Description of the microbiome of the Barfusser mummy of Basel
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
a Snakemake workflow for the analysis of the Franciscan church mummy of Basel (known as the Barfüsser mummy)
The analysis includes:
1- Ancient human DNA analysis
2- Microbiome general taxonomic classification
3- De novo assem
Code Snippets
84 85 86 87 88 89 90 | shell: """ fastp -i {input.reads1} -I {input.reads2} \ -o {output.reads_qc1} -O {output.reads_qc2} \ -h {output.report_PE} -j {output.json_PE} \ --thread {threads} --cut_mean_quality 30 """ |
102 103 104 105 106 | shell: """ bbcountunique.sh in={input.reads_1} in2={input.reads_2} out={output.hist} Rscript src/scripts/LibraryComplexityPlot.R {output.hist} {output.hist_plot} """ |
125 126 127 128 129 130 131 132 | shell: """ fastp -i {input.reads1} -I {input.reads2} \ -o {output.reads_unmerged1} -O {output.reads_unmerged2} \ --merge --merged_out {output.reads_merged} \ --overlap_len_require 10 -h {output.report_merged} \ -j {output.json_merged} --length_required 25 --thread {threads} """ |
150 151 152 153 154 155 | shell: """ seqkit rmdup -s -j {threads} {input.reads_merged} | gzip > {output.dedup} seqkit rmdup -s -j {threads} {input.reads1_unmerged} | gzip > {output.reads1_unmerged} seqkit rmdup -s -j {threads} {input.reads2_unmerged} | gzip > {output.reads2_unmerged} """ |
184 185 186 187 188 189 190 191 192 193 194 | shell: """ spades.py -1 {input.reads1} -2 {input.reads2} -m {resources.mem_mb} -t {threads} -o {output.assembly_dir} --meta rm -r out/assembly/meta_spades/{wildcards.sample}/{wildcards.sample}.contigs/tmp rm -r out/assembly/meta_spades/{wildcards.sample}/{wildcards.sample}.contigs/corrected rm -r out/assembly/meta_spades/{wildcards.sample}/{wildcards.sample}.contigs/K55 rm -r out/assembly/meta_spades/{wildcards.sample}/{wildcards.sample}.contigs/K33 rm -r out/assembly/meta_spades/{wildcards.sample}/{wildcards.sample}.contigs/K21 rm -r out/assembly/meta_spades/{wildcards.sample}/{wildcards.sample}.contigs/misc rm out/assembly/meta_spades/{wildcards.sample}/{wildcards.sample}.contigs/params.txt """ |
209 210 211 212 213 214 215 | shell: """ rm -rf {output.assembly_dir} megahit -1 {input.reads1} -2 {input.reads2} -t {threads} -o {output.assembly_dir} rm -r out/assembly/megahit/{wildcards.sample}/{wildcards.sample}.contigs/intermediate_contigs mv out/assembly/megahit/{wildcards.sample}/{wildcards.sample}.contigs/final.contigs.fa {output.contigs} """ |
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 | shell: """ seqtk seq -L 1000 {input.contigs}/contigs.fasta > {output.contigs} seqtk seq -L 1000 {input.contigs}/contigs.fasta | gzip > {output.zip_contigs} bowtie2-build {output.contigs} out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/scaffolds.1000 bowtie2 -x out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/scaffolds.1000 -1 {input.reads1} -2 {input.reads2} -S out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/scaffolds.1000.sam --no-unal --threads {threads} samtools view -@ {threads} -Sbq 30 out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/scaffolds.1000.sam > out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/scaffolds.1000.bam samtools sort -@ {threads} out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/scaffolds.1000.bam > {output.bam} samtools index -@ {threads} {output.bam} jgi_summarize_bam_contig_depths {output.bam} --outputDepth {output.depth_raw} cat {output.depth_raw} | cut -f1,3 > {output.depth} rm out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/scaffolds.1000.sam rm out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/scaffolds.1000.bam rm out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/scaffolds.1000.rev.2.bt2 rm out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/scaffolds.1000.rev.1.bt2 rm out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/scaffolds.1000.2.bt2 rm out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/scaffolds.1000.1.bt2 rm out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/scaffolds.1000.4.bt2 rm out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/scaffolds.1000.3.bt2 """ |
268 269 270 271 | shell: """ metabat -i {input.contigs} -a {input.depth} -o {output.base}/metabat -m 1500 --minClsSize 10000 """ |
286 287 288 289 290 291 292 | shell: """ run_MaxBin.pl -contig {input.contigs} -abund {input.depth} -out {output.base} mkdir out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/maxbin cd out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning for i in $(ls maxbin*.fasta | rev | cut -c 7- | rev); do mv $i.fasta maxbin/$i.fa; done """ |
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 | shell: """ samtools index {input.bam} cut_up_fasta.py {input.contigs} -c 10000 -o 0 --merge_last -b out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/contigs_10K.bed > out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/contigs_10K.fna concoct_coverage_table.py out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/contigs_10K.bed {input.bam} > {output.cov_tab} concoct --composition_file out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/contigs_10K.fna --coverage_file {output.cov_tab} --threads 8 -b out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/ merge_cutup_clustering.py out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/clustering_gt1000.csv > out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/clustering_merged.csv mkdir {output.concoct_dir} extract_fasta_bins.py {input.contigs} out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/clustering_merged.csv --output_path {output.concoct_dir} cd {output.concoct_dir} for file in $(ls *.fa) do minimumsize=50000 actualsize=$(wc -c < $file) if [ $actualsize -le $minimumsize ]; then rm $file fi done for i in $(ls * | rev | cut -c 4- | rev) do mv $i.fa concoct.$i.fa done """ |
351 352 353 354 355 356 357 358 | shell: """ mkdir {output.DAS_Tool} src/scripts/Fasta_to_Scaffolds2Bin.sh -i {input.metabat} -e fa > {output.metabat} src/scripts/Fasta_to_Scaffolds2Bin.sh -i {input.maxbin} -e fa > {output.maxbin} src/scripts/Fasta_to_Scaffolds2Bin.sh -i {input.concoct} -e fa > {output.concoct} DAS_Tool -i {output.metabat},{output.maxbin},{output.concoct} -l metabat,maxbin,concoct -c {input.contigs} -o out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.binning/{wildcards.sample} -t {threads} --write_bins 1 --score_threshold 0.0 """ |
374 375 376 377 378 379 380 | shell: """ checkm lineage_wf {input.bins} {output.checkm} -x ".fa" -t {threads} --pplacer_threads {threads} --tab_table > {output.summary} rm -rf {output.checkm}/storage rm -rf {output.checkm}/bins """ |
