A Snakemake workflow to cluster proteins using MMseqs2
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
A Snakemake workflow to cluster proteins using MMseqs2.
Installation
Conda and Snakedeploy (recommended)
Install dependencies with conda:
# Install snakemake, snakedeploy, and eido in a new conda environment
conda create -c conda-forge -c bioconda --name snakemake snakemake snakedeploy eido
# Activate the environment
conda activate snakemake
Create a project directory for running the workflow:
mkdir -p mmseqs-cluster
cd mmseqs-cluster
Deploy a specific release (recommended):
# Check what releases are available (e.g. using the GitHub CLI or Subversion)
gh release list --repo leightonpayne/mmseqs-cluster
svn ls https://github.com/leightonpayne/mmseqs-cluster/tags/
snakedeploy deploy-workflow https://github.com/leightonpayne/mmseqs-cluster . --tag <RELEASE>
Deploy the development version (optional):
snakedeploy deploy-workflow https://github.com/leightonpayne/mmseqs-cluster . --branch master
Configuration
This workflow uses the PEP , or Portable Encapsulated Projects specification for defining input and recording metadata.
Read
config/README.md
for configuration instructions.
Usage
To run the workflow, navigate to the base directory and run the command:
snakemake --cores all --use-conda
Code Snippets
10 11 | shell: "mmseqs createdb {input} {output} &> {log}" |
31 32 33 34 35 36 37 38 39 | shell: """ export MMSEQS_FORCE_MERGE=1 mkdir -p {params.tmpdir} mmseqs cluster {input} {output} {params.tmpdir} \ --min-seq-id {params.min_seq_id} \ -c {params.coverage} \ --threads {params.threads} &> {log} """ |
52 53 54 55 56 | shell: """ mmseqs createtsv {input.database} {input.database} \ {input.cluster_database} {output} &> {log} """ |
72 73 74 75 76 | shell: """ export MMSEQS_FORCE_MERGE=1 mmseqs createseqfiledb {input.database} {input.cluster_database} {output.cluster_sequences_database} &> {log} """ |
11 12 | wrapper: "https://github.com/leightonpayne/snakemake-wrappers/raw/master/seqkit/rmdup/wrapper.py" |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/leightonpayne/mmseqs-cluster
Name:
mmseqs-cluster
Version:
v0.0.9000
Downloaded:
0
Copyright:
Public Domain
License:
MIT License
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...