > samfile.get_reference_length(chr):
		window_stop = samfile.get_reference_length(chr) 
	if window_stop == window_start:
		window_stop += 1

	for read1, read2 in read_pair_generator(samfile, f"{chr}:{window_start}-{window_stop}"):

		# check mate is mapped
		if read1.is_unmapped or read2.is_unmapped:
			continue
		# check reference for this read is the same as mate
		if read1.reference_name != read2.reference_name:
			continue
		# if this read is forward, mate must be reverse and vice versa
		if (read1.is_reverse == read2.is_reverse):
			continue

		# if the integration site falls between left_boundary and right_boundary
		# (which are coordinates within the reference)
		# this pair crosses the integration site
		if read1.is_reverse is False:
			left_boundary = get_boundary(read1, threshold, side = "right")
			right_boundary =  get_boundary(read2, threshold, side = "left")
		else:
			left_boundary = get_boundary(read2, threshold, side = "right")
			right_boundary =  get_boundary(read1, threshold, side = "left")

		# if left_boundary is greater than right_boundary, reads overlap
		if left_boundary >= right_boundary:
			continue

		assert left_boundary is not None
		assert right_boundary is not None
		assert left_boundary < right_boundary

		if within(start, stop, left_boundary, right_boundary):

			reads.append(read1.qname)
# 			
# 			# TODO - need to decide if integrations should be excluded on the basis
# 			# below (if it's not the case that one read is mapped to host and the other to virus)
# 			# these events can't be currently detected in the pipeline, but are real evidence
# 			# of integration, so for now include them in the output
# 
# 			r1_mapped = get_mapped_ref(read1, buffer, threshold)
# 			r2_mapped = get_mapped_ref(read2, buffer, threshold)
# 			
# 			assert r1_mapped['host'] or r1_mapped['virus']
# 			assert r2_mapped['host'] or r2_mapped['virus']
# 			
# 			if r1_mapped['host'] != r2_mapped['host'] and r1_mapped['virus'] != r2_mapped['virus']:
# 				reads.append(read1.qname)

	return reads

def get_mapped_ref(read, buffer, threshold):
	"""
	figure out if each read in this read pair will be mapped to host or vector/virus
	returns a dict with the keys 'host' and 'virus',
	and values True or False depending on if the read is mapped to either or not
	"""

	assert read.is_unmapped is False

	read_mapped = {'host':False, 'virus':False, 'int' : []}

	# get first and last position to which read is mapped in reference
	first = read.get_reference_positions()[0]
	last =  read.get_reference_positions()[-1]

	prev_start = 0
	for row in buffer:
		# figure out if we need to include the ambiguous bases or not
		if row['juncTypes'].split(',')[0] == 'gap':
			left_host_junc = int(row['leftStart'])
			left_virus_junc = int(row['leftStop'])
		else:
			left_host_junc = int(row['leftStop'])
			left_virus_junc = int(row['leftStart'])
		if row['juncTypes'].split(',')[1] == 'gap':
			right_virus_junc = int(row['rightStart'])
			right_host_junc = int(row['rightStop'])
		else:
			right_virus_junc = int(row['rightStop'])
			right_host_junc = int(row['rightStart'])	

		# if read is between the start of the chromosome and the start of the integration
		if intersects(first, last, prev_start, left_host_junc):
			# check we have at least threshold bases mapped
			if check_threshold(read, prev_start, left_host_junc, threshold):
				read_mapped['host']  = True
		# if read is between the left and right junctions
		if intersects(first, last, left_virus_junc, right_virus_junc):
			if check_threshold(read, left_virus_junc, right_virus_junc, threshold):
				read_mapped['virus'] = True
				read_mapped['int'].append(row['id'])
		prev_start = right_host_junc

		# if the prev_start is to the right of the position of the last mapped base in the read
		# then we don't need to continue
		if prev_start > last:
			break


	# check if read is between the end of the last integration and the end of the chromosome
	# don't know what the end of the chromosome is, so just use a large number (genome_length)
	if intersects(first, last, prev_start, genome_length):
		if check_threshold(read, prev_start, genome_length, threshold):
			read_mapped['host'] = True

	return read_mapped	

def get_chimeric(chr, start, stop, samfile, threshold, buffer):
	"""
	find reads that cross an interval defined as chr:start-stop in samfile
	the interval must be at least threshold bases from the start and end of the read
	"""
	reads = []

	# get reads that cross interval
	# pysam numbering is 0-based, with the only exception being the region string in the fetch() and pileup() methods. 
	# The same is true for any coordinates passed to the samtools command utilities directly, such as pysam.fetch().
	for read in samfile.fetch(chr, start, stop + 1):

		# check that interval is at least threshold bases from either end of the read
		mapped = get_mapped_ref(read, buffer, threshold)
		assert (mapped['host'] or mapped['virus'])

		if mapped['host'] is True and mapped['virus'] is True:

			reads.append(read.query_name + read_num(read))

	return reads

def read_num(read):
	"""
	return '/1' if read is R1, '/2' if read is R2, or empty string otherwise
	"""
	if read.is_read1 is True:
		return "/1"
	elif read.is_read2 is True:
		return "/2"
	else:
		return ""

def check_threshold(read, start, stop, threshold):
	""""
	check that there are least threshold bases that map to an interval (defined by start and stop)
	"""
	rstart = read.get_reference_positions()[0]
	# need to account for 0-based numbering (stop already has this accounted for)
	rstop = read.get_reference_positions()[-1] + 1
	assert intersects(rstart, rstop, start, stop)

	if (rstop - start) < threshold:
		return False
	if (stop - rstart) < threshold:
		return False

	return True

def window_size(mean_frag_len, sd_frag_len, window_frac):
	"""
	to avoid exhaustive search for discordant reads, 
	work out window size for extracting reads when finding discordant read pairs
	based on mean and standard deviation of fragment length distribution,
	and fraction of this distribution we want to cover

	For example, if the mean fragment length is 500 bp, the standard deviation is 30 bp, and we want 
	to cover 0.99 of this distribution, the window size would be 570 bp, which accounts for 99% of 
	the fragment sizes in this distribution (one-tailed)

	"""

	# get one-tailed value which contains window_frac of fragments
	upper = norm.ppf(window_frac, loc = mean_frag_len, scale = sd_frag_len)

	return int(round(upper))

def get_boundary(read, threshold, side = "left"):
	"""
	get first position in reference that is at least threshold bases from the 
	start or end of the read and isn't None

	if side is 'left', return the 0-based position after threshold mapped bases from the 
	start of the read
	if side is 'right', return the 0-based position before threshold mapped bases from the
	end of the read
	"""
	assert isinstance(threshold, int)
	assert threshold >= 0
	assert threshold <= read.qlen
	assert side in ['left', 'right']

	aligned_pairs = read.get_aligned_pairs()

	if side == "left":
		# if we want to look on the right hand side, we need to look backwards 
		# through the aligned pairs
		aligned_pairs = list(reversed(aligned_pairs))
		# python numbering is zero-based and half-open
		threshold -= 1 


	# iterate over bases in aligned_pairs, starting from the threshold value
	for pair in aligned_pairs[threshold:]:
		# check the base is aligned
		if (pair[1] is not None):
			return pair[1]

def within(start1, stop1, start2, stop2):
	"""
	compare two intervals, each with a start and stop value
	return true if the first interval is completely within in the second

	use half-open intervals, so [8, 8) is not within [5, 8) 
	within(8, 8, 5, 8) => False
	within(6, 6, 5, 8) => True
	within(5, 8, 5, 8) => True
	within(4, 6, 5, 8) => False
	within(5, 9, 5, 8) => False
	"""	
	assert start1 <= stop1
	assert start2 <= stop2
	assert isinstance(start1, int)
	assert isinstance(start2, int)
	assert isinstance(stop1, int)
	assert isinstance(stop2, int)

	if start1 >= start2 and start1 < stop2:
		if stop1 - 1 >= start2 and stop1 - 1 < stop2:
			return True
	return False

def intersects(start1, stop1, start2, stop2):
	"""
	compare two intervals, each with a start and stop value
	return true if the first interval is intersects the second

	use half-open intervals, so [2, 3) and [3, 4) don't intersect
	"""	
	assert start1 <= stop1
	assert start2 <= stop2
	assert isinstance(start1, int)
	assert isinstance(start2, int)
	assert isinstance(stop1, int)
	assert isinstance(stop2, int)

	# if first interval is completely to the left of the second interval
	if stop1 <= start2:
		return False
	# if first interval is completely to the right of the second interval
	if start1 >= stop2:
		return False

	# otherwise, they intersect
	return True	

def read_pair_generator(bam, region_string=None):
    """
    https://www.biostars.org/p/306041/
    Generate read pairs in a BAM file or within a region string.
    Reads are added to read_dict until a pair is found.
    """
    read_dict = defaultdict(lambda: [None, None])
    for read in bam.fetch(region=region_string):
        if read.is_secondary or read.is_supplementary:
            continue
        qname = read.query_name
        if qname not in read_dict:
            if read.is_read1:
                read_dict[qname][0] = read
            else:
                read_dict[qname][1] = read
        else:
            if read.is_read1:
                yield read, read_dict[qname][1]
            else:
                yield read_dict[qname][0], read
            del read_dict[qname]

def remove_chimeric_from_discord(chimeric, discord):
	"""
	check for read ids that are in both chimeric and discord - remove them from discord if they're in both
	"""
	# chimeric reads have /1 or /2 added
	to_delete = []
	chimeric_tmp = [read[:-2] for read in chimeric]
	for read in discord:
		if read in chimeric_tmp:
			print(f"  removed a read that was in both chimeric and discord: {read}")
			to_delete.append(read)

	# remove reads flagged for deletion
	discord = [read for read in discord if read not in to_delete]

	return chimeric, discord

if __name__ == "__main__":
	main(argv[1:])
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
	#location in host genome (chr, start, stop)
	#part of viral genome inserted (virus, start, stop)
	#integration type (whole, portion, rearrangement, etc)
	#overlaps/gaps at each junction 
# reports all integration sites relative to the host genome, independent of other integrations
# intergrations are stored internally though the Integration class

###import libraries
from Bio import SeqIO
from Bio.Alphabet.IUPAC import unambiguous_dna
from Bio.Seq import Seq 
from Bio.SeqRecord import SeqRecord
from scipy.stats import poisson
import pandas as pd
import argparse
from sys import argv
from os import path
import numpy as np
import scipy
import pdb 
import csv
import re
import pprint
import time

