Clin-mNGS: Automated pipeline for pathogen detection from clinical metagenomic data

public public 1yr ago 0 bookmarks
The Clin-mNGS pipeline is an integrated, open-source, scalable, reproducible, and user-friendly framework scripted using the Snakemake workflow management software. The implementation avoids the hassle of manual installation and configuration of the multiple command-line tools and dependencies and can be deployed on most Linux workstations and clusters. The versions of the implemented tools are made user modifiable. The approach directly screens pathogens from clinical raw reads and generates consolidated reports for each sample.
The pipeline is currently automated to perform in quality check, filtering, host subtraction, assembly of reads into contigs, assembly metrics, relative abundances of bacterial species, antimicrobial resistance genes, plasmid finding, and virulence factors identification.

Code Snippets

4
grep -E "(s__)|(^ID)" $1 | grep -v "t__" | sed 's/^.*s__//g' > $2
Shell From line 4 of scripts/grep.sh
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
import sys
import numpy as np
import matplotlib.ticker as ticker
import scipy.spatial.distance as spd
import scipy.cluster.hierarchy as sph
from scipy import stats
import matplotlib
matplotlib.use('Agg')
matplotlib.rcParams['svg.fonttype'] = 'none'
import pylab
import pandas as pd
from matplotlib.patches import Rectangle
from mpl_toolkits.axes_grid1 import make_axes_locatable
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
try:
    import cPickle as pickle
except:
    import pickle # Python3 compatible (Lauren McIver)
import math

sys.setrecursionlimit(10000)

# samples on rows

class SqrtNorm(matplotlib.colors.Normalize):
    """
    Normalize a given value to the 0-1 range on a square root scale
    """
    def __call__(self, value, clip=None):
        if clip is None:
            clip = self.clip

        result, is_scalar = self.process_value(value)

        result = np.ma.masked_less_equal(result, 0, copy=False)

        self.autoscale_None(result)
        vmin, vmax = self.vmin, self.vmax
        if vmin > vmax:
            raise ValueError("minvalue must be less than or equal to maxvalue")
        elif vmin <= 0:
            raise ValueError("values must all be positive")
        elif vmin == vmax:
            result.fill(0)
        else:
            if clip:
                mask = np.ma.getmask(result)
                result = np.ma.array(np.clip(result.filled(vmax), vmin, vmax),
                                  mask=mask)
            # in-place equivalent of above can be much faster
            resdat = result.data
            mask = result.mask
            if mask is np.ma.nomask:
                mask = (resdat <= 0)
            else:
                mask |= resdat <= 0
            np.copyto(resdat, 1, where=mask)
            np.sqrt(resdat, resdat)
            resdat -= np.sqrt(vmin)
            resdat /= (np.sqrt(vmax) - np.sqrt(vmin))
            result = np.ma.array(resdat, mask=mask, copy=False)
        if is_scalar:
            result = result[0]
        return result

    def inverse(self, value):
        if not self.scaled():
            raise ValueError("Not invertible until scaled")
        vmin, vmax = self.vmin, self.vmax

        if matplotlib.cbook.iterable(value):
            val = np.ma.asarray(value)
            return vmin * np.ma.power((vmax / vmin), val)
        else:
            return vmin * pow((vmax / vmin), value)

    def autoscale(self, A):
        '''
        Set *vmin*, *vmax* to min, max of *A*.
        '''
        A = np.ma.masked_less_equal(A, 0, copy=False)
        self.vmin = np.ma.min(A)
        self.vmax = np.ma.max(A)

    def autoscale_None(self, A):
        ' autoscale only None-valued vmin or vmax'
        if self.vmin is not None and self.vmax is not None:
            return
        A = np.ma.masked_less_equal(A, 0, copy=False)
        if self.vmin is None:
            self.vmin = np.ma.min(A)
        if self.vmax is None:
            self.vmax = np.ma.max(A)

class DataMatrix:
    datatype = 'data_matrix'

    @staticmethod
    def input_parameters( parser ):
        dm_param = parser.add_argument_group('Input data matrix parameters')
        arg = dm_param.add_argument

        arg( '--sep', type=str, default='\t' )
        arg( '--out_table', type=str, default=None,
             help = 'Write processed data matrix to file' )
        arg( '--fname_row', type=int, default=0,
             help = "row number containing the names of the features "
                    "[default 0, specify -1 if no names are present in the matrix")
        arg( '--sname_row', type=int, default=0,
             help = "column number containing the names of the samples "
                    "[default 0, specify -1 if no names are present in the matrix")
        arg( '--metadata_rows', type=str, default=None,
             help = "Row numbers to use as metadata"
                    "[default None, meaning no metadata")
        arg( '--skip_rows', type=str, default=None,
             help = "Row numbers to skip (0-indexed, comma separated) from the input file"
                    "[default None, meaning no rows skipped")
        arg( '--sperc', type=int, default=90,
             help = "Percentile of sample value distribution for sample selection" )
        arg( '--fperc', type=int, default=90,
             help = "Percentile of feature value distribution for sample selection" )
        arg( '--stop', type=int, default=None,
             help = "Number of top samples to select (ordering based on percentile specified by --sperc)" )
        arg( '--ftop', type=int, default=None,
             help = "Number of top features to select (ordering based on percentile specified by --fperc)" )
        arg( '--def_na', type=float, default=None,
             help = "Set the default value for missing values [default None which means no replacement]")