394 395 396 397 398 399 400 401 402 403 404 405 | shell: """ export PATH="/apps/augustus/3.4.0/bin:$PATH" export PATH="/apps/augustus/3.4.0/scripts:$PATH" export AUGUSTUS_CONFIG_PATH="/apps/augustus/3.4.0/config/" export BUSCO_CONFIG_FILE="busco_config.ini" ./src/scripts/BUSCO.sh {input.bins} {output.busco} {wildcards.sample}_busco #busco -i {input.bins} -f -o {wildcards.sample}_busco -m genome --auto-lineage --out_path {output.busco} rm -rf out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.busco/{wildcards.sample}_busco/*fa rm -rf out/assembly/{wildcards.assembler}/{wildcards.sample}/{wildcards.sample}.busco/{wildcards.sample}_busco/logs rm busco*log """ |
419 420 421 422 423 | shell: """ gtdbtk classify_wf --genome_dir {input.bins} --cpus {threads} -x fa --out_dir {output.GTDB} --force --min_perc_aa 5 --pplacer_cpus {threads} #rm -r {output.GTDB}/*/intermediate_results """ |
440 441 442 443 444 445 446 447 | shell: """ bwa aln -t {threads} {input.ref} {input.reads} > out/human/{wildcards.sample}/{wildcards.sample}.mito.sai bwa samse {input.ref} out/human/{wildcards.sample}/{wildcards.sample}.mito.sai {input.reads} | samtools view -q 30 -bSh > out/human/{wildcards.sample}/{wildcards.sample}.mito.bam samtools sort -@ {threads} out/human/{wildcards.sample}/{wildcards.sample}.mito.bam -o {output.mito} samtools index {output.mito} rm out/human/{wildcards.sample}/{wildcards.sample}.mito.sai out/human/{wildcards.sample}/{wildcards.sample}.mito.bam """ |
462 463 464 465 466 467 468 469 | shell: """ bwa aln -t {threads} {input.ref} {input.reads} > out/human/{wildcards.sample}/{wildcards.sample}.auto.sai bwa samse {input.ref} out/human/{wildcards.sample}/{wildcards.sample}.auto.sai {input.reads} | samtools view -q 30 -bSh > out/human/{wildcards.sample}/{wildcards.sample}.auto.bam samtools sort out/human/{wildcards.sample}/{wildcards.sample}.auto.bam -o {output.human_reads} samtools index {output.human_reads} rm out/human/{wildcards.sample}/{wildcards.sample}.auto.sai out/human/{wildcards.sample}/{wildcards.sample}.auto.bam """ |
482 483 484 485 486 487 | shell: """ unset DISPLAY qualimap bamqc -bam {input.human_mito} -outdir {output.mito_qualimap} qualimap bamqc -bam {input.human_auto} -outdir {output.auto_qualimap} """ |
509 510 511 512 513 514 515 516 517 | shell: """ module load mapdamage module load R/3.5.1 mapDamage -i {input.human_mito} -r {input.rCRS} -d {output.mito_damage} --rescale --rescale-out {output.rescaled_mito} samtools index {output.rescaled_mito} mapDamage -i {input.human_auto} -r {input.hg19} -d {output.auto_damage} --rescale --rescale-out {output.rescaled_auto} samtools index {output.rescaled_auto} """ |
528 529 530 531 532 533 534 | shell: """ samtools index {input.bam} samtools view {input.bam} | python2 src/scripts/skoglund_xy.py > {output.skglnd_sex} samtools idxstats {input.bam} > out/human/{wildcards.sample}/{wildcards.sample}.auto.idxstats Rscript src/scripts/sex_determination_mittnik.R out/human/{wildcards.sample}/{wildcards.sample}.auto > {output.mtnk_sex} """ |
546 547 548 549 550 551 552 553 554 | shell: """ samtools calmd -b {input.human_mito} {input.rCRS} > {output.md_bam} samtools index {output.md_bam} contDeam.pl --library double --length 10 --out {output.schmutzi} {output.md_bam} schmutzi.pl --notusepredC --uselength --ref {input.rCRS} {output.schmutzi}\ /apps/schmutzi/20171024/alleleFreqMT/eurasian/freqs/ {output.md_bam} log2fasta -q 30 out/human/{wildcards.sample}/{wildcards.sample}.mito.schmutzi_final_endo.log > {output.fasta} """ |
568 569 570 571 572 | shell: """ bcftools mpileup -Q 30 -q 30 -f {input.hg19} {input.bam} -r chrY | bcftools call -c -o {output.y_vcf} callHaplogroups.py -i {output.y_vcf} -c -hp -ds -dsd -as -asd -o {output.y_haplo} """ |
