Analyze single-end RNA-Seq data

public public 1yr ago 0 bookmarks

Bulk-RNA-seq-pipeline-SE

Pipeline to run basic RNA-seq analysis on single-end data.

This is a package of Python and R scripts that enable reading, processing and analysis of Omics' datasets. This package implements the Snakemake management workflow system and is currently implemented to work with the cluster management and job scheduling system SLURM. This snakemake workflow utilizes conda installations to download and use packages for further analysis, so please ensure that you have installed miniconda prior to use.

Features unique to the MaxsonBraunLab fork

Decrease dependence on CEDAR software.
1. install STAR 2.7.1a using conda
2. fastq screen config file refers to Maxson Lab builds
3. copied geneAnno files to local pipeline for biotype filtration. geneID2GO files for GO, and geneAnno files for biotype filter.
4. copied /home/groups/CEDAR/estabroj/beta4/data/mm10_MGC_gene.bed to local pipeline for rseqc read_distribution metric.
5. point indices and gtfs to maxson lab
6. better documentation in omic_config.yaml
Pipeline fixes / tailor to Maxson Data
7. pipeline is now organism agnostic
8. biotype filtration now works
9. mitochondrial gene filtration will now grep for "^MT-" while ignoring case. Good for mm10.
11. FC for GO is now a raw number filter. Previous pipeline used log2(FC) filter.

1. Prepare your work environment

# clone this repo to a new working directory
git clone git@github.com:maxsonBraunLab/Bulk-RNA-seq-pipeline-SE.git
cd Bulk-RNA-seq-pipeline-SE/samples/raw
# symlink your FASTQ files (gzipped) to this directory
for file in (find <absolute/path/to/relevant/folder> -name "*.gz" | sort); do
 echo "symlinking $file"
 ln -s $file .
done

Please make sure to match your file to the following format: {sample}.fastq.gz where the term sample can contain alphanumerical characters.

2. Prepare your conda environment

Continue forward if you don't have a conda environment with a clean install of snakemake.

# while using base conda env, create your snakemake environment
conda install -c conda-forge mamba # installs into base env
mamba create -c conda-forge -c bioconda -n snakemake snakemake # installs snakemake into new env
conda activate snakemake

3. Tailor the omic_config.yaml file to your analysis

The omic_config.yaml file is used to customize the pipeline to your experiment. The pipeline requires STAR indices made using STAR 2.7.1a, and the current configuration uses Ensembl genomes and annotations.

The omic_config.yaml file can also adjust for differential expression.

To relate sample to covariates (e.g. condition), please fill out the data/metadata.txt file. If your only independent variable to analyze is treatment/condition, then the file would be a 2-column TSV file with "SampleID" and "Condition" as the headers. Additional headers (Lane, time points, etc.) can be recognized and plotted by specifying them in the omic_config.yaml file. These include the meta_columns_to_plot , pca_labels , sampleID , and Type keys.

4. Set up SLURM integration

Continue forward if you don't have a SLURM profile .

Download the slurm folder from this repository and copy the entire thing to ~/.config/snakemake .

5. Run the pipeline

First do a dry-run of snakemake to ensure proper execution before submitting it to the cluster.

$ snakemake -np --verbose

Once your files are symbolically linked, you can submit the jobs batch-style to exacloud via your terminal window. This is most appropriate when running many heavy processes like read alignment.

$ snakemake -j <n jobs> --use-conda --profile slurm --cluster-config cluster.yaml

To see how the job is running, look at your queue.

$ squeue -u your_username

If you need to re-run light processes such as differential expression and quality control, just remove the profile and cluster-config flags like this:

$ snakemake -j <n cores> --use-conda

j in this 'interactive' context means to use n amount of local cores, while the 'batch' context specifies number of active jobs!

Detailed Workflow

Alignment

  1. Trimming

    • Trimming of single-end reads was performed using fastp.
  2. Quality Analysis

    • Trimmed reads were subject to fastqc quality analysis

    • The output is located in samples/fastqc/{sample}/

  3. Alignment

    • Trimmed reads were aligned to the hg38 genome assembly using STAR

      • We included a two pass mode flag in order to increase the number of aligned reads

      • Output is placed in samples/star/{sample}_bam/

        • Output directory includes: Aligned.sortedByCoord.out.bam , ReadsPerGene.out.tab , and Log.final.out
    • We extracted the statistics from the STAR run, and placed them in a table, summarizing the results across all samples from the Log.final.out output of STAR

      • Output is results/tables/{project_id}_STAR_mapping_statistics.txt
  4. Summarizing output

    • htseq is used to extract the gene counts from each sample

    • We summarize these results into 1 table, which includes the gene counts across all samples

    • The output is located in data/{project_id}_counts.txt

Quality Analysis / Quality Check

  1. RSEQC Quality check

    • RSEQC was used to check the quality of the reads by using a collection of commands from the RSEQC package:

      • Insertion Profile

      • Inner Distance

      • Clipping Profile

      • Read distribution

      • Read GC

    • For more information on these, visit: http://dldcc-web.brc.bcm.edu/lilab/liguow/CGI/rseqc/_build/html/index.html#usage-information

    • Output directory: rseqc/

  2. QA/QC scripts to analyze the data as a whole

    • The purpose of this analysis is to identify potential batch effects and outliers in the data

    • The outputs to this are located in the results directory, and are distributed amongst 4 subdirectories, numbered 1 through 4

      • 1

        • A boxplot of the raw log2-transformed gene counts across all samples

        • A boxplot of the loess-transformed gene counts across all samples

        • A scatter plot comparing raw gene counts to loess-transformed gene counts

        • A density plot of raw log2-transformed gene counts across all samples

        • A density plot of loess-transformed gene counts across all samples

        • A scatter plot of the standard deviation of raw log2-transformed gene counts across all samples

        • A scatter plot of the standard deviation of loess-transformed gene counts across all samples

      • 2

        • A heatmap of all raw log2-transformed gene counts across samples

        • A heatmap of all loess-transformed gene counts across samples

          • These are generated to look for any batch effects in the data, due to date of extraction, or other factors
        • An MDS Plot for all samples, generated with the raw log2-transformed gene counts

        • An MDS Plot for all samples, generated with the loess-transformed gene counts

          • These are generated to look for outliers in the data
      • 3

        • p-value histograms for each contrast specified in the omic_config.yaml

        • q-value QC plot arrays for each contrast specified in the omic_config.yaml

      • 4

        • A Heatmap which looks at genes with a high FC and low q-value (very significant)

          • Takes genes with a FC>1.3, and ranks those by q-value. From this, a heatmap is generated for the top 50, 100 and 200 genes in this list
        • An MDS Plot which looks at the same subsets of genes as the Heatmap described above

Differential Expression Analysis (DESeq2)

  1. Initializing the DESeq2 object

    • Here, we run DESeq2 on the genecounts table, which generates an RDS object and rlog

      • This includes the DE analysis across all samples

      • Output is located in the results/diffexp/ directory

    • From the dds object generated, we extract the normalized counts and generate a table with the results

      • Output is results/tables/{project_id}_normed_counts.txt
  2. Generating plots

    • From the RDS object, we generate a collection of informative plots. These include:

      • PCA Plot

      • Standard Deviation from the Mean Plot

      • Heatmap

      • Variance Heatmap

      • Distance Plot

  3. Differential Expression Analysis

    • We perform Differential Expression (DE) analysis for each contrast listed in the omic_config.yaml

    • Our output consists of DE gene count tables and a variety of plots

      • A table is generated for genes that are differentially expressed for each contrast

        • The output is placed in results/diffexp/{contrast}.diffexp.tsv
      • MA Plots are generated for each contrast

      • p-histograms are generated for each contrast

  4. Differential Expression Plots

    • We use the output from DESeq2 to generate two types of plots:

      • Gene Ontology (GO) plots:

        • A tree graph describing the GO ID relationship for significantly up/downregulated genes in a given comparison

          • Output is located in results/diffexp/GOterms
        • A bar graph describing the enrichment and significance of GO IDs for up/downregulated genes in a given comparison

      • Volcano plots:

        • A volcano plot describing the distribution of up/downregulated genes in a given comparison