###
max_attempts = 200000 #maximum number of times to try to place an integration site 

default_ints = 5
default_epi = 0

default_p_whole = 0.3
default_p_rearrange = 0.05
default_p_delete = 0.05
default_lambda_split = 1.5
default_p_overlap = 0.3
default_p_gap = 0.3
default_lambda_junction = 3
default_p_host_del = 0.0
default_lambda_host_del = 1000
default_min_sep = 500

search_length_overlap = 10000 # number of bases to search either side of randomly generated position for making overlaps

lambda_junc_percentile = 0.99

fasta_extensions = [".fa", ".fna", ".fasta"]

pp = pprint.PrettyPrinter(indent=4)

def main(argv):
	#get arguments
	parser = argparse.ArgumentParser(description='simulate viral integrations')
	parser.add_argument('--host', help='host fasta file', required = True, type=str)
#	parser.add_argument('--simug_snp_indel', help='output file from simuG to map location of snps and indels')
	parser.add_argument('--virus', help = 'virus fasta file', required = True, type=str)
	parser.add_argument('--ints', help = 'output fasta file', type=str, default="integrations.fa")
	parser.add_argument('--int_info', help = 'output tsv with info about viral integrations', type=str, default="integrations.tsv")
	parser.add_argument('--int_num', help = f"number of integrations to be carried out [{default_ints}]", type=int, default=default_ints)
	parser.add_argument('--p_whole', help = f"probability of a virus being integrated completely [{default_p_whole}]", type = float, default=default_p_whole) 
	parser.add_argument('--p_rearrange', help=f"probability of an integrated piece of virus being rearranged [{default_p_rearrange}]", type=float, default=default_p_rearrange) 
	parser.add_argument('--p_delete', help=f"probability of an integrated piece of virus containing a deletion [{default_p_delete}]", type=float, default=default_p_delete) 
	parser.add_argument('--lambda_split', help = f"mean of poisson distriubtion for number of pieces to split an integrated viral chunk into when rearranging or deleting [{default_lambda_split}]", type=float, default=default_lambda_split)
	parser.add_argument('--p_overlap', help=f"probability of a junction to be overlapped (common bases between virus and host) [{default_p_overlap}]", type=float, default=default_p_overlap) 
	parser.add_argument('--p_gap', help=f"probability of a junction to have a gap [{default_p_gap}]", type=float, default=default_p_gap) 
	parser.add_argument('--lambda_junction', help = f"mean of poisson distribution of number of bases in a gap/overlap [{default_lambda_junction}]", type=float, default=default_lambda_junction)
	parser.add_argument('--p_host_deletion', help=f"probability of a host deletion at the integation site [{default_p_host_del}]", type=float, default=default_p_host_del) 	
	parser.add_argument('--lambda_host_deletion', help = f"mean of poisson distribution of number of bases deleted from the host [{default_lambda_host_del}]", type=float, default=default_lambda_host_del)	
	parser.add_argument('--epi_num', help = f"number of episomes to added to output fasta [{default_ints}]", type=int, default=default_ints)
	parser.add_argument('--epi_info', help = 'output tsv with info about episomes', type=str, default="episomes.tsv")	
	parser.add_argument('--seed', help = 'seed for random number generator', default=12345, type=int)
	parser.add_argument('--verbose', help = 'display extra output for debugging', action="store_true")
	parser.add_argument('--model-check', help = 'check integration model every new integration', action="store_true")
	parser.add_argument('--min-sep', help='minimum separation for integrations', type=int, default=default_min_sep)
	parser.add_argument('--min-len', help='minimum length of integrated viral fragments', type=int, default=None)
	parser.add_argument('--max-len', help='maximum length of integrated viral fragments', type=int, default=None)

	args = parser.parse_args()

	args.simug_snp_indel = None
	#### generate integrations ####		

	# generate dictionary of probabilities and lambda/means as input for Integrations class
	probs = {'p_whole' 				: args.p_whole,
			'p_rearrange' 			: args.p_rearrange,
			'p_delete'				: args.p_delete,
			'lambda_split'			: args.lambda_split,
			'p_overlap' 			: args.p_overlap,
			'p_gap' 				: args.p_gap,
			'lambda_junction' 		: args.lambda_junction,
			'p_host_del'			: args.p_host_deletion,
			'lambda_host_del'		: args.lambda_host_deletion}

	# initialise Events
	if args.verbose is True:
		print("initialising a new Events object")

	seqs = Events(args.host, args.virus, seed=args.seed, verbose = True, 
								min_len = args.min_len, max_len=args.max_len,
								 simug_snp_indel = args.simug_snp_indel)

	# add integrations
	seqs.add_integrations(probs, args.int_num, max_attempts, 
												model_check = args.model_check, min_sep = args.min_sep)
	seqs.add_episomes(probs, args.epi_num, max_attempts)


	# save outputs
	seqs.save_fasta(args.ints)
	seqs.save_integrations_info(args.int_info)
	seqs.save_episomes_info(args.epi_info)

class Events(dict):
	"""
	base class for this script - stores two kinds of events: Integrations and Episomes
	Integrations is a list-like class of Integration objects, which contain information about pieces of 
	virus that have been integrated and their junctions with the surrounding chromomsomal sequence
	Episomes is a list-like class of ViralChunk objects, which contain information about pieces of virus that
	are episomal (present in sequence data but not integrated into the host chromosomes)
	"""

	def __init__(self, host_fasta_path, virus_fasta_path, 
								fasta_extensions = ['.fa', '.fna', '.fasta'] , 
								seed = 12345, verbose = False, min_len = None, max_len=None,
								simug_snp_indel = None, simug_cnv = None, 
								simug_inversion = None, simug_tranlocation = None):
		"""
		initialise events class by importing a host and viral fasta, and setting up the random number generator
		"""

		# expectations for inputs
		assert isinstance(fasta_extensions, list)
		assert isinstance(seed, int)
		assert isinstance(verbose, bool)
		assert isinstance(min_len, int) or min_len is None
		if min_len is not None:
			assert min_len > 0
		if max_len is not None:
			assert max_len > 1

		self.verbose = verbose
		self.min_len = min_len
		self.max_len = max_len

		# check and import fasta files
		if self.verbose is True:
			print("importing host fasta", flush=True)

		# read host fasta - use index which doesn't load sequences into memory because host is large genome
		if self.checkFastaExists(host_fasta_path, fasta_extensions):
			self.host = SeqIO.to_dict(SeqIO.parse(host_fasta_path, 'fasta', alphabet=unambiguous_dna))
		else:
			raise OSError("Could not open host fasta")

		if self.verbose is True:
			print(f"imported host fasta with {len(self.host)} chromosomes:", flush=True)
			host_chrs = {key:len(self.host[key]) for key in self.host.keys()}
			for key, length in host_chrs.items():
				print(f"\thost chromosome '{key}' with length {length}", flush=True)

		# read virus fasta -  make dictionary in memory of sequences
		if self.checkFastaExists(virus_fasta_path, fasta_extensions):
			self.virus = SeqIO.to_dict(SeqIO.parse(virus_fasta_path, 'fasta', alphabet=unambiguous_dna))
			# convert all viral sequences to upper case to make it easier to check output
			for this_virus in self.virus.values():
				this_virus.seq = this_virus.seq.upper()
		else:
			raise OSError("Could not open virus fasta")

		# check for SNP and indel map file from simuG - need to account for indels in output
		if simug_snp_indel is not None:
			self.indel = [row for row in self.read_simug_file(simug_snp_indel) if row['variant_type'] == 'INDEL']
		else:
			self.indel = None

		# other types of structural variants
		self.cnv = self.read_simug_file(simug_cnv)
		self.inversion = self.read_simug_file(simug_inversion)
		self.tranlocation = self.read_simug_file(simug_tranlocation)

		# check that minimum length is greater than the length of all the viral references
		if self.min_len is not None:
			if not all([len(virus) >= self.min_len for virus in self.virus.values()]):
				raise ValueError(f"specified minimum length is more than the length of one of the input viruses")
			if any([len(virus) == self.min_len for virus in self.virus.values()]):
				print(f"warning: minimum length is equal to the length of one or more references - integrations involving these references will all be whole, regardless of p_whole")

		# check maximum length
		if self.max_len is not None and self.min_len is not None:
				if self.min_len > self.max_len:
					raise ValueError("Minimum length cannot be greater than maximum")

		if self.verbose is True:
			print(f"imported virus fasta with {len(self.virus)} sequences:", flush=True)
			virus_seqs = {key:len(self.virus[key]) for key in self.virus.keys()}
			for key, length in virus_seqs.items():
				print(f"\tviral sequence '{key}' with length {length}", flush=True)

		# instantiate random number generator
		self.rng = np.random.default_rng(seed)

	def read_simug_file(self, filename):
		"""
		open simuG output file and read contents into memory
		"""
		if filename is None:
			return None

		assert path.isfile(filename)
		lines = []
		with open(filename, 'r') as infile:
			reader = csv.DictReader(infile, delimiter =  '\t')
			for row in reader:
				lines.append(row)

		return lines


	def add_integrations(self, probs, int_num, max_attempts = 50, model_check = False, min_sep = 1):
		"""
		Add an Integrations object with int_num integrations, with types specified by probs,
		to self
		"""

		assert isinstance(max_attempts, int)
		assert isinstance(int_num, int)
		assert isinstance(min_sep, int)
		assert max_attempts > 0
		assert int_num >= 0
		assert min_sep > 0

		self.min_sep = min_sep
		self.max_attempts = max_attempts
		self.model_check = model_check

		# can only add integrations once
		if 'ints' in self:
			raise ValueError("integrations have already been added to this Events object") # is there a better error type for this?

		# check that the number of requested integrations will fit in the host, given the requested minimum separation
		# rule of thumb is that we allow 4*min_sep for each integration
		total_host_length = sum([len(seq) for seq in self.host.values()])
		if self.min_sep * 4 * int_num > total_host_length:
			raise ValueError("The requested number of integrations, with the specified minimum separation, are not likely to fit into the specified host.  Either decrease the number of integrations or the minimum separation.")

		# we require that the minimum length of integrations is longer than the integrated virus
		# so check the value of lambda_junction relative to min_len and the length of the shortest viral reference
		# require that both are greater than the 99th percentile of the poisson distribution defined by lambda_junction
		self.check_junction_length(probs)

		# instantiate Integrations object
		self.ints = Integrations(self.host, self.virus, probs, self.rng, self.max_attempts, self.model_check, self.min_sep, self.min_len, self.max_len, self.indel)

		# add int_num integrations
		if self.verbose is True:
			print(f"performing {int_num} integrations", flush=True)
		counter = 0
		while len(self.ints) < int_num:
			t0 = time.time()
			if self.ints.add_integration() is False:
				counter += 1
			# check for too many attempts
			if counter > max_attempts:
				raise ValueError('too many failed attempts to add integrations')
			t1 = time.time()
			print(f"added integration {len(self.ints)} in {(t1-t0):.2f}s", flush=True)
			print()
		# if we had fewer than 50% of our attempts left
		if (counter / max_attempts) > 0.5:
			print(f"warning: there were {counter} failed integrations", flush=True)

	def add_episomes(self, probs, epi_num, max_attepmts = 50):
		"""
		Add an Integrations object with int_num integrations, with types specified by probs,
		to self
		"""

		assert isinstance(max_attempts, int)
		assert isinstance(epi_num, int)
		assert max_attempts > 0
		assert epi_num >= 0

		# can only add episomes once
		if 'epis' in self:
			raise ValueError("episomes have already been added to this Events object")

		# we require that the minimum length of integrations is longer than the integrated virus
		# so check the value of lambda_junction relative to min_len and the length of the shortest viral reference
		# require that both are greater than the 99th percentile of the poisson distribution defined by lambda_junction
		self.check_junction_length(probs)