591 592 593 594 595 596 597 | shell: """ angsd -i {input.bam} -r chrX:5000000-154900000 -doCounts 1 -iCounts 1 -minMapQ 30 -minQ 30 -out out/human/{wildcards.sample}/angsdput Rscript {input.angsd_path}/R/contamination.R mapFile={input.angsd_path}/RES/chrX.unique.gz hapFile={input.angsd_path}/RES/HapMapChrX.gz countFile=out/human/{wildcards.sample}/angsdput.icnts.gz mc.cores=4 > {output.angsd_R} {input.angsd_path}/misc/contamination -a out/human/{wildcards.sample}/angsdput.icnts.gz -h /apps/angsd/0.918/RES/HapMapChrX.gz -d 2 -e 100 2 > {output.angsd_conta} """ |
603 604 | shell: "cd src/scripts/; curl -sL haplogrep.now.sh | bash" |
614 615 616 617 618 619 | shell: """ bcftools mpileup -B -Ou -d 1000 -q 30 -f {input.rCRS} {input.rescaled_mito} | bcftools call -mv --ploidy 1 -Ou -o {output.mito_vcf} ./src/scripts/haplogrep classify --in {output.mito_vcf} --format vcf --out {output.mito_hg} --extend-report """ |
643 644 645 646 647 648 649 650 | shell: """ diamond blastx -p {threads} -d {input.diamond_db} \ -q {input.merged} -o {output.diamond_tab} -b 12 -c 1 zcat {input.reads1} {input.reads2} | diamond blastx -p {threads} -d {input.diamond_db} \ -o {output.discarded_tab} -b 12 -c 1 """ |
665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 | shell: """ #unset DISPLAY blast2rma \ --in {input.diamond_tab} \ --format "BlastTab" \ --blastMode "BlastX" \ --out {output.diamond_rma6} \ --minPercentIdentity 80 \ --minSupportPercent 0.0001 \ --threads {threads} \ --acc2taxa {input.megan_prot_db} blast2rma \ --in {input.discarded_tab} \ --format "BlastTab" \ --blastMode "BlastX" \ --out {output.discarded_rma6} \ --minPercentIdentity 80 \ --minSupportPercent 0.0001 \ --threads {threads} \ --acc2taxa {input.megan_prot_db} """ |
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 | shell: """ metaphlan --bowtie2db {input.db} --input_type fastq --nproc {threads} --min_mapq_val 25 --no_map --add_viruses --read_min_len 25 {input.merged} > {output.merged} metaphlan --bowtie2db {input.db} --input_type fastq --nproc {threads} --min_mapq_val 25 --no_map --add_viruses --read_min_len 25 {input.reads1} > {output.reads1} metaphlan --bowtie2db {input.db} --input_type fastq --nproc {threads} --min_mapq_val 25 --no_map --add_viruses --read_min_len 25 {input.reads2} > {output.reads2} merge_metaphlan_tables.py out/taxonomic_classifications/metaphlan/{wildcards.sample}/*def.metaphlan > out/taxonomic_classifications/metaphlan/{wildcards.sample}/merged_abundance_table.txt grep -E "s__|clade" out/taxonomic_classifications/metaphlan/{wildcards.sample}/merged_abundance_table.txt | sed 's/^.*s__//g' | cut -f1,3- | sed -e 's/clade_name/body_site/g' > {output.sp_table} python3 /apps/metaphlan/3.0.1/lib/python3.8/site-packages/metaphlan/utils/hclust2/hclust2.py \ -i {output.sp_table} \ -o {output.heatmap} \ --f_dist_f correlation \ --s_dist_f euclidean \ --cell_aspect_ratio 0.5 \ -l \ --flabel_size 4 \ --slabel_size 4 \ --max_flabel_len 100 \ --max_slabel_len 100 \ --minv 0.1 \ --dpi 300 --no_fclustering --no_sclustering """ |
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 | shell: """ kraken2 --db {input.db} \ --report {output.report} \ --threads {threads} \ --output {output.out} {input.merged} kraken2 --db {input.db} \ --report {output.report_dis} \ --threads {threads} \ --output {output.out_dis} \ --paired {input.reads1} {input.reads2} ktImportTaxonomy -q 2 -t 3 {output.out} -o {output.krona} rm -r out/taxonomic_classifications/kraken/{wildcards.sample}/{wildcards.sample}.krona.html.files ktImportTaxonomy -q 2 -t 3 {output.out_dis} -o {output.krona_dis} rm -r out/taxonomic_classifications/kraken/{wildcards.sample}/{wildcards.sample}.discarded.krona.html.files bracken -d {input.db} -i {output.report} -o {output.bracken} -l S bracken -d {input.db} -i {output.report_dis} -o {output.bracken_dis} -l S """ |