          • Output is located in results/diffexp

Code Snippets

11
12
shell:
    "fastp -i {input} -o {output} --thread {threads} -j {log} -h /dev/null"
25
26
shell:
    "fastq_screen --aligner bowtie2 --conf {params.conf} --outdir samples/fastqscreen/{wildcards.sample} {input}"
37
38
shell:
    "fastqc --outdir samples/fastqc/{wildcards.sample} --extract -f fastq {input}"
53
54
55
56
57
58
59
60
61
shell:
    "STAR --runThreadN {threads} --runMode alignReads --genomeDir {params.genome_index} \
    --readFilesIn {input} \
    --outFileNamePrefix samples/star/{wildcards.sample}_bam/ \
    --sjdbGTFfile {params.gtf} --quantMode GeneCounts \
    --sjdbGTFtagExonParentGene gene_name \
    --outSAMtype BAM SortedByCoordinate \
    --readFilesCommand zcat \
    --twopassMode Basic"
71
72
shell:
    "samtools index {input} {output}"
83
84
shell:
    "bamCoverage -b {input[0]} -o {output} -p {threads} --normalizeUsing CPM --binSize 10 --smoothLength 50"
91
92
script:
    "../scripts/compile_star_log.py"
101
102
script:
    "../scripts/compile_star_counts.py"
113
114
script:
    "../scripts/RNAseq_filterCounts.R"
17
18
script:
    "../scripts/deseq2-init.R"
33
34
script:
    "../scripts/deseq2_norm.R"
57
58
script:
    "../scripts/deseq2_pairwise.R"
80
81
script:
    "../scripts/deseq2_group.R"
103
104
script:
    "../scripts/QC.R"
SnakeMake From line 103 of rules/deseq.smk
117
118
script:
    "../scripts/qplot.R"
SnakeMake From line 117 of rules/deseq.smk
132
133
script:
    "../scripts/density_plot.R"
SnakeMake From line 132 of rules/deseq.smk
149
150
script:
    "../scripts/runGOforDESeq2.R"
SnakeMake From line 149 of rules/deseq.smk
163
164
script:
    "../scripts/RNAseq_makeVolcano.R"
SnakeMake From line 163 of rules/deseq.smk
180
181
script:
    "../scripts/permutation_test.R"
SnakeMake From line 180 of rules/deseq.smk
194
195
script:
    "../scripts/run_glimma.R"
SnakeMake From line 194 of rules/deseq.smk
206
207
script:
    "../scripts/run_glimma_mds.R"
SnakeMake From line 206 of rules/deseq.smk
10
11
shell:
    "insertion_profile.py -i {input} -o samples/rseqc/insertion_profile/{wildcards.sample} -s 'SE'"
22
23
shell:
    "clipping_profile.py -i {input} -s 'SE' -o samples/rseqc/clipping_profile/{wildcards.sample}"
34
35
shell:
    "read_distribution.py -i {input} -r {params.bed} > {output}"
46
47
shell:
    "read_GC.py -i {input} -o samples/rseqc/read_GC/{wildcards.sample}"
63
64
shell:
    "multiqc samples/ -f -o results/multiqc_report"
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
import pandas as pd


"""Function accepts a STAR output directory and compiles all sample information from ReadsPerGene.out.tab

Args:
    snakemake.input (list): list of globbed wildcards STAR ReadsPerGene.out.tab
    project_title (str): Project title for compiled STAR counts

Returns:
    Compiled STAR counts as tab delimited file.
"""

colnames = snakemake.params.samples
tables = [pd.read_csv(fh, header=None, skiprows=4, usecols=[0,3], index_col=0, sep = '\t',  names = ['Genes',fh.split('/')[-2].split('_')[0]]) for fh in snakemake.input]
joined_table = pd.concat(tables, axis=1)
joined_table.columns = colnames
joined_table_sorted = joined_table.reindex(sorted(joined_table.columns), axis = 1)
joined_table_sorted.to_csv(snakemake.output[0], sep='\t')
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
import pandas as pd


"""Function accepts a STAR output directory and compiles all sample information from Log.final.out
Args:
    snakemake.input (list): list of globbed wildcards STAR Log.final.out
    project_title (str): Project title for compiled STAR mapping statistics

Returns:
    Compiled STAR log.final.out as tab delimited file.
"""

tables = [pd.read_csv(fh, sep = '\t', index_col = 0, names = [fh.split('/')[-2]]) for fh in snakemake.input]
joined_table = pd.concat(tables, axis=1)
joined_table_sorted = joined_table.reindex(sorted(joined_table.columns), axis = 1)
joined_table_sorted.to_csv(snakemake.output[0], sep='\t')
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
library(DESeq2)
library(ggplot2)
library(reshape2)
library(data.table)
library(plyr)
library(RColorBrewer)


rld <- snakemake@input[['rld']]
cat(sprintf(c('rld: ', rld, '\n')))


condition <- snakemake@params[['linear_model']]
cat(sprintf(c('condition: ', condition, '\n')))

project_id <- snakemake@params[['project_id']]

density_plot <- snakemake@output[['density']]
cat(sprintf(c('Density plot : ', density_plot, '\n')))


colors <- snakemake@params['colors']
discrete <- snakemake@params['discrete']

# function to grab the ggplot2 colours
gg_color_hue <- function(n) {
  hues = seq(15, 375, length = n + 1)
  hcl(h = hues, l = 65, c = 100)[1:n]
}

rld = readRDS(rld)
normed_values = assay(rld)
normed_t = t(normed_values)
meta = colData(rld)

if(colors[[1]] !='NA' & discrete[[1]] =='NA'){
    if(brewer.pal.info[colors[[1]],]$maxcolors >= length(levels(meta[[condition]]))) {
        pal <- brewer.pal(length(levels(meta[[condition]])),name=colors[[1]])
    } 
} else if(discrete[[1]] != 'NA' & length(discrete)==length(levels(meta[[condition]]))){
        pal <- unlist(discrete)
} else {
        pal <- gg_color_hue(length(levels(meta[[condition]])))
}

joined_counts = cbind(meta[condition],normed_t)

x = as.data.table(joined_counts)
mm <- melt(x,id=condition)

mu <- ddply(mm, condition, summarise, grp.mean=mean(value))
pdf(density_plot)
p<-ggplot(mm, aes_string(x='value', color=condition)) +
  geom_density()+
  geom_vline(data=mu, aes_string(xintercept='grp.mean', color=condition),
             linetype="dashed") + xlab('regularized log expression') + 
  scale_color_manual(values=pal) +
  ggtitle(eval(project_id)) + theme(plot.title = element_text(hjust = 0.5))
p
dev.off()
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
library("DESeq2")
library("ggplot2")
library("pheatmap")
library("dplyr")
library("vsn")
library("RColorBrewer")
library("genefilter")

cat(sprintf(c('Working directory',getwd())))

cat(sprintf('Setting parameters'))

pca_plot <- snakemake@output[['pca']]
cat(sprintf(c('PCA plot: ',pca_plot)))

labels <- snakemake@params[['pca_labels']]
cat(sprintf(c('PCA Labels: ',labels)))

sd_mean_plot <- snakemake@output[['sd_mean_plot']]
cat(sprintf(c('SD Mean plot: ',sd_mean_plot,'\n')))

distance_plot <- snakemake@output[['distance_plot']]
cat(sprintf(c('Distance plot: ',distance_plot,'\n')))

heatmap_plot <- snakemake@output[['heatmap_plot']]
cat(sprintf(c('Heatmap Plot: ', heatmap_plot, '\n')))

rds_out <- snakemake@output[['rds']]
cat(sprintf(c('RDS Output: ', rds_out, '\n')))

rld_out <- snakemake@output[['rld_out']]
cat(sprintf(c('RLD Output: ', rld_out, '\n')))

counts <- snakemake@input[['counts']]
cat(sprintf(c('Counts table: ', counts, '\n')))

metadata <- snakemake@params[['samples']]
cat(sprintf(c('Metadata: ', metadata, '\n')))

sampleID <- snakemake@params[['sample_id']]
cat(sprintf(c('Sample ID: ', sampleID, '\n')))

Type <- snakemake@params[['linear_model']]
cat(sprintf(c('Linear Model: ', Type, '\n')))

group <- snakemake@params[['LRT']]
cat(sprintf(c('Subsetted group: ', group, '\n')))

plot_cols <- snakemake@config[['meta_columns_to_plot']]
subset_cols = names(plot_cols)

# color palette
colors <- snakemake@params[['colors']]
discrete <- snakemake@params[['discrete']]

# function to grab the ggplot2 colours
gg_color_hue <- function(n) {
  hues = seq(15, 375, length = n + 1)
  hcl(h = hues, l = 65, c = 100)[1:n]
}

Dir <- "results/diffexp/group/"

md <- read.delim(file=metadata, sep = "\t", stringsAsFactors = FALSE)
md <- md[order(md[sampleID]),]

# Read in counts table
cts <- read.table(counts, header=TRUE, row.names=1, sep="\t", check.names=F)
cts <- cts[,order(colnames(cts))]