    def __init__( self, input_file, args ):
        self.args = args
        self.metadata_rows =  []
        self.metadata_table = None
        toskip = [int(l) for l in self.args.skip_rows.split(",")]  if self.args.skip_rows else []
        if self.args.metadata_rows:
            self.metadata_rows = list([int(a) for a in self.args.metadata_rows.split(",")])
            mdr = self.metadata_rows[::]
            for t in toskip:
                for i,m in enumerate(mdr):
                    if t <= m:
                        self.metadata_rows[i] -= 1
        if self.metadata_rows:
            header = [self.args.fname_row]+self.metadata_rows if self.args.fname_row > -1 else self.metadata_rows
        else:
            header = self.args.fname_row if self.args.fname_row > -1 else None
        self.table = pd.read_table(
                input_file, sep = self.args.sep, # skipinitialspace = True,
                                  skiprows = sorted(toskip) if isinstance(toskip, list) else toskip,
                                  header = sorted(header) if isinstance(header, list) else header,
                                  index_col = self.args.sname_row if self.args.sname_row > -1 else None
                                    )

        def select( perc, top  ):
            self.table['perc'] = self.table.apply(lambda x: stats.scoreatpercentile(x,perc),axis=1)

            if top <= len(self.table['perc']):
                m = sorted(self.table['perc'])[-top]
            else:
                print('W ftop param value (' + str(top) + ') out of bound (len:' + str(len(self.table['perc'])) + '). Selecting all the values from input.')
                m = sorted(self.table['perc'])[0]

            self.table = self.table[self.table['perc'] >= m ]
            del self.table['perc']

        if not self.args.def_na is None:
            self.table = self.table.fillna( self.args.def_na )

        if self.args.ftop:
            select( self.args.fperc, self.args.ftop )

        if self.args.stop:
            self.table = self.table.T
            select( self.args.sperc, self.args.stop )
            self.table = self.table.T


        # add missing values

    def get_numpy_matrix( self ):
        return np.matrix(self.table)

    #def get_metadata_matrix( self ):
    #    return self.table.columns

    def get_snames( self ):
        #return list(self.table.index)
        return self.table.columns

    def get_fnames( self ):
        #print self.table.columns.names
        #print self.table.columns
        return list(self.table.index)

    def get_averages(self, by_row = True) :
        return self.table.mean(axis = 1 if by_row else 0)

    def save_matrix( self, output_file ):
        self.table.to_csv( output_file, sep = '\t' )

class DistMatrix:
    datatype = 'distance_matrix'

    @staticmethod
    def input_parameters( parser ):
        dm_param = parser.add_argument_group('Distance parameters')
        arg = dm_param.add_argument

        dist_funcs = [  "euclidean","minkowski","cityblock","seuclidean",
                        "sqeuclidean","cosine","correlation","hamming",
                        "jaccard","chebyshev","canberra","braycurtis",
                        "mahalanobis","yule","matching","dice",
                        "kulsinski","rogerstanimoto","russellrao","sokalmichener",
                        "sokalsneath","wminkowski","ward" ]

        arg( '--f_dist_f', type=str, default="correlation",
             help = "Distance function for features [default correlation]")
        arg( '--s_dist_f', type=str, default="euclidean",
             help = "Distance function for sample [default euclidean]")
        arg( '--load_dist_matrix_f', type=str, default=None,
             help = "Load the distance matrix to be used for features [default None].")
        arg( '--load_dist_matrix_s', type=str, default=None,
             help = "Load the distance matrix to be used for samples [default None].")
        arg( '--load_pickled_dist_matrix_f', type=str, default=None,
             help = "Load the distance matrix to be used for features as previously saved as pickle file using hclust2 itself [default None].")
        arg( '--load_pickled_dist_matrix_s', type=str, default=None,
             help = "Load the distance matrix to be used for samples as previously saved as pickle file using hclust2 itself [default None].")
        arg( '--save_pickled_dist_matrix_f', type=str, default=None,
             help = "Save the distance matrix for features to file [default None].")
        arg( '--save_pickled_dist_matrix_s', type=str, default=None,
             help = "Save the distance matrix for samples to file [default None].")