		# instantiate Episomes object
		self.epis = Episomes(self.virus, self.rng, probs, max_attempts, self.min_len)

		# add epi_num episomes
		if self.verbose is True:
			print(f"adding {epi_num} episomes", flush=True)
		counter = 0
		while len(self.epis) < epi_num:
			if self.epis.add_episome() is False:
				counter += 1
			if counter > max_attempts:
				raise ValueError('too many failed attempts to add episomes')


	def checkFastaExists(self, file, fasta_extensions):
		#check file exists
		exists = path.isfile(file)
		if not(exists):
			return False
		#check extension
		prefix = path.splitext(file)[-1]
		if prefix:
			if not prefix in fasta_extensions:
				return False
		return True		

	def check_junction_length(self, probs):
		"""
		we require that the minimum length of integrations is longer than the integrated virus
		so check the value of lambda_junction relative to min_len and the length of the shortest viral reference
		require that both are greater than the 99th percentile of the poisson distribution defined by lambda_junction
		"""
		if probs['p_gap'] + probs['p_overlap'] == 0:
			return
		thresh = poisson.ppf(lambda_junc_percentile, probs['lambda_junction'])
		if self.min_len is not None:
			if thresh * 2  > self.min_len:
				raise ValueError(
					"There is likely to be a lot of clashes between the length of the left and right junctions, and the \
					length of the integrations.  Set a shorter lambda_jucntion or a longer minimum length"
					)
		if thresh * 2  > min([len(virus) for virus in  self.virus.values()]):
			raise ValueError(
				"There is likely to be a lot of clashes in which the length of the left and right junctions, and the \
				length of the integrations.  Set a shorter lambda_jucntion or use longer viral references."
				)

	def save_fasta(self, file):
		"""
		save output sequences to file
		"""

		if 'ints' in vars(self):
			assert len(self.ints) >= 0
			self.ints._Integrations__save_fasta(file, append = False)

		if 'epis' in vars(self):
			assert len(self.epis) >= 0
			self.epis._Episomes__save_fasta(file, append = True)

		if ('ints' not in vars(self)) and ('epis' not in vars(self)):
			print("warning: no integrations or episomes have been added")

		if self.verbose is True:
			print(f"saved fasta with integrations and episomes to {file}")

	def save_integrations_info(self, file):
		"""
		save info about integrations to file
		"""
		assert len(self.ints) >= 0

		self.ints._Integrations__save_info(file)

		if self.verbose is True:
			print(f"saved information about integrations to {file}")

	def save_episomes_info(self, file):
		"""
		save info about episomes to file
		"""
		assert 'epis' in vars(self)
		assert len(self.epis) >= 0

		self.epis._Episomes__save_info(file)

		if self.verbose is True:
			print(f"saved information about episomes to {file}", flush=True)

class Integrations(list):
	"""
	Class to store all integrations for a given host and virus
	This class stores the sequences for the host and virus (dictionaries of biopython seqRecord objects)
	And probabilities of each type of viral integration - whole/portion, rearrangement/deletion, gap/overlap, 
	means of poisson distributions, host deletions and their mean lengths, etc

	These probabilities and means are stored in a dictionary - probs, which must contain the following values:

	p_whole - probability of an integration being of the whole virus [0.3].  probability of a portion is 1-p_whole

	p_rearrange - probability of a chunk being rearranged
	p_delete - probability of a chunk containing a deletion

	note that rearrangements and deletions are not mutually exclusive - an integration can have both a rearrangement and 
	a deletion.  if this is the case, deletions are always performed first.

	lambda_split - when splitting a chunk for a rearrangement or deletion, mean of the poission distribution for
	number of pieces in which to split chunk

	p_overlap - probability of a junction to contain an overlap (common bases between virus and host)
	p_gap - probability of a junction to contain a gap (random bases inserted between host and virus)
	(probability of neither a rearrangement or a deletion is 1 - (p_overlap + p_gap) )
	lambda_junction - mean of poisson distribution of number of bases involved in overlap or gap

	p_host_del - probability that there will be a deletion from the host at integration site
	lambda_host_del - mean of poisson distribution of number of bases deleted from host genome at integration site

	"""
	def __init__(self, host, virus, probs, rng, max_attempts=50, model_check=False, min_sep=1, min_len=None, max_len=None, indel=None):
		"""
		Function 
		to initialise Integrations object
		"""

		# checks for inputs
		assert isinstance(virus, dict)
		assert isinstance(probs, dict)
		assert isinstance(max_attempts, int)
		assert max_attempts > 0
		assert isinstance(model_check, bool)
		assert isinstance(min_sep, int)
		assert min_sep > 0
		assert isinstance(min_len, int) or min_len is None
		if min_len is not None:
			assert min_len > 0
		assert isinstance(max_len, int) or max_len is None
		if max_len is not None:
			assert max_len > 1
			if min_len is not None:
				assert max_len >= min_len		
		assert isinstance(indel, list) or indel is None

		# assign properties common to all integrations
		self.host = host
		self.virus = virus
		self.probs = probs
		self.rng = rng
		self.max_attempts = max_attempts
		self.model_check = model_check
		self.min_sep = min_sep
		self.min_len = min_len
		self.max_len = max_len
		self.indel = indel

		# default values for probs
		self.set_probs_default('p_whole', default_p_whole)
		self.set_probs_default('p_rearrange', default_p_rearrange)
		self.set_probs_default('p_delete', default_p_delete)
		self.set_probs_default('lambda_split', default_lambda_split)
		self.set_probs_default('p_overlap', default_p_overlap)
		self.set_probs_default('p_gap', default_p_gap)
		self.set_probs_default('lambda_junction', default_lambda_junction)	
		self.set_probs_default('p_host_del', default_p_host_del)
		self.set_probs_default('lambda_host_del', default_lambda_host_del)	

		# checks on assigned variables
		assert 'p_whole' in probs
		assert 'p_rearrange' in probs
		assert 'p_delete' in probs	
		assert 'lambda_split' in probs	
		assert 'p_overlap' in probs
		assert 'p_gap' in probs
		assert 'lambda_junction' in probs
		assert 'p_host_del' in probs
		assert 'lambda_host_del' in probs

		# check that probabilities are between 0 and 1
		self.check_prob(self.probs['p_whole'], 'p_whole')
		#self.check_prob(self.probs['p_rearrange'] + self.probs['p_delete'], 'the sum of p_rearrange and p_delete')	
		self.check_prob(self.probs['p_rearrange'], 'p_rearrange')	
		self.check_prob(self.probs['p_delete'], 'p_delete')	
		self.check_prob(self.probs['p_overlap'] + self.probs['p_gap'], 'the sum of p_overlap and p_gap')

		self.check_prob(self.probs['p_host_del'], 'p_host_deletion')

		# check that lambda values are positive floats	
		self.check_float_or_int_positive(self.probs['lambda_split'], 'lambda_split')
		self.check_float_or_int_positive(self.probs['lambda_junction'], 'lambda_junction')
		self.check_float_or_int_positive(self.probs['lambda_host_del'], 'lambda_host_deletion')

		# initialize model of integrations
		# each chromosome is an entry in the model dict
		# each chromosome is composed of a list of sequences, each composed of a dictionary
		# each sequence is a dictionary, specifying the 'origin' of the bases - 'host', 'virus', 'ambig'
		# as well as the start and stop and orientation of that sequence (in a list)
		# this is to be updated every time we do an integration

		self.model = {chr : [{'origin': 'host', 'coords':(0, len(seq)), "ori" : "+", 'seq_name': chr}] for chr, seq in host.items()}


	def set_probs_default(self, key, default):
		"""
		check if a key is in the probs dictionary, and if not set it to a default
		"""	
		if key not in self.probs:
			self.probs[key] = default

	def check_float_or_int_positive(self, value, name):
		"""
		Check that a value, with a name, is a positive float or int
		"""
		if not isinstance(value, float) and not isinstance(value, int):
			raise ValueError(f"{name} must be a float (it's currently {type(value)})")
		if value <= 0:
			raise ValueError(f"{name} must be greater than zero (it's currently {value})")	

	def check_prob(self, value, name):
		"""
		Check that a value, with a name, is a valid probability (float between 0 and 1):
		"""
		if not isinstance(value, float):
			raise ValueError(f"{name} must be a float (it's currently {type(value)})")
		if value < 0 or value > 1:
			raise ValueError(f"{name} must be between 0 and 1")	

	def poisson_with_minimum_and_maximum(self, lambda_poisson, min=-np.inf, max=np.inf):
		"""
		get an integer from the poisson distribution with the specified lambda
		with a minimum value 
		"""
		assert max >= min

		if min == max:
			return min

		counter = 0
		while True:
			n = int(self.rng.poisson(lam = lambda_poisson))
			if n >= min and n <= max:
				return n
			counter += 1
			if counter > self.max_attempts:
				print(f"warning: too many attempts to get value with minimum {min} and maximum {max} from poisson distribution with mean {lambda_poisson}", flush=True)

				return None

	def add_integration(self):
		"""
		Add an integration by appending an Integration object to self.  
		"""

		# call functions that randomly set properties of this integrations
		counter = 0
		while True:
			chunk_props = self.set_chunk_properties()
			if len(chunk_props) != 0:
				break
			counter += 1
			if counter > self.max_attempts:
				raise ValueError("too many attempts to set chunk properties")
		assert len(chunk_props) == 6

		counter = 0
		while True:
			junc_props = self.set_junc_properties()
			if len(junc_props) != 0:
				break
			counter += 1
			if counter > self.max_attempts:
				raise ValueError("too many attempts to set junction properties")

		assert len(junc_props) == 4

		# make an integration
		integration = Integration(self.host, 
								  self.virus,
								  model = self.model,
								  rng = self.rng,
								  int_id = len(self),
								  chunk_props = chunk_props,
								  junc_props = junc_props,
								  min_sep = self.min_sep
								  )

		# append to self if nothing went wrong with this integration
		if integration.chunk.pieces is not None:
			if integration.pos is not None:
				assert integration.id not in [item.id for item in self]

				self.append(integration)

				self.__update_model(integration)

				return True

		return False

	def set_junc_properties(self):
		"""
		randomly set the properties of the junctions (self.junc_props) for this Integration
		dict with the following properties:
			- junc_types = iterable of length 2 specifying type of left and right junctions (one of gap, overlap, clean)
			- n_junc = iterable of length 2 specifying length of left and right junctions
			- host_del = boolean specifying if there should be a deletion from the host at the integration site
			- host_del_len = integer specifying the number of bases to be deleted from the host at the integration site
		"""

		junc_props = {}

		# get type of left junction
		p_clean = 1 - self.probs['p_overlap'] - self.probs['p_gap']
		prob_juncs = [self.probs['p_overlap'], self.probs['p_gap'], p_clean]
		junc_props['junc_types'] = self.rng.choice(a = ['overlap', 'gap', 'clean'], size = 2, p = prob_juncs)

		# get number of bases in left junction
		if junc_props['junc_types'][0] == 'clean':
			n_left_junc = 0
		elif junc_props['junc_types'][0] in ['gap', 'overlap']:
			n_left_junc = self.poisson_with_minimum_and_maximum(self.probs['lambda_junction'], min = 1)
			if n_left_junc is None:
				return {}
		else:
			return {}

		# get number of bases in right junction
		if junc_props['junc_types'][1] == 'clean':
			n_right_junc = 0
		elif junc_props['junc_types'][1] in ['gap', 'overlap']:
			n_right_junc = self.poisson_with_minimum_and_maximum(self.probs['lambda_junction'], min = 1)
			if n_right_junc is None:
				return {}
		else:
			return {}

		junc_props['n_junc'] = (n_left_junc, n_right_junc)

		# check that if we have a clean junction, it's length is 0 
		assert not(junc_props['junc_types'][0] == 'clean') or junc_props['n_junc'][0] == 0
		assert not(junc_props['junc_types'][1] == 'clean') or junc_props['n_junc'][1] == 0 

