Data processing and analytics code for project "Biodiversity and ecosystem services trade-offs"
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
Trade-offs between biodiversity and ecosystem services in Europe
Version: 0.2.0
Introduction
Installation
The project relies both on Python and R scripts to pre- and post-procesing the data as well as running some of the analyses. While the project might run on Windows machines, it has never been tested on one. Your safest bet is running everything on a Ubuntu 14.04 (Trusty) machine. Everything else should run on other Linux distributions as well, but Zonation currently works nicely only Ubuntu 14.04 (though it is possible to compile it on 16.04 as well).
1. Getting this project
You need to first have
git
installed on the system you want to run this project on. Install
git
by:
sudo apt-get install git
Next, get everything in this project using git:
git clone https://github.com/VUEG/bdes_to.git
2. Installing necessary dependencies using conda
This project uses
conda
package, dependency and environment management system for setting everything up. It comes with simple installer script
bootsrap_conda.sh
that will install the right version of
conda
command line program for you. To run it, type:
# Get into the project directory
cd bdes_to
# Install conda
./bootsrap_conda.sh
After installation is finished and assuming everythign went well, you create a new enviroment with all the necessary (Python and R) pacakages installed by doing the following (still in the same directory):
conda env create -n bdes_to
This command will create a new virtual environment called
bdes_to
and install all the dependencies listed in
environment.yml
in it.
3. Installing Zonation
Zonation is not yet available through conda, so you will have to install it separately and system-wide. Follow the installation instructions found here .
Running the processing and analysis workflow
This project uses snakemake workflow management system to run the different stages in sequence. It has already been installed in step 1. You can list all the individual snakemake rules (i.e. stages) by typing in:
snakemake -l
or run the whole sequence (not recommended as this will also run all the Zonation analyses) by:
snakemake
Project organization
├── LICENSE
├── environment.yml <- Conda environment file
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── external <- Data from third party sources.
│ ├── interim <- Intermediate data that has been transformed.
│ ├── processed <- The final, canonical data sets for modeling.
│
├── docs <- A default Sphinx project; see sphinx-doc.org for details
│
├── notebooks <- Jupyter notebooks. Naming convention is a number (for ordering),
│ the creator's initials, and a short `-` delimited description, e.g.
│ `1.0-jqp-initial-data-exploration`.
│
├── references <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports <- Generated analysis as HTML, PDF, LaTeX, etc.
│ └── figures <- Generated graphics and figures to be used in reporting
│
├── requirements.txt <- The requirements file for reproducing the analysis environment, e.g.
│ generated with `pip freeze > requirements.txt`
│
├── src <- Source code for use in this project.
│ ├── __init__.py <- Makes src a Python module
│ │
│ ├── data <- Scripts to download or generate data
│ │ └── make_dataset.py
│ │
│ ├── features <- Scripts to turn raw data into features for modeling
│ │ └── build_features.py
│ │
│ ├── models <- Scripts to train models and then use trained models to make
│ │ │ predictions
│ │ ├── predict_model.py
│ │ └── train_model.py
│ │
│ └── visualization <- Scripts to create exploratory and results oriented visualizations
│ └── visualize.py
│
└── tests <- tests scripts
License
See LICENSE file .