    def __init__( self, data, args = None ):
        self.sdf = args.s_dist_f
        self.fdf = args.f_dist_f

        self.s_cdist_matrix, self.f_cdist_matrix = None, None

        self.numpy_full_matrix = (data if
                type(data) == np.matrixlib.defmatrix.matrix else None)

    def compute_f_dists( self ):
        if args.load_pickled_dist_matrix_f:
            with open( args.load_pickled_dist_matrix_f ) as inp:
                self.f_cdist_matrix = pickle.load( inp )
        elif args.load_dist_matrix_f:
            self.f_cdist_matrix = spd.squareform( np.matrix( pd.read_table( args.load_dist_matrix_f, sep ='\t', index_col = None, header = None  ) ) )
        else:
            dt = self.numpy_full_matrix

            if self.fdf == "spearman":
                dt_ranked = np.matrix([stats.rankdata(d) for d in dt])
                self.f_cdist_matrix = spd.pdist( dt_ranked, "correlation" )
                return

            if self.fdf == 'mhamming':
                dt_ranked = np.matrix([[(0 if l == 0 else 1) for l in np.nditer(d)] for d in dt])
                self.f_cdist_matrix = spd.pdist( dt_ranked, "hamming" )
                return

            if self.fdf == 'lbraycurtis':
                dt_ranked = np.matrix([[(math.log(l) if l else 0.0) for l in np.nditer(d)] for d in dt])
                self.f_cdist_matrix = spd.pdist( dt_ranked, "braycurtis" )
                return

            if self.fdf == "pearson":
                self.fdf = 'correlation'

            self.f_cdist_matrix = spd.pdist( dt, self.fdf )

        if args.save_pickled_dist_matrix_f:
            with open( args.save_pickled_dist_matrix_f, "wb" ) as outf:
                pickle.dump( self.f_cdist_matrix, outf )

    def compute_s_dists( self ):
        if args.load_pickled_dist_matrix_s:
            with open( args.load_pickled_dist_matrix_s ) as inp:
                self.s_cdist_matrix = pickle.load( inp )
        elif args.load_dist_matrix_s:
            self.s_cdist_matrix = spd.squareform( np.matrix( pd.read_table( args.load_dist_matrix_s, sep ='\t', index_col = None, header = None  ) ) )
        else:
            done = False
            dt = self.numpy_full_matrix.transpose()

            if self.sdf == "spearman":
                dt_ranked = np.matrix([stats.rankdata(d) for d in dt])
                self.s_cdist_matrix = spd.pdist( dt_ranked, "correlation" )
                done = True

            if self.sdf == 'mhamming':
                dt_ranked = np.matrix([[(0 if l == 0 else 1) for l in np.nditer(d)] for d in dt])
                self.s_cdist_matrix = spd.pdist( dt_ranked, "hamming" )
                done = True

            if self.sdf == 'lbraycurtis':
                dt_ranked = np.matrix([[(math.log(l) if l else 0.0) for l in np.nditer(d)] for d in dt])
                self.s_cdist_matrix = spd.pdist( dt_ranked, "braycurtis" )
                done = True

            if self.sdf == 'sbraycurtis':
                dt_ranked = np.matrix([[(math.sqrt(l) if l else 0.0) for l in np.nditer(d)] for d in dt])
                self.s_cdist_matrix = spd.pdist( dt_ranked, "braycurtis" )
                done = True

            if self.sdf == "pearson":
                self.sdf = 'correlation'

            if not done:
                self.s_cdist_matrix = spd.pdist( dt, self.sdf )

        if args.save_pickled_dist_matrix_s:
            with open( args.save_pickled_dist_matrix_s, "wb" ) as outf:
                pickle.dump( self.s_cdist_matrix, outf )

    def get_s_dm( self ):
        return self.s_cdist_matrix

    def get_f_dm( self ):
        return self.f_cdist_matrix

class HClustering:
    datatype = 'hclustering'

    @staticmethod
    def input_parameters( parser ):
        cl_param = parser.add_argument_group('Clustering parameters')
        arg = cl_param.add_argument

        linkage_method = [ "single","complete","average",
                           "weighted","centroid","median",
                           "ward" ]
        arg( '--no_fclustering', action='store_true',
             help = "avoid clustering features" )
        arg( '--no_plot_fclustering', action='store_true',
             help = "avoid plotting the feature dendrogram" )
        arg( '--no_sclustering', action='store_true',
             help = "avoid clustering samples" )
        arg( '--no_plot_sclustering', action='store_true',
             help = "avoid plotting the sample dendrogram" )
        arg( '--flinkage', type=str, default="average",
             help = "Linkage method for feature clustering [default average]")
        arg( '--slinkage', type=str, default="average",
             help = "Linkage method for sample clustering [default average]")

    def get_reordered_matrix( self, matrix, sclustering = True, fclustering = True ):
        if not sclustering and not fclustering:
            return matrix

        idx1 = self.sdendrogram['leaves'] if sclustering else None   # !!!!!!!!!!!
        idx2 = self.fdendrogram['leaves'][::-1] if fclustering else None

        if sclustering and fclustering:
            return matrix[idx2,:][:,idx1]
        if fclustering:
            return matrix[idx2,:][:]
        if sclustering: # !!!!!!!!!!!!
            return matrix[:][:,idx1]

    def get_reordered_sample_labels( self, slabels ):
        return [slabels[i] for i in self.sdendrogram['leaves']]

    def get_reordered_feature_labels( self, flabels ):
        return [flabels[i] for i in self.fdendrogram['leaves']]

    def __init__( self, s_dm, f_dm, args = None ):
        self.s_dm = s_dm
        self.f_dm = f_dm
        self.args = args
        self.sclusters = None
        self.fclusters = None
        self.sdendrogram = None
        self.fdendrogram = None