		# check that if we don't have a clean junction, it's length is greater than zero
		assert not(junc_props['junc_types'][0] != 'clean') or junc_props['n_junc'][0] > 0
		assert not(junc_props['junc_types'][1] != 'clean') or junc_props['n_junc'][1] > 0 

		# decide if this integration should have a deletion from the host
		host_deletion = self.rng.choice(a = [True, False], p = (self.probs['p_host_del'], 1 - self.probs['p_host_del']))
		junc_props['host_del'] = bool(host_deletion)

		# if we're doing a host deletion, get number of bases to be deleted
		if junc_props['host_del'] is True:
			junc_props['host_del_len'] = self.poisson_with_minimum_and_maximum(self.probs['lambda_host_del'], min = 1)
			if junc_props['host_del_len'] is None:
				return {}
		elif junc_props['host_del'] is False:
			junc_props['host_del_len'] = 0
		else:
			return {}


		# check that 
		return junc_props

	def set_chunk_properties(self):
		"""
		randomly set the properties of the viral chunk for this Integration
		returns dict with the following properties:
			- is_whole: boolean specifying if the ViralChunk is whole (if false, chunk is just a portion)
			- n_fragments: number of fragments into which ViralChunk should be split
			- n_delete: number of fragments to delete from ViralChunk (should always leave at least two fragments after deletion)
			- n_swaps: number of swaps to make when rearranging ViralChunk
			- min_len: the minimum length of the viral chunk - optional (if not present, for 
			integration will be set to the number of overlap bases + 1, for episome will be set to 1
			- max_len: the maxumum length of the viral chunk
		"""

		chunk_props = {}

		# get if integration should be whole or portion
		p_portion =  1 - self.probs['p_whole']
		chunk_props['is_whole'] = bool(self.rng.choice(a = [True, False], p = [self.probs['p_whole'], p_portion]))

		# get if integration should be rearranged
		p_not_rearrange = 1 - self.probs['p_rearrange']
		is_rearrange = bool(self.rng.choice(a = [True, False], p = [self.probs['p_rearrange'], p_not_rearrange]))


		# get if integration should contain deletion
		p_not_delete = 1 - self.probs['p_delete']
		is_delete = bool(self.rng.choice(a = [True, False], p = [self.probs['p_delete'], p_not_delete]))

		# get number of fragments - ignored if both isDelete and isRearrange are both False
		# must have at least two pieces for a rearrangment, or three for a deletion
		min_split = 1
		if is_rearrange is True:
			min_split = 2
		if is_delete is True:
			min_split = 3

		# set the number of fragments for the chunk
		if is_delete is False and is_rearrange is False:
			chunk_props['n_fragments'] = 1
		else:
			chunk_props['n_fragments'] = self.poisson_with_minimum_and_maximum(self.probs['lambda_split'], min = min_split)
		if chunk_props['n_fragments'] is None:
			return {}
		assert chunk_props['n_fragments'] > 0 

		# if we're doing a deletion, get the number of fragments to delete
		if is_delete is True:
			chunk_props['n_delete'] = int(self.rng.choice(range(0, chunk_props['n_fragments'] - 1)))
		else:
			chunk_props['n_delete'] = 0

		# if we're doing a rearrangement, get the number of swaps to make
		if is_rearrange is True:
			chunk_props['n_swaps'] = self.poisson_with_minimum_and_maximum(self.probs['lambda_split'], min = 1)
			if chunk_props['n_swaps'] is None:
				return {}
		else:
			chunk_props['n_swaps'] = 0

		# set minimum length of chunk
		chunk_props['min_len'] = self.min_len
		chunk_props['max_len'] = self.max_len

		return chunk_props

	def __update_model(self, integration):
		"""
		update self.model for a new integration 
		"""
		# find segment in which integration should occur
		for i, seg in enumerate(self.model[integration.chr]):
			if seg['origin'] != 'host':
				continue
			if integration.pos >= seg['coords'][0] and integration.pos <= seg['coords'][1]:
				break

		t0 = time.time()
		# remove this element from the list
		seg = self.model[integration.chr].pop(i)
		host_start = seg['coords'][0]
		host_stop = seg['coords'][1]
		left_overlap_bases = integration.junc_props['n_junc'][0] if integration.junc_props['junc_types'][0] == 'overlap' else 0
		right_overlap_bases = integration.junc_props['n_junc'][1] if integration.junc_props['junc_types'][1] == 'overlap' else 0
		overlap_bases = left_overlap_bases + right_overlap_bases

		# create host segment before this integration and add to list
		host = {'origin' : 'host', 'seq_name' : integration.chr, 'ori' : '+'}

		# if the integration had a left overlap, we need to trim these bases from the host
		# note that int.pos is always to the left of any overlaps
		# so we don't need to consider them here
		host['coords'] = (host_start, integration.pos)

		assert host['coords'][1] > host['coords'][0]
		self.model[integration.chr].insert(i, host)
		i += 1

		# if we have ambiguous bases at the left junction, add these to the list too
		assert len(integration.junc_props['junc_bases'][0]) == integration.junc_props['n_junc'][0]
		if integration.junc_props['junc_types'][0] in ['gap', 'overlap']:
			# features common to both ambiguous types
			ambig = {'origin': 'ambig',
					 'ori' : "+"}
			ambig['bases'] = integration.junc_props['junc_bases'][0]

			# gap features
			if integration.junc_props['junc_types'][0] == 'gap':
				ambig['seq_name'] = 'gap'
				ambig['coords'] = (0, integration.junc_props['n_junc'][0])

			# overlap features
			elif integration.junc_props['junc_types'][0] == 'overlap':
				ambig['seq_name'] = integration.chr
				ambig['coords'] = (integration.pos, integration.pos + left_overlap_bases)
				assert str(self.host[integration.chr][ambig['coords'][0]:ambig['coords'][1]].seq).lower() == integration.junc_props['junc_bases'][0].lower()
			else:
				raise ValueError(f"unrecgonised integration type: {integration.junc_props[0]}")
			assert ambig['coords'][1] > ambig['coords'][0]
			self.model[integration.chr].insert(i, ambig)
			i += 1

		# add each piece of the viral chunk too
		for j in range(len(integration.chunk.pieces)):
			virus = {'origin': 'virus', 
					 'coords': (integration.chunk.pieces[j][0], integration.chunk.pieces[j][1]),
					 'ori' : integration.chunk.oris[j],
					 'seq_name' : integration.chunk.virus}
			assert virus['coords'][1] > virus['coords'][0]
			self.model[integration.chr].insert(i, virus)
			i += 1

		t0 = time.time()	
		# if we have ambiguous bases at the right junction, add these
		assert len(integration.junc_props['junc_bases'][1]) == integration.junc_props['n_junc'][1]
		if integration.junc_props['junc_types'][1] in ['gap', 'overlap']:
			ambig = {'origin': 'ambig',
					 'bases' : integration.junc_props['junc_bases'][1],
					 'ori' : "+"}

			if integration.junc_props['junc_types'][1] == 'gap':
				ambig['seq_name'] = 'gap'
				ambig['coords'] = (0, integration.junc_props['n_junc'][1])

			# overlap features
			elif integration.junc_props['junc_types'][1] == 'overlap':
				ambig['seq_name'] = integration.chr

				# if the left junction was also an overlap, we need to account for this in the coordinates
				if integration.junc_props['junc_types'][0] == 'overlap':
					start = integration.pos + left_overlap_bases
					stop = start + right_overlap_bases
				else:
					start = integration.pos
					stop = start + right_overlap_bases

				ambig['coords'] = (start, stop)
				assert str(self.host[integration.chr][ambig['coords'][0]:ambig['coords'][1]].seq).lower() == integration.junc_props['junc_bases'][1].lower()
			else:
				raise ValueError(f"unrecgonised integration type: {integration.junc_props[0]}")
			assert ambig['coords'][1] > ambig['coords'][0]
			self.model[integration.chr].insert(i, ambig)
			i += 1


		# finally, add second portion of host
		host = {'origin': 'host', 'seq_name': integration.chr, 'ori': '+'}


		# accounting for bases deleted from the host and overlaps
		# note that integration.pos is always to the left of any overlapped bases, so here is where we need to account for them
		host['coords'] =  (integration.pos + integration.junc_props['host_del_len'] + overlap_bases, host_stop)

		assert host['coords'][1] > host['coords'][0]

		self.model[integration.chr].insert(i, host)
		i += 1		

		if self.model_check is True:
			self.__check_model()


	def __check_model(self):
		"""
		check model is valid by checking various properties
		"""
		n_ints = 0
		next_int = True
		t0 = time.time()
		for chr in self.model.keys():
			host_pos = 0
			for seg in self.model[chr]:
				assert seg['coords'][1] > seg['coords'][0]
				assert seg['origin'] in ('host', 'virus', 'ambig')
				assert 'seq_name' in seg
				if seg['origin'] == 'host':
					next_int = True
					assert seg['seq_name'] == chr
					assert seg['ori'] == '+'
					# check that host position is only increasing
					assert seg['coords'][0] >= host_pos
					host_pos = seg['coords'][1]
				elif seg['origin'] == 'virus':
					if next_int is True:
						n_ints += 1
						next_int = False	
					assert seg['seq_name'] in list(self.virus.keys())
				elif seg['origin'] == 'ambig':
					assert 'bases' in seg
					if seg['seq_name'] != 'gap':
						assert seg['seq_name'] in list(self.host.keys())
						host_bases = str(self.host[chr][seg['coords'][0]:seg['coords'][1]].seq).lower()
						seg_bases = seg['bases'].lower()
						assert host_bases == seg_bases
		assert n_ints == len(self)
		t1 = time.time()
		print(f"checked model validity in {t1-t0}s")	

	def __save_fasta(self, filename, append = False):
		"""
		Save host fasta with integrated viral bases to a fasta file
		"""
		assert isinstance(append, bool)
		if append is True:
			write_type = "a"
		if append is False:
			write_type = "w+"

		with open(filename, write_type) as handle:
			# loop over chromosomes
			for chr in self.host.keys():

				# print chromosome name
				handle.write(f">{chr}\n")

				# loop over entries in the model for this chromosome
				for entry in self.model[chr]:
					start = entry['coords'][0]
					stop = entry['coords'][1]

					# if host
					if entry['origin'] == 'host':
						handle.write(str(self.host[chr].seq[start:stop]))

					# if ambiguous write bases - note that overlapped bases have been trimmed from host and virus
					# so we're ok to write them here
					elif entry['origin'] == 'ambig':
						handle.write(entry['bases'])

					# if viral
					elif entry['origin'] == 'virus':
						virus = entry['seq_name']
						if entry['ori'] == '+':
							handle.write(str(self.virus[virus].seq[start:stop]))
						elif entry['ori'] == '-':
							handle.write(str(self.virus[virus].seq[start:stop].reverse_complement()))
						else:
							raise ValueError(f"unregconised orientation {entry['ori']} in {entry}")

					else:
						raise ValueError(f"unrecgonised model feature on chr {chr}: {entry}")


				handle.write("\n")


	def __handle_indels(self, integration):
		"""
		this function gets the offset due to indels that occurs before an input integration

		it also remove from the list of indels any indels that occur in the region of the input host chomosome
		that is deleted after this integration

		it also calculates the length of the host deletion in the original fasta,
		which differs from the length in the input fasta (integration.host_deleted) 
		if the deleted region contains indels (which are not present in the original fasta

		it uses a list of indels: self.indel_list_for_consuming
		each time indels are accounted for, they are removed from the list (consumed), so they can only be counted 
		once for increasing positions




		03/03/2021
		Abandoned the indel feature for now, but left this function in case I decide to come back to it.