# Put sample IDs as rownames of metadata
rownames(md) <- md[[sampleID]]
md[[sampleID]] <- NULL

# Ensure that we subset md to have exactly the same samples as in the counts table
# md <- md[colnames(cts),]
dim(md)

# Check
stopifnot(rownames(md)==colnames(cts))

# Define colours based on number of Conditions
if(colors[[1]] !='NA' & discrete[[1]] =='NA'){
    if (brewer.pal.info[colors[[1]],]$maxcolors >= length(unique(md[[Type]]))) {
        pal <- brewer.pal(length(unique(md[[Type]])),name=colors[[1]])
    } 
} else if(discrete[[1]] != 'NA' & length(discrete)==length(unique(md[[Type]]))){
        pal <- unlist(discrete)
} else {
        pal <- gg_color_hue(length(unique(md[[Type]])))
}

# Create dds object from counts data and correct columns
dds <- DESeqDataSetFromMatrix(countData=cts,
                              colData=md,
                              design= as.formula(paste('~',Type)))

# Remove uninformative columns
dds <- dds[ rowSums(counts(dds)) >= 1, ]

# Likelihood Ratio test to look at differential expression across ALL types, and not just pairs of types (contrast)
dds.lrt <- DESeq(dds, test="LRT", reduced=~1)
res.lrt <- results(dds.lrt, cooksCutoff = Inf, independentFiltering=FALSE)
head(res.lrt)

# Obtain normalized counts
rld <- rlog(dds.lrt, blind=FALSE)

# Pairwise PCA Plot
pdf(pca_plot)
plotPCA(rld, intgroup=labels[[1]])
dev.off()

# Pairwise PCA Plot with more than one PCA parameter
if (length(labels)>1) {
  pca_plot2 <- sub("$","twoDimensional_pca_plot.pdf", Dir)
  pcaData <- plotPCA(rld, intgroup=c(labels[[1]], labels[[2]]), returnData=TRUE)
  pdf(pca_plot2, 5, 5)
  percentVar <- round(100 * attr(pcaData, "percentVar"))
  ggplot(pcaData, aes_string("PC1", "PC2", color=labels[[1]], shape=labels[[2]])) +
    geom_point(size=3) +
    xlab(paste0("PC1: ",percentVar[1],"% variance")) +
    ylab(paste0("PC2: ",percentVar[2],"% variance")) +
    coord_fixed()
  dev.off()
}

# SD mean plot
pdf(sd_mean_plot)
meanSdPlot(assay(rld))
dev.off()

# Heatmap of distances
pdf(distance_plot)
sampleDists <- dist(t(assay(rld)))
sampleDistMatrix <- as.matrix(sampleDists)

rownames(sampleDistMatrix) <- colnames(rld)
colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255)
pheatmap(sampleDistMatrix, fontsize=5, scale="row",
         clustering_distance_rows=sampleDists,
         clustering_distance_cols=sampleDists,
         col=colors)
dev.off()

# Heatmap across all samples
# List top 50 genes for group comparisons
topGenes <- head(order(res.lrt$padj), 50)

# Extract topGenes from rld object
plot <- assay(rld)[topGenes,] #for 2+ types

# Generate data frame with samples as the rownames and single colData as the first row
# Default when we subset creates an incompatible dataframe so this is a check
df <- as.data.frame(colData(rld))
if (length(subset_cols)==1) {
  annot <- as.data.frame(cbind(rownames(df), paste(df[[subset_cols[1]]])))
  names(annot) <- c("SampleID", subset_cols[1])
  rownames(annot) <- annot[[sampleID]]
  annot[[sampleID]] <- NULL
} else {
  annot <- df[,subset_cols]
}

pdf(heatmap_plot)
pheatmap(assay(rld)[topGenes,], cluster_rows=T, scale="row", fontsize=6,fontsize_row=6,fontsize_col=6,show_rownames=T, cluster_cols=T, annotation_col=annot, labels_col=as.character(rownames(df)), main = paste("Heatmap of top 50 DE genes across all samples"))
dev.off()

saveRDS(dds, file=rds_out)
saveRDS(rld, file=rld_out)

group <- as.vector(group)

# If LRT group has been specified, run the analysis for that group
save.image()
if (length(group)>0) {
  md <- read.delim(file=metadata, sep = "\t", stringsAsFactors = FALSE)
  md <- md[order(md[sampleID]),]
  cts <- read.table(counts, header=TRUE, row.names=1, sep="\t")
  cts <- cts[,order(colnames(cts))]
  md <- md[md[[Type]] %in% group,]
  rownames(md) <- md[[sampleID]]
  md[[sampleID]] <- NULL
  keep <- colnames(cts)[colnames(cts) %in% rownames(md)]
  cts <- cts[, keep]
  dim(cts)
  md = subset(md, rownames(md) %in% keep)
  dim(md)

  dds <- DESeqDataSetFromMatrix(countData=cts,
                              colData=md,
                              design= as.formula(paste('~',Type)))
  dds <- dds[ rowSums(counts(dds)) >= 1, ]
  dds.lrt <- DESeq(dds, test="LRT", reduced=~1)
  res.lrt <- results(dds.lrt, cooksCutoff = Inf, independentFiltering=FALSE)
  rld <- rlog(dds.lrt, blind=FALSE)

  # Pairwise PCA Plot
  pdf(sub("$", "subsetted_pca_plot.pdf", Dir), 5, 5)
  plotPCA(rld, intgroup=labels[[1]])
  dev.off()
  # Pairwise PCA Plot with more than one PCA parameter
  if (length(labels)>1) {
    pcaData <- plotPCA(rld, intgroup=c(labels[[1]], labels[[2]]), returnData=TRUE)
    pdf(sub("$", "subsetted_twoDimensional_pca_plot.pdf", Dir), 5, 5)
    percentVar <- round(100 * attr(pcaData, "percentVar"))
    ggplot(pcaData, aes_string("PC1", "PC2", color=labels[[1]], shape=labels[[2]])) +
      geom_point(size=3) +
      xlab(paste0("PC1: ",percentVar[1],"% variance")) +
      ylab(paste0("PC2: ",percentVar[2],"% variance")) +
      coord_fixed()
    dev.off()
  }

  # Heatmap
  topGenes <- head(order(res.lrt$padj), 50)
  # Extract topGenes from rld object
  plot <- assay(rld)[topGenes,] #for 2+ types

  df <- as.data.frame(colData(rld))
  if (length(subset_cols)==1) {
    annot <- as.data.frame(cbind(rownames(df), paste(df[[subset_cols[1]]])))
    names(annot) <- c("SampleID", subset_cols[1])
    rownames(annot) <- annot[[sampleID]]
    annot[[sampleID]] <- NULL
  } else {
    annot <- df[,subset_cols]
  }

  pdf(sub("$", "subsetted_heatmap.pdf", Dir), 5, 5)
  pheatmap(assay(rld)[topGenes,], cluster_rows=T, scale="row", fontsize=6,fontsize_row=6,fontsize_col=6,show_rownames=T, cluster_cols=T, annotation_col=annot, labels_col=as.character(rownames(df)), main = paste("Heatmap of top 50 DE genes across selected samples"))
  dev.off()
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
library("dplyr")
library("DESeq2")

counts = snakemake@input[['counts']]

metadata <- snakemake@params[['samples']]

sampleID <- snakemake@params[['sample_id']]

Type <- snakemake@params[['linear_model']]

contrast <- snakemake@params[['contrast']]

target <- strsplit(as.character(contrast), "-vs-")[[1]][1]

baseline <- strsplit(as.character(contrast), "-vs-")[[1]][2]

output = snakemake@output[['rds']]

rld_out = snakemake@output[['rld_out']]

parallel <- FALSE
if (snakemake@threads > 1) {
    library("BiocParallel")
    # setup parallelization
    register(MulticoreParam(snakemake@threads))
    parallel <- TRUE
}

# Read in metadata table and order according to sampleID
md <- read.delim(file=metadata, sep = "\t", stringsAsFactors = FALSE)
md <- md[order(md[sampleID]),]

# Read in counts table
subdata <- read.table(counts, header=TRUE, row.names=1, sep="\t", check.names=FALSE)
subdata <- subdata[,order(colnames(subdata))]

# Extract only the Types that we want in further analysis & only the PP_ID and Status informative columns
md <- filter(md, !!as.name(Type) == baseline | !!as.name(Type) == target , !!as.name(sampleID) %in% colnames(subdata))

# Keep only the PP_IDs of the types we have chosen in the metadata table above
rownames(md) <- md[[sampleID]]
md[[sampleID]] <- NULL
keep <- colnames(subdata)[colnames(subdata) %in% rownames(md)]
subdata <- subdata[, keep]
dim(subdata)

# Check
stopifnot(rownames(md)==colnames(subdata))

# Obtain the number of genes that meet padj<0.01 for reference line in histogram
dds <- DESeqDataSetFromMatrix(countData=subdata,
                              colData=md,
                              design= as.formula(paste('~',Type)))

dds <- estimateSizeFactors(dds)