    def shcluster( self, dendrogram = True ):
        self.shclusters = sph.linkage(self.s_dm, method=args.slinkage)
        if dendrogram:
            self.sdendrogram = sph.dendrogram( self.shclusters, no_plot=True )

    def fhcluster( self, dendrogram = True ):
        self.f_dm = [abs(round(i,15)) for i in self.f_dm]
        self.fhclusters = sph.linkage(self.f_dm, method=args.flinkage)
        if dendrogram:
            self.fdendrogram = sph.dendrogram( self.fhclusters, no_plot=True )

    def get_shclusters( self ):
        return self.shclusters

    def get_fhclusters( self ):
        return self.fhclusters

    def get_sdendrogram( self ):
        return self.sdendrogram

    def get_fdendrogram( self ):
        return self.fdendrogram


class Heatmap:
    datatype = 'heatmap'

    bbcyr = {'red':  (  (0.0, 0.0, 0.0),
                        (0.25, 0.0, 0.0),
                        (0.50, 0.0, 0.0),
                        (0.75, 1.0, 1.0),
                        (1.0, 1.0, 1.0)),
             'green': ( (0.0, 0.0, 0.0),
                        (0.25, 0.0, 0.0),
                        (0.50, 1.0, 1.0),
                        (0.75, 1.0, 1.0),
                        (1.0, 0.0, 1.0)),
             'blue': (  (0.0, 0.0, 0.0),
                        (0.25, 1.0, 1.0),
                        (0.50, 1.0, 1.0),
                        (0.75, 0.0, 0.0),
                        (1.0, 0.0, 1.0))}

    bbcry = {'red':  (  (0.0, 0.0, 0.0),
                        (0.25, 0.0, 0.0),
                        (0.50, 0.0, 0.0),
                        (0.75, 1.0, 1.0),
                        (1.0, 1.0, 1.0)),
             'green': ( (0.0, 0.0, 0.0),
                        (0.25, 0.0, 0.0),
                        (0.50, 1.0, 1.0),
                        (0.75, 0.0, 0.0),
                        (1.0, 1.0, 1.0)),
             'blue': (  (0.0, 0.0, 0.0),
                        (0.25, 1.0, 1.0),
                        (0.50, 1.0, 1.0),
                        (0.75, 0.0, 0.0),
                        (1.0, 0.0, 1.0))}

    bcry = {'red':  (   (0.0, 0.0, 0.0),
                        (0.33, 0.0, 0.0),
                        (0.66, 1.0, 1.0),
                        (1.0, 1.0, 1.0)),
             'green': ( (0.0, 0.0, 0.0),
                        (0.33, 1.0, 1.0),
                        (0.66, 0.0, 0.0),
                        (1.0, 1.0, 1.0)),
             'blue': (  (0.0, 1.0, 1.0),
                        (0.33, 1.0, 1.0),
                        (0.66, 0.0, 0.0),
                        (1.0, 0.0, 1.0))}


    my_colormaps = [    ('bbcyr',bbcyr),
                        ('bbcry',bbcry),
                        ('bcry',bcry)]

    #dcols = ['#ca0000','#0087ff','#00ba1d','#cf00ff','#00dbe2','#ffaf00','#0017f4','#006012','#e175ff','#877878','#050505','#b5cf00','#ff8a8a','#aa6400','#50008a','#00ff58']
    dcols = ['#ca0000','#0087ff','#00ba1d','#cf00ff','#00dbe2','#ffaf00','#0017f4','#006012','#e175ff','#877878','#505050','#b5cf00','#ff8a8a','#aa6400','#50008a','#00ff58','#6F1A1A','#FFCC99','#33FF33','#009999','#CC0066','#99004c','#C0C0C0',"#666600","#CCFF99","#660066","#9370DB","#D8BFD8","#BC8F8F","#2F4F4F","#FF6347","#CD5C5C","#FF0000","#00FF00","#000080"]


    @staticmethod
    def input_parameters( parser ):
        hm_param = parser.add_argument_group('Heatmap options')
        arg = hm_param.add_argument