Contributors
- Joona Lehtomäki joona.lehtomaki@gmail.com
Code Snippets
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 | run: llogger = utils.get_local_logger("pprocess_nuts0", log[0]) # Read in the bounds as used in harmonize_data rule bleft = PROJECT_EXTENT["left"] + OFFSET[0] bbottom = PROJECT_EXTENT["bottom"] + OFFSET[1] bright = PROJECT_EXTENT["right"] + OFFSET[2] btop = PROJECT_EXTENT["top"] + OFFSET[3] bounds = "{0} {1} {2} {3}".format(bleft, bbottom, bright, btop) # Reproject to EPSG:3035 from EPSG:4258 input_shp = utils.pick_from_list(input.shp, ".shp") reprojected_shp = utils.pick_from_list(output.reprojected, ".shp") cmd_str = 'ogr2ogr {0} -t_srs "EPSG:{1}" {2}'.format(reprojected_shp, PROJECT_CRS, input_shp) shell(cmd_str) llogger.info("Reprojected NUTS level 0 data from EPSG:4258 to EPSG:3035") llogger.debug(cmd_str) # NUTS 0 data has "NUTS_ID" field, but it's character. Convert to # integer for raserization enhanced_shp = utils.pick_from_list(output.enhanced, ".shp") with fiona.drivers(): with fiona.open(reprojected_shp) as source: meta = source.meta meta['schema']['geometry'] = 'Polygon' # Insert new fields meta['schema']['properties']['ID'] = 'int' meta['schema']['properties']['mask'] = 'int' ID = 1 with fiona.open(enhanced_shp, 'w', **meta) as sink: # Loop over features for f in source: f['properties']['ID'] = ID ID += 1 # Create a mask ID (same for each feature) that can # later be used in creating a mask. f['properties']['mask'] = 1 # Write the record out. sink.write(f) # Clip shapefile using ogr2ogr, syntax: # ogr2ogr output.shp input.shp -clipsrc <left> <bottom> <right> <top> processed_shp = utils.pick_from_list(output.processed, ".shp") # Do 2 things at the same time: # 1. Select a subset of counties (defined by params.countries) # 2. Clip output to an extent (given by bounds) # Build the -where clause for ogr2ogr where_clause = "NUTS_ID IN ({})".format(", ".join(["'" + item + "'" for item in PROJECT_COUNTRIES])) shell('ogr2ogr -where "{where_clause}" {processed_shp} {enhanced_shp} -clipsrc {bounds}') llogger.debug("Clipped NUTS data to analysis bounds: {}".format(bounds)) llogger.debug("Selected only a subset of eurostat countries:") llogger.debug(" " + ", ".join(PROJECT_COUNTRIES)) llogger.debug("Resulting file: {}".format(processed_shp)) |
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | run: llogger = utils.get_local_logger("pprocess_nuts2", log[0]) # Read in the bounds as used in harmonize_data rule bleft = PROJECT_EXTENT["left"] + OFFSET[0] bbottom = PROJECT_EXTENT["bottom"] + OFFSET[1] bright = PROJECT_EXTENT["right"] + OFFSET[2] btop = PROJECT_EXTENT["top"] + OFFSET[3] bounds = "{0} {1} {2} {3}".format(bleft, bbottom, bright, btop) # Reproject to EPSG:3035 from EPSG:4258 and clip input_shp = utils.pick_from_list(input.shp, ".shp") reprojected_shp = utils.pick_from_list(output.reprojected, ".shp") cmd_str = 'ogr2ogr {0} -t_srs "EPSG:{1}" {2}'.format(reprojected_shp, PROJECT_CRS, input_shp) shell(cmd_str) llogger.debug("Reprojected NUTS level 2 data from EPSG:4258 to EPSG:3035") llogger.debug(cmd_str) # Clip shapefile using ogr2ogr, syntax: # ogr2ogr output.shp input.shp -clipsrc <left> <bottom> <right> <top> clipped_shp = utils.pick_from_list(output.clipped, ".shp") # Clip output to an extent (given by bounds) shell('ogr2ogr {clipped_shp} {reprojected_shp} -clipsrc {bounds}') # The Pre-processing steps need to be done: # 1. Tease apart country code from field NUTS_ID # 2. Create a running ID field that can be used as value in the # rasterized version processed_shp = utils.pick_from_list(output.processed, ".shp") with fiona.drivers(): with fiona.open(clipped_shp) as source: meta = source.meta meta['schema']['geometry'] = 'Polygon' # Insert new fields meta['schema']['properties']['ID'] = 'int' meta['schema']['properties']['country'] = 'str' ID = 1 with fiona.open(processed_shp, 'w', **meta) as sink: # Loop over features for f in source: # Check the country code part of NUTS_ID (2 first # charatcters). NOTE: we're effectively doing filtering # here. country_code = f['properties']['NUTS_ID'][0:2] if country_code in PROJECT_COUNTRIES: f['properties']['ID'] = ID ID += 1 f['properties']['country'] = country_code # Write the record out. sink.write(f) llogger.debug("Clipped NUTS level 2 data to analysis bounds: {}".format(bounds)) llogger.debug("Selected only a subset of eurostat countries:") llogger.debug(" " + ", ".join(PROJECT_COUNTRIES)) llogger.debug("Resulting file: {}".format(processed_shp)) |