# Remove uninformative columns
dds <- dds[ rowSums(counts(dds)) >= 1, ]

saveRDS(dds, file=output)

# colData and countData must have the same sample order, but this is ensured
# by the way we create the count matrix
dds <- dds[ rowSums(counts(dds)) > 1, ]
# normalization and preprocessing
dds <- DESeq(dds, parallel=parallel)
saveRDS(dds, file=output)

# obtain normalized counts
rld <- rlog(dds, blind=FALSE)
saveRDS(rld, file=rld_out)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
library("dplyr")
library("DESeq2")

counts = snakemake@input[['counts']]

metadata <- snakemake@params[['samples']]

sampleID <- snakemake@params[['sample_id']]

Type <- snakemake@params[['linear_model']]

outCounts = snakemake@output[["counts"]]

outLogCounts = snakemake@output[["logcounts"]]

# Read in metadata table and order according to sampleID
md <- read.delim(file=metadata, sep = "\t", stringsAsFactors = FALSE)
md <- md[order(md[sampleID]),]

# Read in counts table
subdata <- read.table(counts, header=TRUE, row.names=1, sep="\t", check.names=FALSE)
subdata <- subdata[,order(colnames(subdata))]

# Keep only the PP_IDs of the types we have chosen in the metadata table above
rownames(md) <- md[[sampleID]]
md[[sampleID]] <- NULL
keep <- colnames(subdata)[colnames(subdata) %in% rownames(md)]
subdata <- subdata[, keep]
dim(subdata)

# Check
stopifnot(rownames(md)==colnames(subdata))

# Obtain the number of genes that meet padj<0.01 for reference line in histogram
dds <- DESeqDataSetFromMatrix(countData=subdata,
                              colData=md,
                              design= as.formula(paste('~',Type)))

dds <- estimateSizeFactors(dds)

# Remove uninformative columns
dds <- dds[ rowSums(counts(dds)) >= 1, ]

# Normalization and pre-processing
dds <- DESeq(dds)

dds <- dds[ rowSums(counts(dds)) > 1, ]

write.table(counts(dds, normalized = TRUE), outCounts, row.names = TRUE, col.names = TRUE, quote = FALSE, sep = "\t")
write.table(log2(counts(dds, normalized = TRUE)), outLogCounts, row.names = TRUE, col.names = TRUE, quote = FALSE, sep = "\t")
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
library("DESeq2")
library("pheatmap")
library("ggplot2")
library("ggrepel")

print('Setting parameters')

rds = snakemake@input[['rds']]
cat(sprintf(c('RDS object: ',rds,'\n')))

rld = snakemake@input[['rld']]
cat(sprintf(c('RLD object: ',rld,'\n')))

Type = snakemake@params[['linear_model']]
cat(sprintf(c('Type: ',Type,'\n')))

sampleID = snakemake@params[['sample_id']]
cat(sprintf(c('Sample ID: ',sampleID,'\n')))

ma_plot = snakemake@output[['ma_plot']]
cat(sprintf(c('MA plot', ma_plot,'\n')))

out_table = snakemake@output[['table']]
cat(sprintf(c('Summary results table', out_table,'\n')))

panel_ma = snakemake@output[['panel_ma']]
cat(sprintf(c('MA panel', panel_ma,'\n')))

heatmap_plot = snakemake@output[['heatmap_plot']]
cat(sprintf(c('Heatmap plot', heatmap_plot,'\n')))

var_heat = snakemake@output[['var_heat']]
cat(sprintf(c('Variance Heatmap plot', var_heat,'\n')))

pca_plot = snakemake@output[['pca_plot']]
cat(sprintf(c('PCA plot', pca_plot,'\n')))

labels <- snakemake@params[['pca_labels']]
cat(sprintf(c('PCA Labels: ',labels)))

cat(sprintf('Load dds DESeqTransform object'))
dds <- readRDS(rds)

cat(sprintf('Load rlog DESeqTransform object'))
rld <- readRDS(rld)

Dir <- "results/diffexp/pairwise/"

plot_cols <- snakemake@config[['meta_columns_to_plot']]
subset_cols = names(plot_cols)

target <- strsplit(snakemake@params[["contrast"]], "-vs-")[[1]][1]
baseline <- strsplit(snakemake@params[["contrast"]], "-vs-")[[1]][2]
contrast <- c(Type, target, baseline)

upCol = "#FF9999"
downCol = "#99CCFF"
ncCol = "#CCCCCC"
adjp <- 0.01
FC <- 2

parallel <- FALSE
if (snakemake@threads > 1) {
    library("BiocParallel")
    # setup parallelization
    register(MulticoreParam(snakemake@threads))
    parallel <- TRUE
}

# Pairwise PCA Plot
pdf(pca_plot)
plotPCA(rld, intgroup=labels[[1]])
dev.off()

# Pairwise PCA Plot with more than one PCA parameter
if (length(labels)>1) {
  pca_plot2 <- sub("$",paste(contrast[2],"vs",contrast[3],"twoDimensional_pca_plot.pdf", sep = "-"), Dir)
  pcaData <- plotPCA(rld, intgroup=c(labels[[1]], labels[[2]]), returnData=TRUE)
  pdf(pca_plot2, 5, 5)
  percentVar <- round(100 * attr(pcaData, "percentVar"))
  ggplot(pcaData, aes_string("PC1", "PC2", color=labels[[1]], shape=labels[[2]])) +
    geom_point(size=3) +
    xlab(paste0("PC1: ",percentVar[1],"% variance")) +
    ylab(paste0("PC2: ",percentVar[2],"% variance")) +
    coord_fixed()
  dev.off()
}

res <- results(dds, contrast=contrast,  independentFiltering = FALSE, cooksCutoff = Inf)
# shrink fold changes for lowly expressed genes
res <- lfcShrink(dds, contrast=contrast, res=res)

# MA plot - calc norm values yourself to plot with ggplot
# MA plot is log2normalized counts (averaged across all samples) vs. log2FC

# extract normalized counts to calculate values for MA plot
norm_counts <- counts(dds, normalized=TRUE)

## select up regulated genes
forPlot <- as.data.frame(res)
forPlot$log2Norm <- log2(rowMeans(norm_counts))
forPlot$Gene <- rownames(forPlot)

up <- forPlot$padj < adjp & forPlot$log2FoldChange > log2(FC)
sum(up)

## select down regulated genes
down <- forPlot$padj < adjp & forPlot$log2FoldChange < -log2(FC)
sum(down)

# Grab the top 5 up and down regulated genes to label in the volcano plot
if (sum(up)>5) {
  temp <- forPlot[up,]
  upGenesToLabel <- head(rownames(temp[order(-temp$log2FoldChange),], 5))
} else if (sum(up) %in% 1:5) {
  temp <- forPlot[up,]
  upGenesToLabel <- rownames(temp[order(-temp$log2FoldChange),])
}

if (sum(down)>5) {
  temp <- forPlot[down,]
  downGenesToLabel <- head(rownames(temp[order(temp$log2FoldChange),], 5))
} else if (sum(down) %in% 1:5) {
  temp <- forPlot[down,]
  downGenesToLabel <- rownames(temp[order(temp$log2FoldChange),])
}

forPlot$Expression <- ifelse(down, 'down',
                  ifelse(up, 'up','NS'))
forPlot$Expression <- factor(forPlot$Expression, levels=c("up","down","NS"))

# Assign colours to conditions
if (sum(up)==0 & sum(down)==0) {
  colours <- ncCol
} else if (sum(up)==0) {
  colours <- c(downCol, ncCol)
} else if (sum(down)==0) {
  colours <- c(upCol, ncCol)
} else {
  colours <- c(upCol, downCol, ncCol)
}

# Create vector for labelling the genes based on whether genes are DE or not
if (exists("downGenesToLabel") & exists("upGenesToLabel")) {
  genesToLabel <- c(downGenesToLabel, upGenesToLabel)
} else if (exists("downGenesToLabel") & !exists("upGenesToLabel")) {
  genesToLabel <- downGenesToLabel
} else if (!exists("downGenesToLabel") & exists("upGenesToLabel")) {
  genesToLabel <- upGenesToLabel
}

if (exists("genesToLabel")) {
  maPlot <- ggplot(forPlot, mapping=aes(x=log2Norm, y=log2FoldChange, colour=Expression)) +
    geom_point() +
    geom_hline(yintercept=c(-1,1), linetype="dashed", color="black") +
    geom_label_repel(aes(label=ifelse(Gene %in% genesToLabel, as.character(Gene),'')),box.padding=0.1, point.padding=0.5, segment.color="gray70", show.legend=FALSE) +
    scale_colour_manual(values=colours) +
    ggtitle(paste(target, "vs", baseline)) +
    xlab("log2(Normalized counts)") +
    ylab("log2(Fold Change)") +
    theme(plot.title = element_text(hjust=0.5))
} else {
  maPlot <- ggplot(forPlot, mapping=aes(x=log2Norm, y=log2FoldChange, colour=Expression)) +
    geom_point() +
    geom_hline(yintercept=c(-1,1), linetype="dashed", color="black") +
    scale_colour_manual(values=colours) +
    ggtitle(paste(target, "vs", baseline)) +
    xlab("log2(Normalized counts)") +
    ylab("log2(Fold Change)") +
    theme(plot.title = element_text(hjust=0.5))
}