        arg( '--dpi', type=int, default=150,
             help = "Image resolution in dpi [default 150]")
        arg( '-l', '--log_scale', action='store_true',
             help = "Log scale" )
        arg( '--title', type=str, default=None,
             help = "Title of the plot" )
        arg( '--title_fontsize', type=int, default=10,
             help = "Font size of the title" )
        arg( '-s', '--sqrt_scale', action='store_true',
             help = "Square root scale" )
        arg( '--no_slabels', action='store_true',
             help = "Do not show sample labels" )
        arg( '--minv', type=float, default=None,
             help = "Minimum value to display in the color map [default None meaning automatic]" )
        arg( '--maxv', type=float, default=None,
             help = "Maximum value to display in the color map [default None meaning automatic]" )
        arg( '--no_flabels', action='store_true',
             help = "Do not show feature labels" )
        arg( '--max_slabel_len', type=int, default=25,
             help = "Max number of chars to report for sample labels [default 15]" )
        arg( '--max_flabel_len', type=int, default=25,
             help = "Max number of chars to report for feature labels [default 15]" )
        arg( '--flabel_size', type=int, default=10,
             help = "Feature label font size [default 10]" )
        arg( '--slabel_size', type=int, default=10,
             help = "Sample label font size [default 10]" )
        arg( '--fdend_width', type=float, default=1.0,
             help = "Width of the feature dendrogram [default 1 meaning 100%% of default heatmap width]")
        arg( '--sdend_height', type=float, default=1.0,
             help = "Height of the sample dendrogram [default 1 meaning 100%% of default heatmap height]")
        arg( '--metadata_height', type=float, default=.05,
             help = "Height of the metadata panel [default 0.05 meaning 5%% of default heatmap height]")
        arg( '--metadata_separation', type=float, default=.01,
             help = "Distance between the metadata and data panels. [default 0.001 meaning 0.1%% of default heatmap height]")
        arg( '--colorbar_font_size', type=float, default=12,
             help = "Color bar label font size [default 12]")
        arg( '--image_size', type=float, default=8,
             help = "Size of the largest between width and eight size for the image in inches [default 8]")
        arg( '--cell_aspect_ratio', type=float, default=1.0,
             help = "Aspect ratio between width and height for the cells of the heatmap [default 1.0]")
        col_maps = ['Accent', 'Blues', 'BrBG', 'BuGn', 'BuPu', 'Dark2', 'GnBu',
                    'Greens', 'Greys', 'OrRd', 'Oranges', 'PRGn', 'Paired',
                    'Pastel1', 'Pastel2', 'PiYG', 'PuBu', 'PuBuGn', 'PuOr',
                    'PuRd', 'Purples', 'RdBu', 'RdGy', 'RdPu', 'RdYlBu', 'RdYlGn',
                    'Reds', 'Set1', 'Set2', 'Set3', 'Spectral', 'YlGn', 'YlGnBu',
                    'YlOrBr', 'YlOrRd', 'afmhot', 'autumn', 'binary', 'bone',
                    'brg', 'bwr', 'cool', 'copper', 'flag', 'gist_earth',
                    'gist_gray', 'gist_heat', 'gist_ncar', 'gist_rainbow',
                    'gist_stern', 'gist_yarg', 'gnuplot', 'gnuplot2', 'gray',
                    'hot', 'hsv', 'jet', 'ocean', 'pink', 'prism', 'rainbow',
                    'seismic', 'spectral', 'spring', 'summer', 'terrain', 'winter'] + [n for n,c in Heatmap.my_colormaps]
        for n,c in Heatmap.my_colormaps:
            my_cmap = matplotlib.colors.LinearSegmentedColormap(n,c,256)
            pylab.register_cmap(name=n,cmap=my_cmap)
        arg( '-c','--colormap', type=str, choices = col_maps, default = 'bbcry' )
        arg( '--bottom_c', type=str, default = None,
             help = "Color to use for cells below the minimum value of the scale [default None meaning bottom color of the scale]")
        arg( '--top_c', type=str, default = None,
             help = "Color to use for cells below the maximum value of the scale [default None meaning bottom color of the scale]")
        arg( '--nan_c', type=str, default = None,
             help = "Color to use for nan cells  [default None]")



        """
        arg( '--', type=str, default="average",
             help = "Linkage method for feature clustering [default average]")
        arg( '--slinkage', type=str, default="average",
             help = "Linkage method for sample clustering [default average]")
        """

    def __init__( self, numpy_matrix, sdendrogram, fdendrogram, snames, fnames, fnames_meta, args = None ):
        self.numpy_matrix = numpy_matrix
        self.sdendrogram = sdendrogram
        self.fdendrogram = fdendrogram
        self.snames = snames
        self.fnames = fnames
        self.fnames_meta = fnames_meta
        self.ns,self.nf = self.numpy_matrix.shape
        self.args = args

    def make_legend( self, dmap, titles, out_fn ):
        figlegend = plt.figure(figsize=(1+3*len(titles),2), frameon = False)

        gs = gridspec.GridSpec( 1, len(dmap), wspace = 2.0  )

        for i,(d,title) in enumerate(zip(dmap,titles)):
            legax = plt.subplot(gs[i],frameon = False)
            for k,v in sorted(d.items(),key=lambda x:x[1]):
                rect = Rectangle( [0.0, 0.0], 0.0, 0.0,
                                  facecolor = self.dcols[v%len(self.dcols)],
                                  label = k,
                                  edgecolor='b', lw = 0.0)

                legax.add_patch(rect)
        #remove_splines( legax )
            legax.set_xticks([])
            legax.set_yticks([])
            legax.legend( loc = 2, frameon = False, title = title)
        """
                      ncol = legend_ncol, bbox_to_anchor=(1.01, 3.),
                      borderpad = 0.0, labelspacing = 0.0,
                      handlelength = 0.5, handletextpad = 0.3,
                      borderaxespad = 0.0, columnspacing = 0.3,
                      prop = {'size':fontsize}, frameon = False)
        """
        if out_fn:
            figlegend.savefig(out_fn, bbox_inches='tight')

    def draw( self ):