799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 | shell: """ echo "---------------------General_stats----------------------------" >> {output.stats} count=$(zgrep -c "^+$" {input.reads1}) echo "Total number of raw reads "\t" $count" >> {output.stats} merge=$(zgrep -c "^+$" {input.reads_merged}) echo "Total number of merged reads "\t" $merge" >> {output.stats} echo "Percentage of merged reads "\t" $(echo "$merge*100/$count" | bc -l) %" >> {output.stats} echo "" >> {output.stats} echo "---------------------Deduplication_stats----------------------" >> {output.stats} dedup=$(zgrep -c "^+$" {input.dedup}) echo "Total number of deduplicated reads "\t" $dedup" >> {output.stats} echo "Percentage of duplication "\t" $(echo "100-$(echo "$dedup*100/$merge" | bc -l)") %">> {output.stats} echo "Total number of deduplicated discarded forward reads "\t" " $(zgrep -c "^+$" {input.reads1_rmdup}) >> {output.stats} echo "Total number of deduplicated discarded reverse reads "\t" " $(zgrep -c "^+$" {input.reads2_rmdup}) >> {output.stats} echo "" >> {output.stats} echo "---------------------Human_mitochondrial_DNA_stats------------" >> {output.stats} mito=$(samtools view -c -F 260 {input.mito} ) echo "Number of mapped reads "\t" $mito" >> {output.stats} echo "Percentage of mitochondrial reads "\t" $(echo "100*$mito/$dedup" | bc -l) %" >> {output.stats} echo "Mitochondrial genome coverage "\t" $(grep "mean coverageData" {input.mito_cov}/genome_results.txt | cut -d"=" -f2)" >> {output.stats} echo $(grep "std coverageData" {input.mito_cov}/genome_results.txt)>> {output.stats} echo "" >> {output.stats} echo "---------------------Human_autosomal_DNA_stats----------------" >> {output.stats} auto=$(samtools view -c -F 260 {input.auto} ) echo "Number of mapped reads "\t" $auto" >> {output.stats} echo "Human endogenous DNA content "\t" $(echo "100*$auto/$dedup" | bc -l) %" >> {output.stats} echo "Human genome coverage "\t" $(grep "mean coverageData" {input.auto_cov}/genome_results.txt| cut -d"=" -f2)" >> {output.stats} echo $(grep "std coverageData" {input.auto_cov}/genome_results.txt)>> {output.stats} echo "" >> {output.stats} echo "---------------------Human_sex_assignment----------------------" >> {output.stats} echo "Skoglund sex assignment: " >> {output.stats} head -2 {input.skglnd_sex} >> {output.stats} echo "" >> {output.stats} echo "Mittnik sex assignment: " >> {output.stats} echo $(grep "Sex assignment" {input.mtnk_sex} | cut -c 6- | rev | cut -c 2- | rev) >> {output.stats} echo "" >> {output.stats} Rscript src/scripts/PlotStats.R {output.stats} """ |
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 | args = commandArgs(trailingOnly=TRUE) data_tab = read.table(args[1]) x = data_tab$V1 y = data_tab$V2 pdf(file = args[2], width = 5, height = 5) plot(x, y, lwd=2, pch=16, xlab="", ylab="") fit3 <- lm(y~poly(x,3,raw=TRUE), data=data_tab) lines(x, predict(fit3, data.frame(x=data_tab)), col="red", lwd=2) title(main="Library complexity", xlab="Number of reads", ylab="Unique reads (%)") dev.off() |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 | args = commandArgs(trailingOnly=TRUE) data_tab = read.table(args, sep = ";", header = FALSE) #data_tab = read.csv("C:/Users/Sabry/OneDrive - Scientific Network South Tyrol/Desktop/Body_water.seq_stats.txt") pdf(file = paste(args, "pdf", sep = ".", collapse = ""), width = 7, height = 7) plot.new() for (i in 1:nrow(data_tab)){ title(sub=data_tab[i, 1], line = -(nrow(data_tab)-i), adj = 0) } dev.off() |