# MA plot
pdf(ma_plot)
print({
  maPlot
})
dev.off()

# P-histogram
p_hist = snakemake@output[['p_hist']]
pdf(p_hist)
hist(res$pvalue[res$baseMean > 1], breaks = 0:20/20, col = "grey50", border = "white", main='P values for genes with mean normalized count larger than 1',xlab='pvalue')
dev.off()

#panel ma plot
pdf(panel_ma)
par(mfrow=c(2,2),mar=c(2,2,1,1) +0.1)
ylim <- c(-2.5,2.5)
resGA <- results(dds, contrast=contrast, lfcThreshold=.5, altHypothesis="greaterAbs")
resLA <- results(dds, contrast=contrast, lfcThreshold=.5, altHypothesis="lessAbs")
resG <- results(dds, contrast=contrast, lfcThreshold=.5, altHypothesis="greater")
resL <- results(dds, contrast=contrast, lfcThreshold=.5, altHypothesis="less")
drawLines <- function() abline(h=c(-.5,.5),col="dodgerblue",lwd=2)
plotMA(resGA, ylim=ylim); drawLines()
plotMA(resLA, ylim=ylim); drawLines()
plotMA(resG, ylim=ylim); drawLines()
plotMA(resL, ylim=ylim); drawLines()
mtext(resG@elementMetadata$description[[2]], outer=T, cex=.6,line=-1)
dev.off()

# Heatmap of top 50 genes
topGenes <- head(order(res$padj),50)

df <- as.data.frame(colData(rld))
if (length(subset_cols)==1) {
  annot <- as.data.frame(cbind(rownames(df), paste(df[[subset_cols[1]]])))
  names(annot) <- c("SampleID", subset_cols[1])
  rownames(annot) <- annot$SampleID
  annot$SampleID <- NULL
} else {
  annot <- df[,subset_cols]
}

pdf(heatmap_plot)
pheatmap(assay(rld)[topGenes,], cluster_rows=T, scale="row", fontsize=6,fontsize_row=6,fontsize_col=6,show_rownames=T, cluster_cols=T, annotation_col=annot, labels_col=as.character(rownames(df)), main = paste("Heatmap of top 50 DE genes:", contrast[2], "vs", contrast[3]))
dev.off()

# Variance Heatmap
pdf(var_heat)
topVarGenes <- head(order(rowVars(assay(rld)), decreasing = TRUE), 50)
mat  <- assay(rld)[ topVarGenes, ]
mat  <- mat - rowMeans(mat)
pheatmap(mat, scale="row", annotation_col = annot,fontsize=6, main = paste("Heatmap of top 50 most variable genes:", contrast[2], "vs", contrast[3]))
dev.off()

# sort by p-value
res <- res[order(res$padj),]
write.table(as.data.frame(res), file=out_table, quote=FALSE, sep='\t')
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
library(DESeq2)
library(dplyr)
library(ggplot2)

# Generate subdata 
counts <- snakemake@input[['counts']]

metadata <- snakemake@params[['samples']]

sampleID <- snakemake@params[['sample_id']]

hist <- snakemake@output[['histogram']]

numGenes <- snakemake@output[['numGenes']]

permList <- snakemake@output[['permList']]

Type <- snakemake@params[['linear_model']]

contrast <- snakemake@params[['contrast']]

baseline <- contrast[[2]]

target <- contrast[[1]]

md <- read.delim(file=metadata, sep = "\t", stringsAsFactors = FALSE)
md <- md[order(md[[sampleID]]),]

# Read in counts table
subdata <- read.table(counts, header=TRUE, row.names=1, sep="\t", check.names=FALSE)
subdata <- subdata[,order(colnames(subdata))]

# Extract only the Types that we want in further analysis & only the PP_ID and Status informative columns
md <- select(md, sampleID, Type)
md <- filter(md, !!as.name(Type) == baseline | !!as.name(Type) == target , !!as.name(sampleID) %in% colnames(subdata))

# Keep only the PP_IDs of the types we have chosen in the metadata table above
rownames(md) <- md[[sampleID]]
md[[sampleID]] <- NULL
keep <- colnames(subdata)[colnames(subdata) %in% rownames(md)]
subdata <- subdata[, keep]
dim(subdata)

# Check
stopifnot(rownames(md)==colnames(subdata))

# Get the number of Cancer samples and number of HD samples from md table
num1 = sum(md[[Type]] == baseline)
num2 = sum(md[[Type]] == target)

# Create a vector for both HD and Can, with a 1 for every HD and a 2 for every Cancer sample
One_vector = rep(c(1), times = num1)
Two_vector = rep(c(2), times = num2)

# Permutation
# Concatenate the HD and Can vector to create your "start group" vector
start_group = c(One_vector, Two_vector)
cutoff=0.01
number_of_diff_genes=c()
group_list = list()
number_of_try = 10

for (i in 1:number_of_try)
{
  print(i)
  group = data.frame(type=factor(sample(start_group)))

  dds = DESeqDataSetFromMatrix(countData = subdata,
                               colData = group,
                               design = ~ type)

  # Extract normalized counts
  dds = estimateSizeFactors(dds)

  # Remove genes with zero counts over all samples
  dds <- dds[ rowSums(counts(dds)) >= 1, ]

  # Make sure of reference, set it by rlevel
  dds$type = relevel(dds$type, ref = 1)

  # The standard differential expression analysis steps are wrapped into a single function, DESeq
  dds = DESeq(dds)

  # Extract results
  res = results(dds, contrast = c("type", "1", "2"), independentFiltering = FALSE,cooksCutoff = Inf)

  tmp=sum(res$padj < cutoff, na.rm=TRUE)
  number_of_diff_genes = c(number_of_diff_genes,tmp)
  group_list[[i]] <- group

}

# Obtain the number of genes that meet padj<0.01 for reference line in histogram
dds <- DESeqDataSetFromMatrix(countData=subdata,
                              colData=md,
                              design= as.formula(paste('~',Type)))

dds <- estimateSizeFactors(dds)

# Remove uninformative columns
dds <- dds[ rowSums(counts(dds)) >= 1, ]

# Normalization and pre-processing
dds <- DESeq(dds)

# Extract results and the number of significant genes with padj<0.01
results = results(dds, contrast = c(Type, target, baseline), independentFiltering = FALSE,cooksCutoff = Inf)
numSig <- sum(results$padj < cutoff, na.rm=TRUE)
number_of_diff_genes <- as.data.frame(number_of_diff_genes)
names(number_of_diff_genes) <- "NumDiffGenes"
number_of_diff_genes$Actual <- numSig

p <- ggplot(number_of_diff_genes, aes(x=NumDiffGenes)) +
  geom_histogram(bins=100) +
  geom_vline(data=number_of_diff_genes, mapping=aes(xintercept = numSig, color = "Correct Labels"), 
             linetype="longdash", size=0.6, show.legend = T) +
  scale_color_manual(values = "gray75", name = "Number of DE genes") +
  ggtitle(paste(number_of_try, "Random Permutations:", baseline, "vs", target)) +
  xlab("Number of significant genes") +
  theme(aspect.ratio=1,
        plot.title = element_text(hjust = 0.5),
        legend.title = element_text(size=10, hjust = 0.5))

pdf(hist)
print({
  p
})
dev.off()

df <- data.frame(stringsAsFactors = FALSE)

for (i in 1:number_of_try) {
  if (i==1) {
    df = group_list[[i]]
  }
  else {
    df = cbind(df, group_list[[i]])
  }
  colnames(df)[i] = paste("perm",i, sep = "_")
}

write.csv(number_of_diff_genes, numGenes)
write.csv(df, permList)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
library("DESeq2")
library("reshape2")
library("cowplot")
library("limma")
library("vsn")
library("genefilter")
library("ggplot2")
library("dplyr")
library("RColorBrewer")
library("pheatmap")
library("hexbin")

# output files
MDS_out <- snakemake@output[['mds_plot']]
MDS_table <- snakemake@output[['mds_table']]
heatmap_out <- snakemake@output[['heatmap_plot']]
sd_out <- snakemake@output[['sd_plot']]
normCounts_out <- snakemake@output[['rlogCounts_plot']]
normCounts_fac <- snakemake@output[['rlogCounts_fac_plot']]
rawCounts_out <- snakemake@output[['counts_plot']]
rawCounts_fac <- snakemake@output[['counts_fac_plot']]