        rat = float(self.ns)/self.nf
        rat *= self.args.cell_aspect_ratio
        x,y = (self.args.image_size,rat*self.args.image_size) if rat < 1 else (self.args.image_size/rat,self.args.image_size)
        fig = plt.figure( figsize=(x,y), facecolor = 'w'  )

        cm = pylab.get_cmap(self.args.colormap)
        # cm = plt.get_cmap(self.args.colormap)
        bottom_col = [  cm._segmentdata['red'][0][1],
                        cm._segmentdata['green'][0][1],
                        cm._segmentdata['blue'][0][1]   ]
        if self.args.bottom_c:
            bottom_col = self.args.bottom_c
        cm.set_under( bottom_col )
        top_col = [  cm._segmentdata['red'][-1][1],
                     cm._segmentdata['green'][-1][1],
                     cm._segmentdata['blue'][-1][1]   ]
        if self.args.top_c:
            top_col = self.args.top_c
        cm.set_over( top_col )

        if self.args.nan_c:
            cm.set_bad( self.args.nan_c  )

        def make_ticklabels_invisible(ax):
            for tl in ax.get_xticklabels() + ax.get_yticklabels():
                 tl.set_visible(False)
            ax.set_xticks([])
            ax.set_yticks([])

        def remove_splines( ax ):
            for v in ['right','left','top','bottom']:
                ax.spines[v].set_color('none')

        def shrink_labels( labels, n ):
            shrink = lambda x: x[:n/2]+" [...] "+x[-n/2:]
            return [(shrink(str(l)) if len(str(l)) > n else l) for l in labels]


        #gs = gridspec.GridSpec( 4, 2,
        #                        width_ratios=[1.0-fr_ns,fr_ns],
        #                        height_ratios=[.03,0.03,1.0-fr_nf,fr_nf],
        #                        wspace = 0.0, hspace = 0.0 )

        fr_ns = float(self.ns)/max([self.ns,self.nf])
        fr_nf = float(self.nf)/max([self.ns,self.nf])

        buf_space = 0.05
        minv = min( [buf_space*8, 8*rat*buf_space] )
        if minv < 0.05:
            buf_space /= minv/0.05
        metadata_height = self.args.metadata_height if type(snames[0]) is tuple and len(snames[0]) > 1 else 0.000001
        gs = gridspec.GridSpec( 6, 4,
                                width_ratios=[ buf_space, buf_space*2, .08*self.args.fdend_width,0.9],
                                height_ratios=[ buf_space, buf_space*2, .08*self.args.sdend_height, metadata_height, self.args.metadata_separation, 0.9],
                                wspace = 0.0, hspace = 0.0 )

        ax_hm = plt.subplot(gs[23], facecolor = bottom_col  )
        ax_metadata = plt.subplot(gs[15], facecolor = bottom_col  )
        ax_hm_y2 = ax_hm.twinx()

        norm_f = matplotlib.colors.Normalize
        if self.args.log_scale:
            norm_f = matplotlib.colors.LogNorm
        elif self.args.sqrt_scale:
            norm_f = SqrtNorm
        minv, maxv = 0.0, None

        maps, values, ndv = [], [], 0
        if type(snames[0]) is tuple and len(snames[0]) > 1:
            metadata = zip(*[list(s[1:]) for s in snames])
            for m in metadata:
                mmap = dict([(v[1],ndv+v[0]) for v in enumerate(list(set(m)))])
                values.append([mmap[v] for v in m])
                ndv += len(mmap)
                maps.append(mmap)
            dcols = []
            mdmat = np.matrix(values)
            while len(dcols) < ndv:
                dcols += self.dcols
            cmap = matplotlib.colors.ListedColormap(dcols[:ndv])
            bounds = [float(f)-0.5 for f in range(ndv+1)]
            imm = ax_metadata.imshow( mdmat, #origin='lower',
                    interpolation = 'nearest',
                                    aspect='auto',
                                    extent = [0, self.nf, 0, self.ns],
                                    cmap=cmap,
                                    vmin=bounds[0],
                                    vmax=bounds[-1],
                                    )
            remove_splines( ax_metadata )
            ax_metadata_y2 = ax_metadata.twinx()
            ax_metadata_y2.set_ylim(0,len(self.fnames_meta))
            ax_metadata.set_yticks([])
            ax_metadata_y2.set_ylim(0,len(self.fnames_meta))
            ax_metadata_y2.tick_params(length=0)
            ax_metadata_y2.set_yticks(np.arange(len(self.fnames_meta))+0.5)
            ax_metadata_y2.set_yticklabels(self.fnames_meta[::-1], va='center',size=self.args.flabel_size)
        else:
            ax_metadata.set_yticks([])

        ax_metadata.set_xticks([])

        im = ax_hm.imshow( self.numpy_matrix, #origin='lower',
                                interpolation = 'nearest',  aspect='auto',
                                extent = [0, self.nf, 0, self.ns],
                                cmap=cm,
                                vmin=self.args.minv,
                                vmax=self.args.maxv,
                                norm = norm_f( vmin=minv if minv > 0.0 else None, vmax=maxv)
                                )