		The main problem I have is the way I'm defining the integration position - this is to the left of any ambiguous bases

		However, it should probably be after the left ambiguous bases and before the right ambiguous bases.  Deletions
		should also occur before the right ambiguous bases, so that the homology occurs after the deletion

		With the current definition of the integration position, it's difficult to handle indels in a consistent way, but
		changing to the more sensible definition is a big job
		"""
		host_position_offset = 0
		host_deletion_offset = 0

		if self.indel is None:
			integration.host_deleted_original_fasta = integration.host_deleted
			return host_position_offset, host_deletion_offset

		if not hasattr(self, "indel_list_for_consuming"):
			self.indel_list_for_consuming = list(self.indel)


		# find indels before the position of this integration
		prior_indels = []
		i = 0
		while i < len(self.indel_list_for_consuming):
			indel = self.indel_list_for_consuming[i]
			if indel['ref_chr'] != integration.chr:
				continue

			# if this indel is before the integration position
			if integration.pos >= int(indel['sim_end']):
				host_position_offset += len(indel['sim_allele']) - len(indel['ref_allele'])
				self.indel_list_for_consuming.pop(i)

			# if this integration is after the integration position (assumes indels are sorted)
			elif integration.pos < int(indel['sim_start']):
				break
			else:
				i += 1


		# find indels that are in the deleted region
		del_region_indels = []
		i = 0
		while i < len(self.indel_list_for_consuming):
			indel = self.indel_list_for_consuming[i]	
			if indel['ref_chr'] != integration.chr:
				continue

			# if integration is in this insertion
			if int(indel['sim_start']) <= integration.pos and int(indel['sim_end']) > integration.pos:
				# split insertion at integration 

				# add portion of insertion that's before integration.pos to host position offset

				# add portion of insertion that's after integration.pos to deletion offset
				pass

			# if indel is in deleted region

				# add indel length to deletion offset


			# if insertion straddles end of deleted region
				pass
					# split insertion at end of deleted region

					# add portion of insetion that's before end of deleted region to deletion offset

					# retain portion of insertion that's after end of deleted region for next integration

			# if indel is after deleted region, we're done
			elif integration.pos < int(indel['sim_stop']):
				break	
			else:
				i += 1		

		integration.host_deleted_original_fasta = integration.host_deleted + host_deletion_offset

		return host_position_offset, host_deletion_offset			 


	def __save_info(self, filename):
		"""
		Output the following info for each integration (one integration per line) into a tab-separated file:
		Note that all co-orindates are 0-based
		 - chr: host chromosome on which integration occurs
		 - hPos: 0-based position in the ORIGINAL host fasta (before adding variation with simuG) at which integration occurs 
		 - hPos_input_fasta: 0-based position in the input host fasta at which integration occurs
		 	(relative to input fasta)
		 - leftStart, leftStop: position of the ambiguous bases (gap, overlap or clean junction) on left side,
		 	in final output fasta (accounting for any previous integrations)
		 - rightStart, rightStop: position of the ambiguous bases (gap, overlap or clean junction) on right side
		 	in final output fasta (accounting for any previous integrations)
		 - hDeleted: number of bases deleted from host chromosome in original fasta (before adding variation)
		 - hDeleted_input_fasta: number of bases deleted from host chromosome in input fasta (after adding variation)
		 - virus: name of integrated virus
		 - viral breakpoints: a comma separated list of viral breakpoints which together indicate the integrated bases
			adjacent pairs of breakpoints indicate portions of the virus that have been integrated
		 - vOris: orientation (+ or -) of each portion of the virus that was integrated
		 - juncTypes: types (gap, overlap, clean) of left and right junctions, respectively
		 - juncBases: bases at left and right junctions, respectively
		"""
		#pp.pprint(self.model)

		# dictionary will keep track of the number of bases previously integrated on each chromosome
		previous_ints = {key:0 for key in self.host.keys()} # length of previous integrations
		deleted_bases_input_fasta = {key:0 for key in self.host.keys()} # deletions because of integrations
		deleted_bases_original_fasta = {key:0 for key in self.host.keys()}
		sim_to_original_offset = {key:0 for key in self.host.keys()} # add this to sim position to get original position (due to indels)

		self.__check_model()
		self.sort()

		with open(filename, "w", newline='') as csvfile:
			intwriter = csv.writer(csvfile, delimiter = '\t')
			intwriter.writerow(['id', 'chr', 'hPos', 'hPos_input_fasta', 'leftStart', 'leftStop',  'rightStart', 'rightStop', 'hDeleted', 'hDelted_input_fasta', 'virus', 'vBreakpoints', 'vOris', 'juncTypes', 'juncBases', 'juncLengths', 'whole', 'rearrangement', 'deletion', 'n_swaps', 'n_delete'])
			for i, integration in enumerate(self):
				assert integration.pos is not None

				# to calculate hPos, we need to account for variants introduced by simuG
				host_position_offset, host_deletion_offset	= self.__handle_indels(integration)
				sim_to_original_offset[integration.chr] += host_position_offset
				h_pos = integration.pos + sim_to_original_offset[integration.chr]

				# calculate start and stop position for this integration			
				left_start = integration.pos + previous_ints[integration.chr] - deleted_bases_input_fasta[integration.chr]
				left_stop = left_start + integration.junc_props['n_junc'][0] 

				right_start = left_stop + len(integration.chunk.bases)
				right_stop = right_start + integration.junc_props['n_junc'][1] 

				# update previous_ints - total integrated bases
				# are the integrated viral bases, and the bases in the gaps
				previous_ints[integration.chr] += len(integration.chunk.bases)
				if integration.junc_props['junc_types'][0] == 'gap':
					previous_ints[integration.chr] += integration.junc_props['n_junc'][0]
				if integration.junc_props['junc_types'][1] == 'gap':
					previous_ints[integration.chr] += integration.junc_props['n_junc'][1]

				# update deleted_bases
				deleted_bases_input_fasta[integration.chr] += integration.junc_props['host_del_len']
				deleted_bases_original_fasta[integration.chr] += integration.host_deleted_original_fasta

				# indels in deleted region didn't happen, so we need to account for this in the position offset
				sim_to_original_offset[integration.chr] -= host_deletion_offset

				# format lists into comma-separated strings
				breakpoints = ";".join([str(i) for i in integration.chunk.pieces])
				oris = ','.join(integration.chunk.oris)
				junc_types = ",".join(integration.junc_props['junc_types'])
				junc_bases = ",".join(integration.junc_props['junc_bases'])
				junc_lengths = ",".join([str(i) for i in integration.junc_props['n_junc']])

				# write a row for this integration
				intwriter.writerow([integration.id,
									integration.chr, 
									h_pos, 
									integration.pos, 
									left_start, 
									left_stop,
									right_start,
									right_stop, 
									integration.host_deleted,
									integration.host_deleted_original_fasta,
									integration.chunk.virus,
									breakpoints,
									oris,
									junc_types,
									junc_bases,
									junc_lengths,
									integration.chunk.chunk_props['is_whole'],
									integration.chunk.chunk_props['n_swaps'] > 0,
									integration.chunk.chunk_props['n_delete'] > 0,
									integration.chunk.chunk_props['n_swaps'],
									integration.chunk.chunk_props['n_delete']
								])

	def __str__(self):
		return f"Viral integrations object with {len(self)} integrations of viral sequences {list(self.virus.keys())} into host chromosomes {list(self.host.keys())}"

	def __repr__(self):
		return f"Object of type Integrations with properties {self}"	

class Episomes(Integrations):
	"""
	Episomes may be added to the output fasta to mimic contamination of sample with purely viral sequences
	this class stores a list of ViralChunk objects which make up the contaminating viral sequences

	This class is intended to be used by the Integrations class

	Since Integrations and Episomes use some similar methods, this class inherits from Integrations
	in order to avoid duplication
	"""
	def __init__(self, virus, rng, probs, max_attempts = 50, min_len = None, max_len=None):
		"""
		initialises an empty Episomes list, storing the properties common to all episomes
		"""
		# checks for inputs
		assert isinstance(virus, dict)
		assert isinstance(probs, dict)
		assert isinstance(max_attempts, int)
		assert isinstance(min_len, int) or min_len is None
		if min_len is None:
			min_len = 1
		else:
			assert min_len > 0
		assert isinstance(max_len, int) or max_len is None
		if max_len is not None:
			assert max_len > 1
			if min_len is not None:
				assert max_len >= min_len


		# assign properties common to all episomes
		self.virus = virus
		self.probs = probs
		self.rng = rng
		self.max_attempts = max_attempts
		self.min_len = min_len
		self.max_len = max_len

		# default values for probs
		self.set_probs_default('p_whole', default_p_whole)
		self.set_probs_default('p_rearrange', default_p_rearrange)
		self.set_probs_default('p_delete', default_p_delete)
		self.set_probs_default('lambda_split', default_lambda_split)

		# checks on assigned variables
		assert 'p_whole' in probs
		assert 'p_rearrange' in probs
		assert 'p_delete' in probs	
		assert 'lambda_split' in probs

		# check that probabilities are between 0 and 1
		self.check_prob(self.probs['p_whole'], 'p_whole')
		#self.check_prob(self.probs['p_rearrange'] + self.probs['p_delete'], 'the sum of p_rearrange and p_delete')	
		self.check_prob(self.probs['p_rearrange'], 'p_rearrange')
		self.check_prob(self.probs['p_delete'], 'p_delete')
		self.check_prob(self.probs['p_overlap'] + self.probs['p_gap'], 'the sum of p_overlap and p_gap')

		# when adding episomes, we will want to keep track of the number of episomes for each virus
		self.virus_counts = {virus: 0 for virus in self.virus.keys()}

	def add_episome(self):
		"""
		get a viral chunk and add to self
		"""

		# call functions that randomly set properties of this integrations
		chunk_props = self.set_chunk_properties()
		assert len(chunk_props) != 2

		# get a viral chunk
		chunk = ViralChunk(self.virus, self.rng, chunk_props)

		# check for valid chunk
		if chunk.pieces is not None:
			# add id to chunk
			chunk.id = f"{chunk.virus}__{self.virus_counts[chunk.virus]}"
			self.virus_counts[chunk.virus] += 1
			# append to self
			self.append(chunk)
			return True

		return False

	def __save_fasta(self, filename, append = True):
		"""
		save each ViralChunk as a separate sequence in an output fasta
		"""

		assert isinstance(append, bool)
		if append is True:
			write_type = "a"
		if append is False:
			write_type = "w+"

		# virus counts will keep track of the number of episomes
		# for each virus
		virus_counts = {virus: 0 for virus in self.virus.keys()}

		# open file for writing
		with open(filename, write_type) as handle:

			for chunk in self:

				# write name of virus and current count as an id
				handle.write(f">{chunk.id}\n")

				virus_counts[chunk.virus] += 1

				# write viral bases
				handle.write(f"{chunk.bases}\n")

	def __save_info(self, filename):
		"""
		save chunk.chunk_properties into tab-separated format
		fields to write:
		 - id: a unique identifier for each episome
		 - virus: virus from which this episome comes from
		 - start: coordinate (in virus) of left-most base in chunk
		 - stop: coordinate (in virus) of right-most base in chunk
		 - pieces: breakpoints of each piece of this chunk
		 - oris: orientation of each piece of this chunk
		 - is_whole: if this episome was originally the whole virus
		 - is_rearrange: if this episome was rearranged
		 - is_deletion: if this episome contains a deletion
		 - n_swaps: number of swaps made when rearranging
		 - n_delete: number of pieces deleted from chunk

		"""
		assert len(self) >= 0

		# define header

		header = ["id", "virus", "start", "stop", "pieces", "oris", "is_whole", "is_rearrange", "is_deletion", "n_swaps", "n_delete"]

		with open(filename, "w", newline='') as csvfile:
			epiwriter = csv.writer(csvfile, delimiter = '\t')
			epiwriter.writerow(header)

			for chunk in self:
				epiwriter.writerow([chunk.id,
								 chunk.virus,
								 chunk.start,
								 chunk.stop,
								 chunk.pieces,
								 chunk.oris,
								 chunk.chunk_props['is_whole'],
								 chunk.chunk_props['n_swaps'] > 0,
								 chunk.chunk_props['n_swaps'],
								 chunk.chunk_props['n_delete'] > 0,
								 chunk.chunk_props['n_delete']])

	def __str__(self):
		return f"Episomes object with {len(self)} episomes drawn from viral sequences {list(self.virus.keys())}"

	def __repr__(self):
		return f"Object of type Episomes with properties {self}"

class Integration(dict):
	"""
	Class to store the properties of an individual integration.  If properly instantiated, it stores
	the properties of the junctions either side of the integrated bases, and a ViralChunk object (self.chunk)
	which stores the properties of the integrated bases themselves.

	This class is intended to be used by the Integrations class, which is essentially a list of Integration objects
	"""
	def __init__(self, host, virus, model, rng, int_id, chunk_props, junc_props, min_sep):
		"""
		Function to initialise Integration object
		portionType is 'whole' or 'portion' - the part of the virus that has been inserted
		overlapType is two-member tuple of 'clean', 'gap' or 'overlap' - defines the junction at each end of the integration

		when initialising an Integration, need to provide:
		 - host (as a dict of SeqRecord objects or similar)
		 - virus (as a dict of SeqRecord ojbects or similar)
		 - model - self.model of Integrations object - specifies where existing integrations have occured
		 - rng (a numpy.random.Generator object for setting random properties)
		 - chunk_props (a dict of properties for initialising ViralChunk object)
		 - junc_props (a dict of properties defining the junctions of this integration)
		 	- junc_types = iterable of length 2 specifying type of left and right junctions (one of gap, overlap, clean)
			- n_junc = iterable of length 2 specifying length of left and right junction

		objects of this class have the following properties:
		self.id - an integer unique to this integrations
		self.chr - string: host chromosome on which integration should be located
		self.chunk - ViralChunk object which is integrated
		self.chunk_props - properties of the integration chunk that were specified as input. dict with fields:
			- is_whole: boolean specifying if the ViralChunk is whole (if false, chunk is just a portion)
			- n_fragments: number of fragments into which ViralChunk should be split
			- n_delete: number of fragments to delete from ViralChunk (should always leave at least two fragments after deletion)
			- n_swaps: number of swaps to make when rearranging ViralChunk
		self.junc_props - properties of the integration chunk that were specified as input
			- junc_types = iterable of length 2 specifying type of left and right junctions (one of gap, overlap, clean)
			- n_junc = iterable of length 2 specifying length of left and right junction
			- junc_bases = iterable of length 2 specifying bases involved in each junction
			- host_del = boolean specifying if there should be a deletion from the host
			- host_del_len = number of bases to be deleted from the host at this integration site

		if anything went wrong with initialisation, self.pos is set to None - check this to make sure integration
		is valid

		after assigning a 
		"""
		# assign chunk_props and junc_props to self
		self.chunk_props = chunk_props
		self.junc_props = junc_props

		# check inputs	
		assert isinstance(virus, dict)

		assert isinstance(model, dict)
		for key in host.keys():
			assert key in model

		assert isinstance(chunk_props, dict) # leave most of the checking to ViralChunk

		assert isinstance(junc_props, dict)
		assert len(junc_props) == 4

		assert 'junc_types' in junc_props
		assert len(self.junc_props['junc_types']) == 2
		assert all([i in ['clean', 'gap', 'overlap'] for i in self.junc_props['junc_types']])

		assert 'n_junc' in junc_props
		assert len(self.junc_props['n_junc']) == 2
		assert all([isinstance(i, int) for i in self.junc_props['n_junc']])
		assert all([i >=0 for i in self.junc_props['n_junc']])

		assert 'host_del' in junc_props
		assert isinstance(junc_props['host_del'], bool)

		assert 'host_del_len' in junc_props
		assert isinstance(junc_props['host_del_len'], int)
		assert junc_props['host_del_len'] >= 0
		if junc_props['host_del'] is True:
			assert junc_props['host_del_len'] > 0
		if junc_props['host_del'] is False:
			assert junc_props['host_del_len'] == 0

		assert search_length_overlap > 0 and isinstance(search_length_overlap, int)

		assert isinstance(min_sep, int)
		assert min_sep > 1

		# set parameters that won't be changed
		self.search_length_overlap = search_length_overlap
		self.id = int_id

		# get random chromosome on which to do integration (weighted by chromosome length)
		lens = [len(i) for i in host.values()]
		lens = [i/sum(lens) for i in lens]
		self.chr = str(rng.choice(list(host.keys()), p=lens))

		# set minimum length for viral chunk - longer than the number of bases involved in the junction
		if self.chunk_props['min_len'] is None:
			self.chunk_props['min_len'] = self.n_overlap_bases() + 1
		if self.chunk_props['min_len'] < self.n_overlap_bases() + 1:
			self.chunk_props['min_len'] = self.n_overlap_bases() + 1

		# need to check that minimum length is still greater than maximum length
		if self.chunk_props['max_len'] is not None:
			if self.chunk_props['max_len'] < self.chunk_props['min_len']:
				raise ValueError('The maximum length ({self.chunk_props["max_len"]}) is less than the length of the overlapped bases ({self.n_overlap_bases()}).  Please specify a longer maximum length or a smaller number for the mean of the number of bases involved in the junction.')

		# get viral chunk
		self.chunk = ViralChunk(virus, 
								rng, 
								self.chunk_props)
		# if specified properties (chunk_props) are incompatible with the initialised chunk
		# self.chunk.pieces will be None
		if self.chunk.pieces is None:
			self.pos = None
			return


		# set the number of bases in overlaps
		self.junc_props['n_junc'] = [junc_props['n_junc'][0], junc_props['n_junc'][1]]
		# but overwrite in the case of a clean junction
		if self.junc_props['junc_types'][0] == 'clean':
			self.junc_props['n_junc'][0] = 0
		if self.junc_props['junc_types'][1] == 'clean':
			self.junc_props['n_junc'][1] = 0


		# number of bases in overlaps must be less than the length of the integrated chunk
		if self.n_overlap_bases() >= len(self.chunk.bases):
			self.pos = None
			return

		# set bases belonging to junction
		self.junc_props['junc_bases'] = (self.get_junc_bases(rng, 'left'), self.get_junc_bases(rng, 'right'))


		# get a position at which to integrate
		pos_success = self.get_int_position(host[self.chr].seq, rng, model, min_sep)
		if pos_success is False:
			self.pos = None
			return


		# number of bases deleted from host chromosome
		if junc_props['host_del'] is False:
			self.host_deleted = 0 
		else:
			self.host_deleted = junc_props['host_del_len']

			# but only delete up to the length of the segment in which this integration occurs, 
			# so that we don't delete any integrations as well
			for seg in model[self.chr]:

				# skip viral and ambiguous segments
				if seg['seq_name'] != self.chr:
					continue

				# find if this is the segment in which the integration occurs
				if not self.has_overlap(self.pos, self.pos, seg['coords'][0], seg['coords'][1]):
					continue

				# are we trying to delete past the end of the segment?		
				if self.pos + self.host_deleted + self.n_overlap_bases() >= (seg['coords'][1] - min_sep):
					self.host_deleted = seg['coords'][1] - self.pos - min_sep - self.n_overlap_bases()
					self.junc_props['host_del_len'] = self.host_deleted
					if self.host_deleted < 0:
						self.pos = None
						return
				break

		# double check for valid chunk
		assert self.chunk.bases == self.chunk.get_bases(virus)
		assert 'junc_bases' in self.junc_props
		assert len(self.junc_props['junc_bases']) == 2
		assert len(self.junc_props['junc_bases'][0]) == self.junc_props['n_junc'][0]
		assert len(self.junc_props['junc_bases'][1]) == self.junc_props['n_junc'][1]
		assert all([len(i) == 2 for i in self.chunk.pieces])
		assert len(self.chunk.pieces) == len(self.chunk.oris)
		assert all([piece[1] > piece[0] for piece in self.chunk.pieces])


	def n_overlap_bases(self):
		"""
		Get the total number of bases in overlaps
		"""
		assert len(self.junc_props['n_junc']) == 2
		assert len(self.junc_props['junc_types']) == 2	
		n = 0
		if self.junc_props['junc_types'][0] == 'overlap':
			n += self.junc_props['n_junc'][0]
		if self.junc_props['junc_types'][1] == 'overlap':
			n += self.junc_props['n_junc'][1]
		return n

	def get_random_position(self, model, rng, min_sep):
		"""
		based on current model, get a random position that is available for integration
		(that is, doesn't already have an integration)

		do this by getting all the host parts of the model, and choosing a random one (weighted by their length)
		and then choosing a random position from within this part
		"""

		# get a list of host coordinates
		host_coords = [segment['coords'] for segment in model[self.chr] if segment['origin'] == 'host']

		# enforce minimum separation
		host_coords = [(coords[0] + min_sep, coords[1] - min_sep) for coords in host_coords]

		# ensure lengths are positive
		host_coords = [coord for coord in host_coords if (coord[1] - coord[0]) > 0]

		# get lengths of each range to weight choosing a part
		lengths = [coord[1] - coord[0] for coord in host_coords]
		lengths = [length/sum(lengths) for length in lengths]

		# get a random part, weighted by lengths
		part = rng.choice(host_coords, p = lengths)

		# get a random postion from this part
		return rng.integers(low = part[0], high = part[1], endpoint=True, dtype=int)

	def get_int_position(self, chr, rng, model, min_sep):
		"""
		get a position at which to perform the integration
		the position depends on the overlap type at each side of the overlap
		if both sides are 'clean' or 'gap', position can be random
		'overlap' junctions place constraints on the integration location because the need
		to be placed where there are overlaps
		"""

		# if at both ends the junction is either 'clean' or 'gap', just get a random positon
		if all([True if (i in ['clean', 'gap']) else False for i in self.junc_props['junc_types']]):
			self.pos = self.get_random_position(model, rng, min_sep)
			return True

		# if overlap at both ends, look for both overlaps in host chromosome next to each other
		elif self.junc_props['junc_types'][0] == 'overlap' and self.junc_props['junc_types'][1] == 'overlap':

			# make string with both overlap bases 
			self.pos = self.find_overlap_bases(self.junc_props['junc_bases'][0] + self.junc_props['junc_bases'][1], chr, rng, model, min_sep)