# parameters
sampleID <- snakemake@params[['sample_id']]
Type = snakemake@params[['linear_model']]
plot_cols <- snakemake@config[['meta_columns_to_plot']]
subset_cols = names(plot_cols)

# color palette
colors <- snakemake@params[['colors']]
discrete <- snakemake@params[['discrete']]

# DESeq2 objects
rld <- snakemake@input[['rld']]
dds <- snakemake@input[['rds']]

rld <- readRDS(rld)
dds <- readRDS(dds)

# function to grab the ggplot2 colours
gg_color_hue <- function(n) {
  hues = seq(15, 375, length = n + 1)
  hcl(h = hues, l = 65, c = 100)[1:n]
}

rawCounts <- counts(dds, normalized=FALSE)
md <- as.data.frame(colData(rld))
md$SampleID <- rownames(md)

if(colors[[1]] !='NA' & discrete[[1]] =='NA'){
    if (brewer.pal.info[colors[[1]],]$maxcolors >= length(unique(md[[Type]]))) {
        pal <- brewer.pal(length(unique(md[[Type]])),name=colors[[1]])
    } 
} else if(discrete[[1]] != 'NA' & length(discrete)==length(unique(md[[Type]]))){
        pal <- unlist(discrete)
} else {
        pal <- gg_color_hue(length(unique(md[[Type]])))
}


df1 <- melt(rawCounts) %>%
  dplyr::rename(Gene=Var1) %>%
  dplyr::rename(SampleID=Var2) %>%
  dplyr::rename(counts=value)

iv <- match(df1$SampleID, md$SampleID)
df1$Condition <- paste(md[iv,][[Type]])
df1$SampleID <- factor(df1$SampleID, levels=unique(md$SampleID))

# aesthetic for plots
dodge <- position_dodge(width = 0.6)
theme_update(plot.title = element_text(hjust = 0.5))

p1 <- ggplot(data=df1, mapping=aes(x=SampleID, y=counts, fill=Condition)) +
  geom_violin(width=0.7) +
  geom_boxplot(width=0.2, outlier.colour=NA, position = dodge, color="gray28") +
  scale_y_log10() +
  scale_fill_manual(values=pal) +
  theme(axis.text.x = element_text(hjust=1, angle=45, size=6))

# width of pdf to ensure all sampleIDs are visible when exported to pdf
# This was generated with a use case of 16 samples and a width of 7 fitting well, the +8 is to account for the margins
width <- 7/24*(nrow(md)+8)

# raw counts boxplot
pdf(rawCounts_out, width, 5)
print({
  p1
})
dev.off()

# faceted by condition
p2 <- ggplot(data=df1, mapping=aes(x=SampleID, y=counts, fill=Condition)) +
  geom_violin(width=0.7) +
  geom_boxplot(width=0.2, outlier.colour=NA, position = dodge, color="gray28") +
  scale_y_log10() +
  scale_fill_manual(values=pal) +
  theme(axis.text.x = element_text(hjust=1, angle=45, size=4)) +
  facet_wrap(~Condition)

pdf(rawCounts_fac, 2*width, 5)
print({
  plot_grid(p1, p2)
})
dev.off()

# Run same analysis for log2-transformed normalized counts
df2 <- melt(assay(rld)) %>%
  dplyr::rename(Gene=Var1) %>%
  dplyr::rename(SampleID=Var2) %>%
  dplyr::rename(normCounts=value)

# Add Condition information to this dataframe
iv <- match(df2$SampleID, md$SampleID)
df2$Condition <- paste(md[iv,][[Type]])
df2$SampleID <- factor(df2$SampleID, levels=unique(md$SampleID))

p1 <- ggplot(data=df2, mapping=aes(x=SampleID, y=normCounts, fill=Condition)) +
  geom_violin(width=0.7) +
  geom_boxplot(width=0.2, outlier.colour=NA, position = dodge, color="gray28") +
  scale_fill_manual(values=pal) +
  theme(axis.text.x = element_text(hjust=1, angle=45, size=6)) +
  ylab("regularized log expression")

# raw counts boxplot
pdf(normCounts_out, width, 5)
print({
  p1
})
dev.off()

# faceted by condition
p2 <- ggplot(data=df2, mapping=aes(x=SampleID, y=normCounts, fill=Condition)) +
  geom_violin(width=0.7) +
  geom_boxplot(width=0.2, outlier.colour=NA, position = dodge, color="gray28") +
  scale_fill_manual(values=pal) +
  theme(axis.text.x = element_text(hjust=1, angle=45, size=4)) +
  facet_wrap(~Condition) +
  ylab("regularized log expression")

pdf(normCounts_fac, 2*width, 5)
print({
  plot_grid(p1, p2)
})
dev.off()

# Standard deviation vs. mean
ntd <- normTransform(dds)

pdf(sd_out)
meanSdPlot(assay(ntd))
dev.off()

# Generate annotation column for heatmap
if (length(subset_cols)==1) {
  annot <- as.data.frame(cbind(rownames(md), paste(md[[subset_cols[1]]])))
  names(annot) <- c("SampleID", subset_cols[1])
  rownames(annot) <- annot$SampleID
  annot$SampleID <- NULL
} else {
  annot <- md[,subset_cols]
}

hm <- pheatmap(assay(rld), show_rownames=F, clustering_distance_rows = "correlation", 
         clustering_distance_cols = "correlation", clustering_method = "average", 
         annotation_col = annot, scale = "row", 
         main="Unsupervised heatmap of all gene counts across samples",
         fontsize_row=4, fontsize_col=6, fontsize=8,
         color = colorRampPalette(c("navy", "white", "firebrick3"))(50))

save_pheatmap_pdf <- function(x, filename) {
  stopifnot(!missing(x))
  stopifnot(!missing(filename))
  pdf(filename)
  grid::grid.newpage()
  grid::grid.draw(x$gtable)
  dev.off()
}

save_pheatmap_pdf(hm, heatmap_out)

# use plotMA function from limma, then extract data from this variable to plot with ggplot2
p <- plotMDS(assay(rld), top = 1000)
df <- data.frame(x=p$x, y=p$y, name=names(p$x))
iv <- match(df$name, md$SampleID)
df$Condition <- paste(md[iv,][[Type]])

pdf(MDS_out)
ggplot(data=df, mapping=aes(x=x,y=y)) +
  geom_point(size=3, colour = "black", show.legend = TRUE) +
  geom_point(aes(color=Condition), size=2.2) +
  scale_colour_manual(values=pal) +
  xlab("Leading logFC dim 1") +
  ylab("Leading logFC dim 2") +
  ggtitle("MDS Plot")
dev.off()

# Export the table for MDS
write.table(df, file=MDS_table, sep="\t", quote=F, row.names=FALSE)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
library("data.table")
library("qvalue")

stats_table <- snakemake@input[['stats_table']]
cat(sprintf(c('stats table: ', stats_table, '\n')))


qplot <- snakemake@output[['qplot']]
cat(sprintf(c('Qvalue Output: ', qplot, '\n')))

qhist <- snakemake@output[['qhist']]
cat(sprintf(c('Qvalue hist Output: ', qhist, '\n')))

out_table = snakemake@output[['table']]
cat(sprintf(c('Summary results table', out_table,'\n')))

stats_frame = read.table(stats_table, row.names=1, sep='\t', check.names=F)

qobj = qvalue(p=stats_frame$pvalue, fdr.level=T)

stats_frame$qvalues = qobj$qvalues
stats_frame$lfdr = qobj$lfdr
write.table(as.data.frame(stats_frame), file=out_table, quote=FALSE, sep='\t')

pdf(qplot)
plot(qobj)
dev.off()

pdf(qhist)
hist(qobj)
dev.off()
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
args <- commandArgs()

annoFile = snakemake@params[['anno']]

biotypes <- snakemake@params[['biotypes']]

countsFile <- snakemake@input[['countsFile']]

mito <- snakemake@params[['mito']]

##----------load counts------------#
print("Loading counts table")
print(countsFile)

## check if an rda file or tab sep
if(grepl('rda|RData|Rdata',countsFile)){
    counts <- get(load(file=countsFile))
}
if(grepl('txt|tsv',countsFile)){
    counts <- read.delim(file=countsFile)
}

##----------load counts------------#
print("Loading counts table")
print(countsFile)

## must be a tsv or txt tab sep file

counts <- read.delim(file=countsFile)

##----------load anno------------#
print("Loading annotation table")
print(annoFile)