        #ax_hm.set_ylim([0,800])
        ax_hm.set_xticks(np.arange(len(list(snames)))+0.5)
        if not self.args.no_slabels:
            snames_short = shrink_labels( list([s[0] for s in snames]) if type(snames[0]) is tuple else snames, self.args.max_slabel_len )
            ax_hm.set_xticklabels(snames_short,rotation=90,va='top',ha='center',size=self.args.slabel_size)
        else:
            ax_hm.set_xticklabels([])
        ax_hm_y2.set_ylim([0,self.ns])
        ax_hm_y2.set_yticks(np.arange(len(fnames))+0.5)
        if not self.args.no_flabels:
            fnames_short = shrink_labels( fnames, self.args.max_flabel_len )
            ax_hm_y2.set_yticklabels(fnames_short,va='center',size=self.args.flabel_size)
        else:
            ax_hm_y2.set_yticklabels( [] )
        ax_hm.set_yticks([])
        remove_splines( ax_hm )
        ax_hm.tick_params(length=0)
        ax_hm_y2.tick_params(length=0)
        #ax_hm.set_xlim([0,self.ns])
        ax_cm = plt.subplot(gs[3], facecolor = 'r', frameon = False)
        #fig.colorbar(im, ax_cm, orientation = 'horizontal', spacing = 'proportional', format = ticker.LogFormatterMathtext() )
        cbar = fig.colorbar(im, ax_cm, orientation = 'horizontal', spacing='proportional' if self.args.sqrt_scale else 'uniform' ) # , format = ticker.LogFormatterMathtext() )
        cbar.ax.tick_params(labelsize=args.colorbar_font_size)

        if not self.args.no_sclustering:
            ax_den_top = plt.subplot(gs[11], facecolor = 'r', frameon = False)
            if not self.args.no_plot_sclustering:
                sph._plot_dendrogram( self.sdendrogram['icoord'], self.sdendrogram['dcoord'], self.sdendrogram['ivl'],
                                  self.ns + 1, self.nf + 1, 1, 'top', no_labels=True,
                                  color_list=self.sdendrogram['color_list'] )
            ymax = max([max(a) for a in self.sdendrogram['dcoord']])
            ax_den_top.set_ylim([0,ymax])
            make_ticklabels_invisible( ax_den_top )
        if not self.args.no_fclustering:
            ax_den_right = plt.subplot(gs[22], facecolor = 'b', frameon = False)
            if not self.args.no_plot_fclustering:
                sph._plot_dendrogram(   self.fdendrogram['icoord'], self.fdendrogram['dcoord'], self.fdendrogram['ivl'],
                                    self.ns + 1, self.nf + 1, 1, 'right', no_labels=True,
                                    color_list=self.fdendrogram['color_list'] )
            xmax = max([max(a) for a in self.fdendrogram['dcoord']])
            ax_den_right.set_xlim([xmax,0])
            make_ticklabels_invisible( ax_den_right )

        if self.args.title:
            fig.suptitle(self.args.title,
                         x = 0.5,
                         horizontalalignment = 'center',
                         fontsize = self.args.title_fontsize)
        if not self.args.out:
            plt.show( )
        else:
            fig.savefig( self.args.out, bbox_inches='tight', dpi = self.args.dpi )
            if maps:
                self.make_legend( maps, fnames_meta, self.args.legend_file )



class ReadCmd:

    def __init__( self ):
        import argparse as ap
        import textwrap

        p = ap.ArgumentParser( description= "TBA" )
        arg = p.add_argument

        arg( '-i', '--inp', '--in', metavar='INPUT_FILE', type=str, nargs='?', default=sys.stdin,
             help= "The input matrix" )
        arg( '-o', '--out', metavar='OUTPUT_FILE', type=str, nargs='?', default=None,
             help= "The output image file [image on screen of not specified]" )
        arg( '--legend_file', metavar='LEGEND_FILE', type=str, nargs='?', default=None,
             help= "The output file for the legend of the provided metadata" )

        input_types = [DataMatrix.datatype,DistMatrix.datatype]
        arg( '-t', '--input_type', metavar='INPUT_TYPE', type=str, choices = input_types,
             default='data_matrix',
             help= "The input type can be a data matrix or distance matrix [default data_matrix]" )

        DataMatrix.input_parameters( p )
        DistMatrix.input_parameters( p )
        HClustering.input_parameters( p )
        Heatmap.input_parameters( p )

        self.args  = p.parse_args()

    def check_consistency( self ):
        pass

    def get_args( self ):
        return self.args

if __name__ == '__main__':

    read = ReadCmd( )
    read.check_consistency()
    args = read.get_args()

    if args.input_type == DataMatrix.datatype:
        dm = DataMatrix( args.inp, args )
        if args.out_table:
            dm.save_matrix( args.out_table )