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 | run: llogger = utils.get_local_logger("rasterize_nuts0", log[0]) input_shp = utils.pick_from_list(input, ".shp") layer_shp = os.path.basename(input_shp).replace(".shp", "") # Construct extent bounds = "{0} {1} {2} {3}".format(PROJECT_EXTENT["left"], PROJECT_EXTENT["bottom"], PROJECT_EXTENT["right"], PROJECT_EXTENT["top"]) # 1) Rasterize land mask cmd_str = "gdal_rasterize -l {} ".format(layer_shp) + \ "-a ID -tr 1000 1000 -te {} ".format(bounds) + \ "-ot Int16 -a_nodata -32768 -co COMPRESS=DEFLATE " + \ "{0} {1}".format(input_shp, output.land_mask) llogger.debug(cmd_str) for line in utils.process_stdout(shell(cmd_str, read=True)): llogger.debug(line) # 2) Rasterize common data mask cmd_str = "gdal_rasterize -l {} ".format(layer_shp) + \ "-a mask -tr 1000 1000 -te {} ".format(bounds) + \ "-ot Int8 -a_nodata -128 -co COMPRESS=DEFLATE " + \ "{0} {1}".format(input_shp, output.data_mask) llogger.debug(cmd_str) for line in utils.process_stdout(shell(cmd_str, read=True)): llogger.debug(line) |
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 | run: llogger = utils.get_local_logger("rasterize_nuts2", log[0]) input_shp = utils.pick_from_list(input, ".shp") layer_shp = os.path.basename(input_shp).replace(".shp", "") # Construct extent bounds = "{0} {1} {2} {3}".format(PROJECT_EXTENT["left"], PROJECT_EXTENT["bottom"], PROJECT_EXTENT["right"], PROJECT_EXTENT["top"]) # Rasterize cmd_str = "gdal_rasterize -l {} ".format(layer_shp) + \ "-a ID -tr 1000 1000 -te {} ".format(bounds) + \ "-ot Int16 -a_nodata -32768 -co COMPRESS=DEFLATE " + \ "{0} {1}".format(input_shp, output[0]) llogger.debug(cmd_str) for line in utils.process_stdout(shell(cmd_str, read=True)): llogger.debug(line) |
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 | run: llogger = utils.get_local_logger("clip_udr_data", log[0]) nsteps = len(input.external) for i, s_raster in enumerate(input.external): # Target raster clipped_raster = s_raster.replace("external", "processed/features") prefix = utils.get_iteration_prefix(i+1, nsteps) llogger.info("{0} Clipping dataset {1}".format(prefix, s_raster)) llogger.debug("{0} Target dataset {1}".format(prefix, clipped_raster)) # Clip data. NOTE: UDR species rasters do not have a SRS defined, # but they are in EPSG:3035 cmd_str = 'gdalwarp -s_srs EPSG:3035 -t_srs EPSG:3035 -cutline {0} {1} {2} -co COMPRESS=DEFLATE'.format(input.clip_shp, s_raster, clipped_raster) for line in utils.process_stdout(shell(cmd_str, read=True), prefix=prefix): llogger.debug(line) |
340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 | run: llogger = utils.get_local_logger("create_clc_mask", log[0]) minx = PROJECT_EXTENT["left"] miny = PROJECT_EXTENT["bottom"] maxx = PROJECT_EXTENT["right"] maxy = PROJECT_EXTENT["top"] # STEP 1: Aggregate CLC data cmd_warp_str = "gdalwarp -te {} {} {} {} ".format(minx, miny, maxx, maxy) + \ "-multi -tr {} {} -r mode ".format(PROJECT_RES, PROJECT_RES) + \ "-s_srs 'EPSG:{}' -t_srs 'EPSG:{}' ".format(PROJECT_CRS, PROJECT_CRS) + \ "{} {}".format(input.clc_2012, output.agg_clc) llogger.info(" [1/3] Aggregating CLC data") for line in utils.process_stdout(shell(cmd_warp_str, read=True)): llogger.debug(line) # STEP 2: Remove aquatic CLC classes: # 39 Intertidal flats # 40 Water courses # 41 Water bodies # 42 Coastal lagoons # 43 Estuaries # 44 Sea and ocean # # Also binarize the selection clc_tmp_1 = os.path.basename(output.clc_mask).split(".")[0] + "_tmp1.tif" clc_tmp_1 = os.path.join(os.path.dirname(output.agg_clc), clc_tmp_1) cmd_calc_str = 'rio calc "(where (< (* (>= (read 1) 39) 255) 255) 1 0) " ' + \ '{} {} --co "compress=DEFLATE"'.format(output.agg_clc, clc_tmp_1) llogger.info(" [2/3] Subsetting and binarizing CLC data") for line in utils.process_stdout(shell(cmd_calc_str, read=True)): llogger.debug(line) # STEP 3: Overlay with NUTS0 mask cmd_ovr_str = 'rio calc "(where (== (+ (take a 1) (take b 1)) 2) 1 0) " ' + \ '--name "a={}" --name "b={}" '.format(clc_tmp_1, input.nuts0) + \ '{} --co "compress=DEFLATE"'.format(output.clc_mask) logger.debug(cmd_ovr_str) llogger.info(" [3/3] Overlaying with NUTS0 mask") for line in utils.process_stdout(shell(cmd_ovr_str, read=True)): llogger.debug(line) # Remove temporary files os.remove(clc_tmp_1) |