			# check for unsuccessful find
			if self.pos == -1:
				self.pos = None
				return False

			## need to remove overlapped bases from viral chunk, and adjust chunk start, breakpoints and oris
			self.delete_left_bases(self.junc_props['n_junc'][0])
			self.delete_right_bases(self.junc_props['n_junc'][1])

			return True

		# if one end is an overlap, find those bases in the host chromosome
		# left overlap
		elif self.junc_props['junc_types'][0] == 'overlap':

			# find position with overlap at which to do overlap
			self.pos = self.find_overlap_bases(self.junc_props['junc_bases'][0], chr, rng, model, min_sep)
			# check for unsuccessful find
			if self.pos == -1:
				self.pos = None
				return False

			## need to remove overlapped bases from viral chunk, and adjust chunk start, breakpoints and oris
			self.delete_left_bases(self.junc_props['n_junc'][0])

			return True

		# right overlap
		elif self.junc_props['junc_types'][1] == 'overlap':

			# find position with overlap at which to do overlap
			self.pos = self.find_overlap_bases(self.junc_props['junc_bases'][1], chr, rng, model, min_sep)
			# check for unsuccessful find
			if self.pos == -1:
				self.pos = None
				return False

			## need to remove overlapped bases from viral chunk, and adjust chunk start, breakpoints and oris
			self.delete_right_bases(self.junc_props['n_junc'][1])

			return True

		else:
			raise ValueError(f"junction types {self.junc_props['junc_types']} are not implemented yet")	

		return False		

	def find_overlap_bases(self, overlap_bases, chr, rng, model, min_sep):
		"""
		find bases from an overlap in the host chromosome
		"""
		# get position around which to search
		start = self.get_random_position(model, rng, min_sep)

		# get start and stop positions for bases in host chromosome to search for overlaps
		stop = start + self.search_length_overlap

		# make sure that we aren't searching after the end of the chromosome
		if stop > len(chr):
			stop = len(chr)

		# find overlapping bases in host segments in model
		for seg in model[self.chr]:
			# check that this segment comes from the host
			if seg['origin'] != 'host':
				continue

			# check that this segment overlaps with desired start and stop from above			
			if not self.has_overlap(start, stop, seg['coords'][0], seg['coords'][1]):
				continue

			# look for desired overlap bases in this segment
			search_start = seg['coords'][0] + min_sep
			search_stop = seg['coords'][1] - min_sep

			if search_stop <= search_start:
				continue

			if seg['ori'] == "+": 
				found = re.search(overlap_bases, str(chr[search_start:search_stop]), re.IGNORECASE)
				if found:
					return found.span()[0] + search_start
			else:
				# not implemented - we assume no flipping of host chromosome segments
				raise ValueError("host chromosome segment {seg} has a negative orientation!")


		# check for unsuccessful find
		return -1

	def has_overlap(self, start_1, stop_1, start_2, stop_2):
		"""
		check to see if two intervals, specified by start_1 and stop_1; and start_2 and stop_2, overlap
		"""
		# check inputs
		assert isinstance(start_1, int)
		assert isinstance(start_2, int)
		assert isinstance(stop_1, int)
		assert isinstance(stop_2, int)
		assert start_1 >= 0
		assert start_2 >= 0
		assert stop_1 >= 0
		assert stop_2 >= 0
		assert start_1 <= stop_1
		assert start_2 <= stop_2

		# interval 1 start and stop to the left of interval 2
		if (start_1 < start_2) and (stop_1 < start_2):
			return False

		# interval 2 start and stop are to the right of interval 2
		if (start_1 > stop_2) and (stop_1 > stop_2):
			return False

		# otherwise they must overlap
		return True

	def delete_left_bases(self, n):
		"""
		delete bases on the left after adding an overlap - need to adjust chunk bases, oris and breakpoints and start
		"""

		assert self.junc_props['junc_types'][0] == 'overlap'

		# check we're not trying to delete more bases than there are in the chunk
		assert n < len(self.chunk.bases)

		# adjust bases
		self.chunk.bases = self.chunk.bases[n:]

		# adjust breakpoints - delete bases one by one from breakpoints
		# until we've deleted enough baes
		deleted_bases = 0
		to_delete = []
		i = 0
		while deleted_bases < n:
			# if this piece is a forward piece
			if self.chunk.oris[i] == '+':
				# detele one base
				self.chunk.pieces[i][0] += 1
				deleted_bases += 1
			# if this piece is a reverse piece we need to remove from the end
			# because self.chunk.bases has already taken orientations into account
			elif self.chunk.oris[i] == "-":
				self.chunk.pieces[i][1] -= 1
				deleted_bases += 1
			else:
				print(f"unrecgonised orientation {self.chunk.oris[i]} in chunk {vars(self.chunk)}")
				self.pos = None
				return
			# if we're left with a piece of length 0, flag this piece for deletion
			if self.chunk.pieces[i][0] == self.chunk.pieces[i][1]:
				to_delete.append(i)
				i += 1

		# remove chunks that we want to delete
		self.chunk.pieces = [self.chunk.pieces[i] for i in range(len(self.chunk.pieces)) if (i not in to_delete)]
		self.chunk.oris = [self.chunk.oris[i] for i in range(len(self.chunk.oris)) if (i not in to_delete)]

		#adjust start and stop
		breakpoints = [piece[0] for piece in self.chunk.pieces]
		breakpoints += [piece[1] for piece in self.chunk.pieces]
		breakpoints.sort()
		self.chunk.start = breakpoints[0]
		self.chunk.stop = breakpoints[-1]		

	def delete_right_bases(self, n):
		"""
		delete bases on the left after adding an overlap - need to adjust chunk bases, oris and breakpoints and stop
		"""

		assert self.junc_props['junc_types'][1] == 'overlap'

		# check we're not trying to delete more bases than there are in the chunk
		assert n < len(self.chunk.bases)

		# adjust stop
		self.chunk.stop -= n

		# adjust bases
		self.chunk.bases = self.chunk.bases[:-n]

		# adjust breakpoints 		
		deleted_bases = 0
		to_delete = []
		i = len(self.chunk.pieces) - 1 # start at the last piece in the chunk
		while deleted_bases < n:
			assert i >= 0
			# if this piece is a forward piece
			if self.chunk.oris[i] == "+":
				# delete one base
				self.chunk.pieces[i][1] -= 1
				deleted_bases += 1
			elif self.chunk.oris[i] == "-":
				# delete one base
				self.chunk.pieces[i][0] += 1
				deleted_bases += 1
			else:
				print(f"unrecgonised orientation {self.chunk.oris[i]} in chunk {vars(self.chunk)} ")
				self.pos = None
				return		
			# if we're left with a piece of length 0, flag this piece for deletion			
			if self.chunk.pieces[i][0] == self.chunk.pieces[i][1]:
				to_delete.append(i)
				i -= 1

		# remove chunks that we want to delete
		self.chunk.pieces = [self.chunk.pieces[i] for i in range(len(self.chunk.pieces)) if (i not in to_delete)]
		self.chunk.oris = [self.chunk.oris[i]  for i in range(len(self.chunk.oris)) if (i not in to_delete)]

		#adjust start and stop
		breakpoints = [piece[0] for piece in self.chunk.pieces]
		breakpoints += [piece[1] for piece in self.chunk.pieces]
		breakpoints.sort()
		self.chunk.start = breakpoints[0]
		self.chunk.stop = breakpoints[-1]

	def get_junc_bases(self, rng, side):
		"""
		Get the bases at the left or right junction, depending on whether the junction is
		a gap, overlap, or clean junction
		"""
		assert side in ['left', 'right']
		assert len(self.junc_props['junc_types']) == 2
		assert len(self.junc_props['n_junc']) == 2
		assert self.junc_props['junc_types'][0] in ['gap', 'overlap', 'clean']
		assert self.junc_props['junc_types'][1] in ['gap', 'overlap', 'clean']


		if side == 'left':
			n_bases = self.junc_props['n_junc'][0]
			# no bases in a clean junction
			if self.junc_props['junc_types'][0] == 'clean':
				return ""
			# random bases in a gap
			elif self.junc_props['junc_types'][0] == 'gap':
				return self.get_n_random_bases(rng, n_bases)
			# first n bases of viral chunk in an overlap
			elif self.junc_props['junc_types'][0] == 'overlap':
				return self.chunk.bases[:n_bases]
			else:
				raise ValueError(f"unrecgonised type: {self.junc_props['junc_types'][0]}")
		elif side == 'right':
			n_bases = self.junc_props['n_junc'][1]
			if self.junc_props['junc_types'][1] == "clean":
				return ""
			elif self.junc_props['junc_types'][1] == 'gap':
				return self.get_n_random_bases(rng, n_bases)
			elif self.junc_props['junc_types'][1] == 'overlap':
				return self.chunk.bases[-n_bases:]
			else:
				raise ValueError(f"unrecgonised type: {self.junc_props['junc_types'][1]}")
		else:
			raise ValueError(f"unrecgonised side: {side}")	

	def get_n_random_bases(self, rng, n_bases):
		"""
		get a string composed of n random nucleotides
		"""	
		return "".join(rng.choice(['A', 'T', 'G', 'C'], n_bases))

	def __str__(self):
		return f"Viral integration into host chromosome {self.chr}'"

	def __repr__(self):
		return f"Object of type Integration with properties {self}"

	def __lt__(self, other):

		"""
		Integrations can be ranked by both chromosome name and position on that chromosome
		"""
		# make sure that we're comparing with another integration
		assert isinstance(other, Integration)

		# first check chromosome name
		assert isinstance(self.chr, str) and isinstance(other.chr, str)
		assert isinstance(self.pos, int) and isinstance(other.pos, int)

		return (self.chr.lower(), self.pos) < (other.chr.lower(), other.pos)

	def __eq__(self, other):
		"""
		Integrations can be ranked by both chromosome name and position on that chromosome
		"""
		# make sure that we're comparing with another integration
		assert isinstance(other, Integration)

		# first check chromosome name
		assert isinstance(self.chr, str) and isinstance(other.chr, str)
		assert isinstance(self.pos, int) and isinstance(other.pos, int)

		return (self.chr.lower(), self.pos) == (other.chr.lower(), other.pos)

class ViralChunk(dict):
	"""
	Class to store properties of an integrated chunk of virus.  
	Intended to be used by the Integrations and Episomes classes
	"""

	def __init__(self, virus,  rng, chunk_props):
		"""
		function to get a chunk of a virus
		virus is the dictionary of seqrecords imported using biopython


		desired properties of chunk are input as a dict with the following attributes:
			- is_whole: boolean specifying if the ViralChunk is whole (if false, chunk is just a portion)
			- n_fragments: number of fragments into which ViralChunk should be split
			- n_delete: number of fragments to delete from ViralChunk (should always leave at least two fragments after deletion)
			- n_swaps: number of swaps to make when rearranging ViralChunk
			- min_len: the minimum length of this chunk (integer greater than 1)
			- max_len: the maxumum length of this chunk (None, or integer greater than min_len)

		the bases attribute of a ViralChunk consist of only the bases that are unique to the virus. 
		So in the case of an Integration of a ViralChunk with a 'overlap' type junction,
		the bases, breakpoints and oris attributes are re-assigned to remove the overlapped bases