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 | # samtools index Ajv52_q30.bam # samtools idxstats Ajv52_q30.bam > Ajv52.idxstats # Rscript Rx_identifier.r Ajv52 > Ajv52.Rx args=(commandArgs(TRUE)) PREFIX=as.character(args[1]) idxstats<-read.table(paste(PREFIX,'.idxstats',sep=''),header=F,nrows=24,row.names=1) c1 <- c(as.numeric(idxstats[,1])) c2 <- c(as.numeric(idxstats[,2])) total_ref <- sum(c1) total_map <- sum(c2) LM <- lm(c1~c2) summary(LM) Rt1 <- (idxstats[1,2]/total_map)/(idxstats[1,1]/total_ref) Rt2 <- (idxstats[2,2]/total_map)/(idxstats[2,1]/total_ref) Rt3 <- (idxstats[3,2]/total_map)/(idxstats[3,1]/total_ref) Rt4 <- (idxstats[4,2]/total_map)/(idxstats[4,1]/total_ref) Rt5 <- (idxstats[5,2]/total_map)/(idxstats[5,1]/total_ref) Rt6 <- (idxstats[6,2]/total_map)/(idxstats[6,1]/total_ref) Rt7 <- (idxstats[7,2]/total_map)/(idxstats[7,1]/total_ref) Rt8 <- (idxstats[8,2]/total_map)/(idxstats[8,1]/total_ref) Rt9 <- (idxstats[9,2]/total_map)/(idxstats[9,1]/total_ref) Rt10 <- (idxstats[10,2]/total_map)/(idxstats[10,1]/total_ref) Rt11 <- (idxstats[11,2]/total_map)/(idxstats[11,1]/total_ref) Rt12 <- (idxstats[12,2]/total_map)/(idxstats[12,1]/total_ref) Rt13 <- (idxstats[13,2]/total_map)/(idxstats[13,1]/total_ref) Rt14 <- (idxstats[14,2]/total_map)/(idxstats[14,1]/total_ref) Rt15 <- (idxstats[15,2]/total_map)/(idxstats[15,1]/total_ref) Rt16 <- (idxstats[16,2]/total_map)/(idxstats[16,1]/total_ref) Rt17 <- (idxstats[17,2]/total_map)/(idxstats[17,1]/total_ref) Rt18 <- (idxstats[18,2]/total_map)/(idxstats[18,1]/total_ref) Rt19 <- (idxstats[19,2]/total_map)/(idxstats[19,1]/total_ref) Rt20 <- (idxstats[20,2]/total_map)/(idxstats[20,1]/total_ref) Rt21 <- (idxstats[21,2]/total_map)/(idxstats[21,1]/total_ref) Rt22 <- (idxstats[22,2]/total_map)/(idxstats[22,1]/total_ref) Rt23 <- (idxstats[23,2]/total_map)/(idxstats[23,1]/total_ref) Rt24 <- (idxstats[24,2]/total_map)/(idxstats[24,1]/total_ref) tot <- c(Rt23/Rt1,Rt23/Rt2,Rt23/Rt3,Rt23/Rt4,Rt23/Rt5,Rt23/Rt6,Rt23/Rt7,Rt23/Rt8,Rt23/Rt9,Rt23/Rt10,Rt23/Rt11,Rt23/Rt12,Rt23/Rt13,Rt23/Rt14,Rt23/Rt15,Rt23/Rt16,Rt23/Rt17,Rt23/Rt18,Rt23/Rt19,Rt23/Rt20,Rt23/Rt21,Rt23/Rt22) Rx <- mean(tot) cat("Rx :",Rx,"\n") confinterval <- 1.96*(sd(tot)/sqrt(22)) CI1 <- Rx-confinterval CI2 <- Rx+confinterval cat("95% CI :",CI1, CI2,"\n") if (CI1 > 0.8) {print ("Sex assignment:The sample should be assigned as Female") } else if (CI2 < 0.6) {print ("Sex assignment:The sample should be assigned as Male") } else if (CI1 > 0.6 & CI2 > 0.8) {print ("Sex assignment:The sample is consistent with XX but not XY") } else if (CI1 < 0.6 & CI2 < 0.8) {print ("Sex assignment:The sample is consistent with XY but not XX") } else print ("Sex assignment:The sample could not be assigned") print ("***It is important to realize that the assignment is invalid, if there is no correlation between the number of reference reads and that of the mapped reads***") |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/msabrysarhan/Barfusser_microbiome
Name:
barfusser_microbiome
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
None
Keywords:
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...