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 | run: llogger = utils.get_local_logger("harmonize_data", log[0]) nsteps = len(input.external) for i, s_raster in enumerate(input.external): # The assumption is that zips don't need anything else but # extraction if s_raster.endswith(".zip"): target_dir = s_raster.replace("external", "processed/features_flow_zones") target_dir = os.path.dirname(target_dir) # Get rid of the last path component to avoid repetition target_dir = os.path.sep.join(target_dir.split(os.path.sep)[:-1]) if not os.path.exists(target_dir): os.mkdir(target_dir) prefix = utils.get_iteration_prefix(i+1, nsteps) llogger.info("{0} Unzipping dataset {1}".format(prefix, s_raster)) shell("unzip -o {} -d {} >& {}".format(s_raster, target_dir, log[0])) else: ## WARP # Target raster warped_raster = s_raster.replace("external", "interim/warped") # No need to process the snap raster, just copy it prefix = utils.get_iteration_prefix(i+1, nsteps) if s_raster == input.like_raster: llogger.info("{0} Copying dataset {1}".format(prefix, s_raster)) llogger.debug("{0} Target dataset {1}".format(prefix, warped_raster)) ret = shell("cp {s_raster} {warped_raster}", read=True) else: llogger.info("{0} Warping dataset {1}".format(prefix, s_raster)) llogger.debug("{0} Target dataset {1}".format(prefix, warped_raster)) |
475 476 477 478 479 480 481 482 483 484 485 | run: llogger = utils.get_local_logger("process_flowzones", log[0]) for in_raster, outdir in zip(input.src, output): cmd_str = "src/01_pre_processing/cutter.py {} {} {} -f {} -c {}".format(in_raster, input.flow_zone_units, outdir,"ID", threads) print(cmd_str) for line in utils.process_stdout(shell(cmd_str, read=True)): llogger.debug(line) |
499 500 501 502 503 504 505 | run: llogger = utils.get_local_logger("calculate_flowzone_weights", log[0]) llogger.info(" [1/2] Calculating zonal stats for {}".format(input.cli_agro)) stats = zonal_stats(input.flow_zone_units, input.cli_agro, stats=['sum']) print(stats) |
527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 | run: llogger = utils.get_local_logger("match_coverages", log[0]) coverage.expand_value_coverage(input.car, input.expand_raster, output.car, logger=llogger) coverage.expand_value_coverage(input.esc, input.expand_raster, output.esc, logger=llogger) coverage.expand_value_coverage(input.esf, input.expand_raster, output.esf, logger=llogger) coverage.expand_value_coverage(input.bio_car, input.expand_raster, output.bio_car, logger=llogger) coverage.expand_value_coverage(input.bio_esc, input.expand_raster, output.bio_esc, logger=llogger) coverage.expand_value_coverage(input.bio_esf, input.expand_raster, output.bio_esf, logger=llogger) |
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 | run: llogger = utils.get_local_logger("generate_range_data", log[0], debug=True) range_stats = pd.DataFrame({"feature": [], "count": [], "sum": [], "q25_ol": [], "mean_ol": [], "median_ol": [], "q75_ol": []}) features = ES_DST_DATASETS + BD_DST_DATASETS # Remove potential zip files features = [feature for feature in features if not feature.endswith(".zip")] for i, feature in enumerate(features): prefix = utils.get_iteration_prefix(i+1, len(features)) llogger.info("{} Processing {}".format(prefix, feature)) feature_stats = spatutils.get_range_size(feature, logger = llogger) range_stats = pd.concat([range_stats, feature_stats]) llogger.info(" Saving results to {}".format(output.csv)) range_stats.to_csv(output.csv, columns=["feature", "count", "sum", "q25_ol", "mean_ol", "median_ol", "q75_ol"], index=False) |
Support
Related Workflows