## check if an rda file or tab sep
if(grepl('rda|RData|Rdata',annoFile)){
    anno <- get(load(file=annoFile))
}
if(grepl('txt|tsv',annoFile)){
    anno <- read.delim(file=annoFile)
}

if(strsplit(biotypes, split='\\,')[[1]]!=""){
    anno.sub <- anno[paste(anno$gene_biotype) %in% strsplit(biotypes, split='\\,')[[1]] ,]
    counts.sub <- counts[paste(counts$Genes) %in% unique(paste(anno.sub$external_gene_name)) , ]
}else{
    print("no biotypes provided")
    counts.sub <- counts
}

if(mito==1){
    print("tossing MT- genes")
    mito_index <- grep("^MT-", anno$external_gene_name, ignore.case=TRUE)
    mito_genes <- anno[mito_index, ]
    counts.sub <- counts.sub[ !(counts.sub$Genes %in% mito_genes$external_gene_name), ]
}

write.table(counts.sub, file=sub(".txt", ".filt.txt", countsFile), sep="\t", quote=FALSE, row.names=FALSE, col.names=TRUE)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
library(ggplot2)
library(ggrepel)

degFile = snakemake@input[['degFile']]

FC <- snakemake@params[['FC']]

adjp <- snakemake@params[['adjp']]

contrast <- snakemake@params[['contrast']]

target <- strsplit(contrast, "-vs-")[[1]][1]

baseline <- strsplit(contrast, "-vs-")[[1]][2]

volcano_plot=snakemake@output[['volcano_plot']]

upCol = "#FF9999"
downCol = "#99CCFF"
ncCol = "#CCCCCC"

##----------load differentially expressed genes --------#
print("Loading differential expressed gene table")
print(degFile)

## check if an rda file or tab sep
deg <- read.delim(file=degFile)

head(deg)
dim(deg)

## set all NA missing p-values to 1 (NA is DESeq2 default)
deg[is.na(deg$padj), "padj"] <- 1

## select up regulated genes
up <- deg$padj < adjp & deg$log2FoldChange > log2(FC)
sum(up)

## select down regulated genes
down <- deg$padj < adjp & deg$log2FoldChange < -log2(FC)
sum(down)

# Grab the top 5 up and down regulated genes to label in the volcano plot
if (sum(up)>5) {
  upGenesToLabel <- head(rownames(deg[up,]), 5)
} else if (sum(up) %in% 1:5) {
  upGenesToLabel <- rownames(deg[up,])
}

if (sum(down)>5) {
  downGenesToLabel <- head(rownames(deg[down,]), 5)
} else if (sum(down) %in% 1:5) {
  downGenesToLabel <- rownames(deg[down,])
}

## calculate the -log10(adjp) for the plot
deg$log10padj <- -log10(deg$padj)

# assign up and downregulated genes to a category so that they can be labeled in the plot
deg$Expression <- ifelse(down, 'down',
                  ifelse(up, 'up','NS'))
deg$Expression <- factor(deg$Expression, levels=c("up","down","NS"))

# Assign colours to conditions
if (sum(up)==0 & sum(down)==0) {
  colours <- ncCol
} else if (sum(up)==0) {
  colours <- c(downCol, ncCol)
} else if (sum(down)==0) {
  colours <- c(upCol, ncCol)
} else {
  colours <- c(upCol, downCol, ncCol)
}

# Set all Infinity values to max out at 500 so that all points are contained in the plot
if ("Inf" %in% deg$log10padj) {
  deg$log10padj[deg$log10padj=="Inf"] <- max(deg[is.finite(deg$log10padj),"log10padj"]) + 2
}

deg$Gene <- rownames(deg)

# Assign genes to label based on whether genes are DE or not
if (exists("downGenesToLabel") & exists("upGenesToLabel")) {
  genesToLabel <- c(downGenesToLabel, upGenesToLabel)
} else if (exists("downGenesToLabel") & !exists("upGenesToLabel")) {
  genesToLabel <- downGenesToLabel
} else if (!exists("downGenesToLabel") & exists("upGenesToLabel")) {
  genesToLabel <- upGenesToLabel
}

if (exists("genesToLabel")) {
  p <- ggplot(data=deg, mapping=aes(x=log2FoldChange, y=log10padj, colour=Expression)) +
    geom_vline(xintercept = c(-log2(FC),log2(FC)), linetype="dashed", colour="gray45") +
    geom_hline(yintercept = -log10(adjp), linetype="dashed", colour="gray45") +
    geom_label_repel(aes(label=ifelse(Gene %in% genesToLabel, as.character(Gene),'')),box.padding=0.1, point.padding=0.5, segment.color="gray70", show.legend=FALSE) +
    geom_point() +
    ylab("-log10(FDR)") +
    xlab("log2(Fold Change)") +
    ggtitle(paste(target, "vs", baseline)) +
    scale_colour_manual(values=colours) +
    theme(plot.title = element_text(hjust = 0.5, face="plain"),
          axis.title.x = element_text(size=11),
          axis.title.y = element_text(size=11),
          panel.background = element_blank(),
          axis.line = element_line(colour = "gray45"),
          legend.key = element_rect(fill = "gray96"),
          legend.text = element_text(size = 10))
} else {
  p <- ggplot(data=deg, mapping=aes(x=log2FoldChange, y=log10padj, colour=Expression)) +
    geom_vline(xintercept = c(-log2(FC),log2(FC)), linetype="dashed", colour="gray45") +
    geom_hline(yintercept = -log10(adjp), linetype="dashed", colour="gray45") +
    geom_point() +
    geom_vline(xintercept = c(-log2(FC),log2(FC)), linetype="dashed", colour="gray45") +
    geom_hline(yintercept = -log10(adjp), linetype="dashed", colour="gray45") +
    ylab("-log10(FDR)") +
    xlab("log2(Fold Change)") +
    ggtitle(paste(target, "vs", baseline)) +
    scale_colour_manual(values=colours) +
    theme(plot.title = element_text(hjust = 0.5, face="plain"),
          axis.title.x = element_text(size=11),
          axis.title.y = element_text(size=11),
          panel.background = element_blank(),
          axis.line = element_line(colour = "gray45"),
          legend.key = element_rect(fill = "gray96"),
          legend.text = element_text(size = 10))
}


pdf(volcano_plot)
print({
  p
})
dev.off()
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
library(Glimma)
library(limma)
library(DESeq2)

project_id = snakemake@params[['project_id']]

rds = snakemake@input[['rds']]
cat(sprintf(c('RDS object: ',rds,'\n')))


out_path = file.path(getwd(),'results','diffexp')
dir.create(out_path)

rds = readRDS(rds)
groups.df = as.data.frame(colData(rds))
glMDSPlot(rds, top = 1000, groups=groups.df,path=out_path,html=paste(project_id,'mds_plot',sep='.'),launch=FALSE)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
library(Glimma)
library(limma)
library(DESeq2)
library(stringr)

condition = snakemake@params[['condition']]
cat(sprintf(c('Condition: ',condition,'\n')))

ma_plot_ = snakemake@output[['ma_plot']]
volcano_plot_ = snakemake@output[['volcano_plot']]
ma_plot = str_sub(tail(strsplit(ma_plot_,'/')[[1]],n=1),1,-6)
volcano_plot = str_sub(tail(strsplit(volcano_plot_,'/')[[1]],n=1),1,-6)

target <- strsplit(as.character(snakemake@params[["contrast"]]), "-vs-")[[1]][1]
baseline <- strsplit(as.character(snakemake@params[["contrast"]]), "-vs-")[[1]][2]
contrast = c(condition, target, baseline)
rds = snakemake@input[['rds']]
cat(sprintf(c('RDS object: ',rds,'\n')))

out_path = file.path(getwd(),'results','diffexp')
dir.create(out_path)
print(out_path)
rds = readRDS(rds)
groups.df = as.data.frame(colData(rds))


#### by contrasts
res <- results(rds, contrast=contrast)
res$padj[is.na(res$padj)] = 1

rnaseq = as.data.frame(counts(rds, normalized=T))
genes = as.data.frame(row.names(res))
colnames(genes) = 'GeneID'

status_frame = res[,c('log2FoldChange','padj')]
status_frame['status'] = 0
status_frame$padj[is.na(status_frame$padj)] = 1
status_frame[status_frame$padj<0.05 & status_frame$log2FoldChange < 0 ,'status'] = -1
status_frame[status_frame$padj<0.05 & status_frame$log2FoldChange > 0 ,'status'] = 1

glMDPlot(res, anno=genes, status=status_frame$status, samples=colnames(rnaseq), 
         counts=log2(rnaseq + 0.0001),
        groups=groups.df[[condition]], main=strsplit(res@elementMetadata$description[2],': ')[[1]][2],
         transform=F, side.ylab='Log2-expression',launch=FALSE,side.main='GeneID', html = ma_plot, path=out_path)