        # print dm.table.axes

        distm = DistMatrix( dm.get_numpy_matrix(), args = args )
        if not args.no_sclustering:
            distm.compute_s_dists()
        if not args.no_fclustering:
            distm.compute_f_dists()
    elif args.input_type == DataMatrix.datatype:
        # distm = read...
        pass
    else:
        pass

    cl = HClustering( distm.get_s_dm(), distm.get_f_dm(), args = args )
    if not args.no_sclustering:
        cl.shcluster()
    if not args.no_fclustering:
        cl.fhcluster()

    hmp = dm.get_numpy_matrix()
    fnames = dm.get_fnames()
    snames = dm.get_snames()
    fnames_meta = snames.names[1:]
    #if not args.no_sclustering or not args.no_fclustering ):

    hmp = cl.get_reordered_matrix( hmp, sclustering = not args.no_sclustering, fclustering = not args.no_fclustering  )
    if not args.no_sclustering:
        snames = cl.get_reordered_sample_labels( snames )
    if not args.no_fclustering:
        fnames = cl.get_reordered_feature_labels( fnames )
    else:
        fnames = fnames[::-1]

    hm = Heatmap( hmp, cl.sdendrogram, cl.fdendrogram, snames, fnames, fnames_meta, args = args )
    hm.draw()
34
35
wrapper:
    "0.38.0/bio/fastqc"
51
52
shell:
    "trimmomatic PE {input.r1} {input.r2} {output.r1_paired} {output.r1_unpaired} {output.r2_paired} {output.r2_unpaired} SLIDINGWINDOW:5:20 MINLEN:55 LEADING:3 TRAILING:3"
70
71
shell:
    "bowtie2-build {input} {params.basename}"
87
88
shell:
    "bowtie2 -x {params.index} -1 {input.sample[0]} -2 {input.sample[1]} --un-conc {params.output_path}"
104
105
shell:
    "spades.py --meta --pe1-1 {input.forward} --pe1-2 {input.reverse} -o {params.output_path} -t 4 -m 10 --only-error-correction"
120
121
shell:
    "spades.py --meta --pe1-1 {input.forward} --pe1-2 {input.reverse} -o {params.output_path} --only-assembler"
135
136
shell:
    "metaquast.py {input.quast1} -o {params.output_path}"
SnakeMake From line 135 of master/Snakefile
149
150
shell:
   "metaphlan2.py {input.pe1} --input_type fastq > {output}"
SnakeMake From line 149 of master/Snakefile
155
shell: "scripts/python merge_metaphlan_tables.py {input} > {output}"
SnakeMake From line 155 of master/Snakefile
161
shell: "./scripts/grep.sh {input} {output}"
SnakeMake From line 161 of master/Snakefile
167
shell: "./scripts/hclust2.py -i {input} -o {output} --ftop 25 --f_dist_f braycurtis --s_dist_f braycurtis --cell_aspect_ratio 0.5 -l --flabel_size 6 --slabel_size 6 --max_flabel_len 100 --max_slabel_len 100 --minv 0.1 --dpi 300"
SnakeMake From line 167 of master/Snakefile
177
178
shell:
    "abricate --threads 2 --mincov 60 --db ncbi {input} > {output} 2> {log}"
188
189
shell:
    "abricate --threads 2 --mincov 60 --db plasmidfinder {input} > {output} 2> {log}"
199
200
shell:
    "abricate --threads 2 --mincov 60 --db vfdb {input} > {output} 2> {log}"
209
210
shell:
    "abricate --summary {input} > {output}"
219
220
shell:
    "abricate --summary {input} > {output}"
229
230
shell:
    "abricate --summary {input} > {output}"
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
__author__ = "Julian de Ruiter"
__copyright__ = "Copyright 2017, Julian de Ruiter"
__email__ = "[email protected]"
__license__ = "MIT"


from os import path
from tempfile import TemporaryDirectory

from snakemake.shell import shell

log = snakemake.log_fmt_shell(stdout=False, stderr=True)

def basename_without_ext(file_path):
    """Returns basename of file path, without the file extension."""

    base = path.basename(file_path)

    split_ind = 2 if base.endswith(".gz") else 1
    base = ".".join(base.split(".")[:-split_ind])

    return base


# Run fastqc, since there can be race conditions if multiple jobs 
# use the same fastqc dir, we create a temp dir.
with TemporaryDirectory() as tempdir:
    shell("fastqc {snakemake.params} --quiet "
          "--outdir {tempdir} {snakemake.input[0]}"
          " {log}")

    # Move outputs into proper position.
    output_base = basename_without_ext(snakemake.input[0])
    html_path = path.join(tempdir, output_base + "_fastqc.html")
    zip_path = path.join(tempdir, output_base + "_fastqc.zip")

    if snakemake.output.html != html_path:
        shell("mv {html_path} {snakemake.output.html}")

    if snakemake.output.zip != zip_path:
        shell("mv {zip_path} {snakemake.output.zip}")
ShowHide 13 more snippets with no or duplicated tags.

Login to post a comment if you would like to share your experience with this workflow.

Do you know this workflow well? If so, you can request seller status , and start supporting this workflow.

Free

Created: 1yr ago
Updated: 1yr ago
Maitainers: public
URL: https://github.com/AkshathaPrasanna/Clin-mNGS
Name: clin-mngs
Version: 1
Badge:
workflow icon

Insert copied code into your website to add a link to this workflow.

Accessed: 54
Downloaded: 0
Copyright: Public Domain
License: MIT License
  • Future updates

Related Workflows

cellranger-snakemake-gke
snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...