		"""
		# check inputs
		assert isinstance(virus, dict)
		assert len(virus) > 0

		assert isinstance(chunk_props, dict)
		assert len(chunk_props) == 6

		assert 'is_whole' in chunk_props
		assert isinstance(chunk_props['is_whole'], bool)

		assert 'n_fragments' in chunk_props
		assert isinstance(chunk_props['n_fragments'], int)
		assert chunk_props['n_fragments'] > 0

		assert 'n_delete' in chunk_props
		assert isinstance(chunk_props['n_delete'], int)
		assert chunk_props['n_delete'] >= 0

		assert 'n_swaps' in chunk_props
		assert isinstance(chunk_props['n_delete'], int)
		assert chunk_props['n_delete'] >= 0

		assert 'min_len' in chunk_props
		assert isinstance(chunk_props['min_len'], int) or chunk_props['min_len'] is None
		if chunk_props['min_len'] is None:
			chunk_props['min_len'] = 1
		assert chunk_props['min_len'] > 0

		assert 'max_len' in chunk_props
		assert isinstance(chunk_props['max_len'], int) or chunk_props['max_len'] is None
		if chunk_props['max_len'] is not None and chunk_props['min_len'] is not None:
			assert chunk_props['max_len'] >= chunk_props['min_len']

		# check that the minimum length specified is longer than all the viruses
		# otherwise we might fail
		if not all([chunk_props['min_len'] <= len(vir.seq) for vir in virus.values()]):
			raise ValueError("minimum length must be longer than all the Viruses")

		# get a random virus to integrate
		self.virus = str(rng.choice(list(virus.keys())))
		self.chunk_props = chunk_props

		# if the length of the virus is equal to min_len, is_whole must be true
		if len(virus[self.virus]) == chunk_props['min_len']:
			chunk_props['is_whole'] = True

		if self.chunk_props['is_whole'] is True:
			self.start = 0
			self.stop = len(virus[self.virus])
		elif self.chunk_props['is_whole'] is False:

			self.start = int(rng.integers(low = 0, high = len(virus[self.virus].seq) - chunk_props['min_len']))
			if chunk_props['max_len'] is None:	
				self.stop = int(rng.integers(low = self.start + chunk_props['min_len'], 
																			high = len(virus[self.virus].seq)
																		)
												)

			elif chunk_props['max_len'] == chunk_props['min_len']:
				self.stop = self.start + chunk_props['max_len']


			else:	
				self.stop = int(rng.integers(low = self.start + chunk_props['min_len'], 
																			high = min(len(virus[self.virus].seq), 
																									self.start+chunk_props['max_len'])
																		)
											 )	
		else:
			raise ValueError("self.chunk_props['is_whole'] must be either True or False")

		# breakpoints are the start and stop coordinates of pieces of the virus that have been 
		# integrated

		# set breakpoints
		self.pieces = [[self.start, self.stop]]

		self.oris = str(rng.choice(('+', '-')))

		# do a deletion if applicable

		if self.chunk_props['n_delete'] > 0:
			self.__delete(rng)
			# if something went wrong, breakpoints will be None
			if self.pieces is None:
				return

		if self.chunk_props['n_swaps'] > 0:
			self.__rearrange(rng)
			# if something went wrong, breakpoints will be None
			if self.pieces is None:
				return

		# get bases
		self.bases = self.get_bases(virus)

	def get_bases(self, virus):
		"""
		return bases of viral chunk as a string
		note that objects of class ViralChunk do not store the whole viral sequence, so 
		need to provide this in order to get the bases
		"""
		bases = []
		# get integrated bases
		for i, points in enumerate(self.pieces):
			start = points[0]
			stop = points[1]
			if self.oris[i] == '+':
				bases += [str(virus[self.virus].seq[start:stop])]
			else:
				bases += [str(virus[self.virus].seq[start:stop].reverse_complement())]
		return "".join(bases)

	def __split_into_pieces(self, rng):
		"""
		get random, unique breakpoints to divide a viral chunk into pieces
		there must be at least min_breakpoints, which results in min_breakpoints + 1 pieces 
		this is a list of coordinates, not tuples (unlike self.pieces)
		"""
		# shouldn't do this if this chunk has already been split
		assert len(self.pieces) == 1
		assert len(self.oris) == 1

		# check that we're not trying to divide a chunk into more pieces than there are bases
		if self.chunk_props['n_fragments'] >= self.stop - self.start:
			self.pieces = None
			return

		# get the number of pieces to divide into
		num_breakpoints = self.chunk_props['n_fragments'] - 1

		# get random breakpoints from within this chunk
		breakpoints = rng.choice(range(self.start + 1, self.stop - 1), size = num_breakpoints, replace = False)

		# set self.pieces
		breakpoints = [self.start] + sorted(breakpoints) + [self.stop]
		self.pieces = [[int(breakpoints[i]), int(breakpoints[i+1])] for i in range(len(breakpoints) - 1)]

		# set self.oris
		self.oris = [self.oris[0]] * len(self.pieces)
		return	

	def __swap_orientations(self, breakpoint, side):
		"""
		Given a breakpoint, swap all of the orientations (+ to - or vice versa) for all of the pieces
		on the left or right of this breakpoint
		"""
		if side == 'left':
			for i, ori in enumerate(self.oris[:breakpoint]):
				if ori == "+":
					self.oris[i] = "-"
				else:
					self.oris[i] = "+"
		else:
			for i, ori in enumerate(self.oris[breakpoint:]):
				if ori == "+":
					self.oris[i] = "-"
				else:
					self.oris[i] = "+"		

	def __delete(self, rng):
		"""
		Divide a viral chunk up into multiple pieces
		and remove one of those pieces
		"""

		# deletions are always performed first, so the chunk should not have been split yet
		assert len(self.pieces) == 1

		# want to have at least two pieces left
		assert self.chunk_props['n_fragments'] - self.chunk_props['n_delete'] >= 2 

		# split chunk into at n_fragments pieces
		self.__split_into_pieces(rng)
		if self.pieces is None:
			return
		assert len(self.pieces) == self.chunk_props['n_fragments']

		# decide which portions to delete
		i_delete = rng.choice(range(1, len(self.pieces) - 1), self.chunk_props['n_delete'], replace=False)

		# do deletion
		self.pieces = [piece for i, piece in enumerate(self.pieces) if i not in i_delete]
		self.oris = [ori for i, ori in enumerate(self.oris) if i not in i_delete]	

		assert len(self.pieces) == self.chunk_props['n_fragments'] - self.chunk_props['n_delete']

	def __rearrange(self, rng):
		"""
		Divide a viral chunk up into multiple pieces
		and randomise their order and orientiations
		"""
		# split the chunk if it hasn't already been split
		if len(self.pieces) == 1:
			# split chunk into at least three pieces
			self.__split_into_pieces(rng)
			if self.pieces is None:
				return
			assert len(self.pieces) == self.chunk_props['n_fragments']
		else:
			assert len(self.pieces) > 1

		# if we only have two pieces, we should only do one swap
		# so that we don't end up back with the same fragment
		# there are other ways to end up with the same fragment after swaps
		# but don't worry about them for now - TODO
		if len(self.pieces) == 2:
			self.chunk_props['n_swaps'] = 1

		for i in range(self.chunk_props['n_swaps']):
			# pick a point about which to swap
			if 1 == len(self.pieces) - 1:
				i_swap = 1
			else:
				i_swap = rng.choice(range(1, len(self.pieces) - 1))

			# swap everything to the left of this position with everything on the right
			self.pieces = self.pieces[i_swap:] + self.pieces[:i_swap]

			# 50 % chance of swapping the orientations of all the pieces for each side
			if bool(rng.choice((True, False))) is True:
				self.__swap_orientations(i_swap, 'left')
			if bool(rng.choice((True, False))) is True:
				self.__swap_orientations(i_swap, 'right')

	def __str__(self):
		return f"Viral chunk of virus {self.virus} ({self.start}, {self.stop}) and orientations {self.oris}"

	def __repr__(self):
		return f"Object of type ViralChunk with properties {self}"

if __name__ == "__main__":
	main(argv[1:])
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import sys
import argparse
import csv

def main(args):
	parser = argparse.ArgumentParser(description='Convert tab-separated file with integration locations into bed file with junction locations')
	parser.add_argument('--sim_info', '-i', help='Tab-separated output file with location of integrations', required=True)
	parser.add_argument('--output', '-o', help='Output bed file', default='ints.bed')
	args = parser.parse_args(args[1:])

	with open(args.sim_info, 'r', newline='') as infile, open(args.output, 'w', newline='') as outfile:
		inreader = csv.DictReader(infile, delimiter='\t')
		outwriter = csv.writer(outfile, delimiter='\t')

		for line in inreader:

			chrom = line['chr']
			pos = int(line['hPos'])


			# left ambiguous bases
			left_type = line['juncTypes'].split(',')[0]
			left_len = int(line['juncLengths'].split(',')[0])

			# check if left junction has supporting reads
			if not (line['left_chimeric'] == '' and line['left_discord'] == ''):			
				# write left junction
				#outwriter.writerow((chrom, pos, pos+left_len, '+'))	
				outwriter.writerow((chrom, pos, pos+left_len))

			# right ambiguous bases
			right_type = line['juncTypes'].split(',')[1]
			right_len = int(line['juncLengths'].split(',')[1])

			# deleted bases
			deleted = int(line['hDeleted'])

			# check if right junction has supporting reads			
			if not (line['right_chimeric'] == '' and line['right_discord'] == ''):			
				# write right junction
				#outwriter.writerow((chrom, pos+left_len+deleted, pos+left_len+deleted+right_len, '-'))
				outwriter.writerow((chrom, pos+left_len+deleted, pos+left_len+deleted+right_len))


if __name__ == "__main__":
	main(sys.argv)
19
20
21
22
23
24
25
26
shell:
	"""
	python3 scripts/annotate_reads.py \
	 --sim-info {input.info} \
	 --sim-bam {input.bam} \
	 --output {output.annotated_info} \
	 {params} 
	"""
42
43
44
45
46
shell:
	"""
	python3 scripts/sim_bed.py -i {input.info} -o {output.tmp}
	sort -k1,1 -k2,2n {output.tmp} > {output.bed}
	"""		
31
32
33
34
shell:
	"""
	art_illumina --noALN {params}
	"""
50
51
52
53
54
55
shell:
	"""
	rm -f {output.bam}*tmp*bam
	samtools sort -o {output.bam} {input.sam}
	samtools index {output.bam}
	"""
21
22
run:
	sim_df[sim_df['experiment'] == wildcards.exp].to_csv(output.tsv, sep='\t', index=False)
 98
 99
100
101
102
103
104
105
106
107
108
shell:
	"""
	python3 scripts/insert_virus.py \
	 --host {input.host} \
	 --virus {input.virus} \
	 --ints {output.sim_fasta} \
	 --int_info {output.sim_info} \
	 --epi_info {output.epi_info} \
	 {params} \
	 --verbose
	"""
ShowHide 7 more snippets with no or duplicated tags.

Login to post a comment if you would like to share your experience with this workflow.

Do you know this workflow well? If so, you can request seller status , and start supporting this workflow.

Free

Created: 1yr ago
Updated: 1yr ago
Maitainers: public
URL: https://github.com/szsctt/intvi_simulation
Name: intvi_simulation
Version: 1
Badge:
workflow icon

Insert copied code into your website to add a link to this workflow.

Downloaded: 0
Copyright: Public Domain
License: None
  • Future updates

Related Workflows

cellranger-snakemake-gke
snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...