## Volcano plot
glXYPlot(x=res$log2FoldChange, y=-log10(res$pvalue), xlab="logFC", ylab="logodds",path=out_path,
         status=status_frame$status, launch=FALSE,counts=log2(rnaseq + 0.0001), groups=groups.df[[condition]],
         anno=genes, main=strsplit(res@elementMetadata$description[2],': ')[[1]][2], html = volcano_plot)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
degFile = snakemake@input[['degFile']]

assembly <- snakemake@params[['assembly']]

FC <- snakemake@params[['FC']]

adjp <- snakemake@params[['adjp']]

printTree <- snakemake@params[['printTree']]

library(GO.db)
library(topGO)
library(ggplot2)
library(RColorBrewer)
library(biomaRt)
library(GenomicFeatures)
library(Rgraphviz)

##----------load differentially expressed genes --------#
print("Loading differential expressed gene table")
print(degFile)

if(grepl('txt$|tsv$',degFile)){
    deg <- read.delim(file=degFile,header=TRUE,sep="\t")
}

##---------load correct Biomart------------------------#
print(getwd())
if (assembly == "hg38") {
    organismStr <- "hsapiens"
    geneID2GO <- get(load("./anno/biomaRt/hg38.Ens_90.biomaRt.GO.external.geneID2GO.RData"))
    xx <- get(load("./anno/biomaRt/GO.db.Term.list.rda"))
}
if (assembly == "mm10") {
    organismStr <- "mmusculus"
    geneID2GO <- get(load("./anno/biomaRt/mm10.Ens_78.biomaRt.geneAnno.Rdata.external.geneID2GO.RData"))
    xx <- get(load("./anno/biomaRt/GO.db.Term.list.rda"))
}

##-----------------------------------Functions--------------------------------------#
runGO <- function(geneList,xx=xx,otype,setName){
    setLength       <- sum(as.numeric(levels(geneList))[geneList]) 
    fname           <- paste(Dir, paste(setName, otype, "GO.txt", sep="_"), sep="/")
    GOData          <- new("topGOdata", ontology=otype, allGenes=geneList, annot = annFUN.gene2GO, gene2GO = geneID2GO)
    resultFisher    <- runTest(GOData, algorithm = "classic", statistic = "fisher")## statistical test for topGO
    x               <- GenTable(GOData, classicFisher=resultFisher, topNodes=length(names(resultFisher@score)))## make go table for all terms
    x               <- data.frame(x)
    pVal            <- data.frame(pval=signif(resultFisher@score, 6)) ## get unrounded pvalue
    x$enrich        <- x$Significant/x$Expected ## calculate enrichment based on what you expect by chance
    x$p.unround     <- pVal[x$GO.ID,"pval"]## put unrounded pvalue in the table
    x$p.adj         <- signif(p.adjust(x$p.unround, method="BH"), 6)## calculate the adjusted pvalue with Benjamini & Hochberg correction
    x$log.p.adj     <- -log10(x$p.adj) ## convert adjusted p value to -log10 for plot magnitude
    #x$Term.full     <- sapply(x$GO.ID, FUN=function(n){Term(xx[[n]])}) ## get the full term name
    x <- x[order(x$GO.ID),]
    write.table(x, file=fname, sep="\t", col.names=TRUE, quote=FALSE, row.names=FALSE) ## save the table
    ## you can print the tree if you want, but since I keep the list of all of them skip
    if(printTree>0){
        printGraph(GOData,## make the tree for the go data
                   resultFisher,
                   firstSigNodes = 5,
                   fn.prefix = sub("_GO.txt$", "", fname),
                   useInfo = "all",
                   pdfSW = TRUE
                   )
    }
    return(x)  
}

## function to make barplot of -log10 adjusted pvalues colored by enrichment

drawBarplot <- function(go, ontology, setName){
    go <- go[!go$p.adj > 0.01,]
    if(nrow(go)>1){
        #go$Term.full <- make.unique(paste(sapply(strsplit(as.character(substring(go$Term.full,1,50)), "\\,"), `[`, 1)))
        go$Term <- make.unique(paste(sapply(strsplit(as.character(substring(go$Term,1,50)), "\\,"), `[`, 1)))
        print(setName)
        go <- go[with(go, order(p.adj, -enrich)),]
        ## Currently there is a discrepency between xx and x, so we only use Term right now, not Term.full
        #go$Term.full <-factor(paste(go$Term.full), levels=rev(paste(go$Term.full))) ## sort table by adjusted p-value
        go$Term <-factor(paste(go$Term), levels=rev(paste(go$Term))) ## sort table by adjusted p-value
        ptitle <- paste(ontology, setName) ## plot title
        ptitle <- gsub("^.*/","",ptitle)
        pfname <- paste(setName,ontology,"pdf",sep=".")## name of png file
        if(nrow(go) < 20 ){
            toprange <- 1:nrow(go)
        }else{
            toprange <- 1:20
        }
        top <- go[toprange,]
        col <- colorRampPalette(c("white","navy"))(16)   
        pdf(file=paste(Dir, pfname, sep="/"),height=5,width=7)
        print({
           p <- ggplot(top, aes(y=log.p.adj, x=Term, fill=enrich)) + ## ggplot barplot function
               geom_bar(stat="identity",colour="black") +
               ggtitle(ptitle) +
               xlab("") + ylab("-log10(fdr)") +
               scale_fill_gradient(low=col[2], high=col[15], name="enrichment", limits=c(0,ceiling(max(top$enrich))))+
               coord_flip()+
               theme(panel.grid.major = element_line(colour = "grey"), panel.grid.minor = element_blank(), 
                     panel.background = element_blank(), axis.line = element_line(colour = "black"))+
               theme(text = element_text(size=8),
                     axis.text.x = element_text(vjust=1,color="black",size=8),
                     axis.text.y = element_text(color="black",size=8),
                     plot.title=element_text(size=10))   
       })
       dev.off()
    }
}

print("get up genes and make geneList")
up <- deg$padj < adjp & deg$log2FoldChange >= log2(FC)
up <- unique(rownames(deg[up,]))
up <- toupper(up)
all <-unique(names(geneID2GO))
up.geneList <-  factor(as.integer(all %in% up))
names(up.geneList) <- all

up.setsize <- sum(as.numeric(levels(up.geneList))[up.geneList])
print("setsize for significant genes") 
up.setsize

adjplabel <- gsub("^0\\.","",adjp)
comparison <- gsub("\\.tsv$|\\.txt$|\\.rda$|\\.RData$","",degFile)

Dir <- sub("$", "/GOterms", dirname(comparison))
if(!(file.exists(Dir))) {
      dir.create(Dir,FALSE,TRUE)
}


if (up.setsize >= 2){

print("make GO table for the up genes")
go.UP.BP <- runGO(geneList=up.geneList,xx=xx,otype="BP",setName=paste(basename(comparison),"upFC",FC, "adjp", adjp, sep="."))
drawBarplot(go=go.UP.BP,ontology="BP",setName=paste(basename(comparison),"upFC",FC, "adjp", adjp, sep="."))

}else{
up_out = snakemake@output[[grep("diffexp.upFC", snakemake@output)]]
write.table('No Significant Genes', file=up_out)
}

print("get down genes and make geneList")
dn <- deg$padj < adjp & deg$log2FoldChange <= -log2(FC)
dn <- unique(rownames(deg[dn,]))
dn <- toupper(dn)
all <-unique(names(geneID2GO))
dn.geneList <-  factor(as.integer(all %in% dn))
names(dn.geneList) <- all

dn.setsize <- sum(as.numeric(levels(dn.geneList))[dn.geneList])
print("setsize for significant genes") 
dn.setsize

if(dn.setsize >= 2){

print("make GO table for down genes")
go.DN.BP <- runGO(geneList=dn.geneList,xx=xx,otype="BP",setName=paste(basename(comparison),"downFC",FC, "adjp", adjp, sep="."))
print("make barplot for down genes")
drawBarplot(go=go.DN.BP,ontology="BP",setName=paste(basename(comparison),"downFC",FC, "adjp", adjp, sep="."))

}else{
down_out = snakemake@output[[grep("diffexp.downFC", snakemake@output)]]
write.table('No Significant Gene', file=down_out)
}
ShowHide 23 more snippets with no or duplicated tags.

Login to post a comment if you would like to share your experience with this workflow.

Do you know this workflow well? If so, you can request seller status , and start supporting this workflow.

Free

Created: 1yr ago
Updated: 1yr ago
Maitainers: public
URL: https://github.com/maxsonBraunLab/Bulk-RNA-seq-pipeline-SE
Name: bulk-rna-seq-pipeline-se
Version: 1
Badge:
workflow icon

Insert copied code into your website to add a link to this workflow.

Other Versions:
Downloaded: 0
Copyright: Public Domain
License: MIT License
  • Future updates

Related Workflows

cellranger-snakemake-gke
snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...