Paired-end CUT and RUN data processing workflow designed for execution on the BigPurple HPC. Primary software used: FastQC, Fastp, Bowtie 2, SEACR, MultiQC
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
CUT-RUN
This pipeline was written for execution on the NYU big purple server. This readme describes how to execute the snake make workflow for paired-end CUT&RUN data pre-processing (fastq -> peak calling), Utilizing bowtie2 for alignmen
Code Snippets
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 | import subprocess, pandas as pd sample_file = "samples_info.tab" sample = pd.read_table(sample_file)['Sample'] replicate = pd.read_table(sample_file)['Replicate'] condition = pd.read_table(sample_file)['Condition'] Antibody = pd.read_table(sample_file)['Antibody'] sample_ids = [] for i in range(len(sample)): sample_ids.append('%s_%s_%s' % (sample[i], condition[i], replicate[i])) sample_ids = pd.unique(sample_ids).tolist() sample_ids_file = [] for i in range(len(sample)): sample_ids_file.append('%s_%s_%s_%s' % (sample[i], condition[i], replicate[i], Antibody[i])) total_fragments = [] peak_fragments = [] def FRP(sample): peak_id = sample.split('_')[0:-1] peak_id = "_".join(peak_id) print(sample) cmd_1 = ['bedtools', 'bamtobed', '-bedpe', '-i', 'alignment/%s.bam' % (sample)] cmd_2 = ['bedtools', 'intersect', '-a', 'stdin', '-b', 'peaks/%s.stringent.bed' % (peak_id)] cmd_3 = ['wc', '-l'] step_1 = subprocess.Popen(cmd_1, stdout=subprocess.PIPE) step_2 = subprocess.Popen(cmd_2, stdin = step_1.stdout, stdout=subprocess.PIPE) step_3 = subprocess.Popen(cmd_3, stdin = step_2.stdout, stdout=subprocess.PIPE) frag_peaks = step_3.stdout.read() frag_peaks.strip() peak_fragments.append(float(frag_peaks)) cmd_4 = ['samtools', 'view', 'alignment/%s.bam' % (sample)] step_1 = subprocess.Popen(cmd_4, stdout=subprocess.PIPE) step_2 = subprocess.Popen(cmd_3, stdin = step_1.stdout, stdout=subprocess.PIPE) frag = step_2.stdout.read() frag.strip() frag = float(frag) total_fragments.append(frag/2) for samples in sample_ids_file: FRP(samples) with open('FRP.txt', 'w') as out: out.write('Sample\tTotal_fragments\tFragments_in_peaks\tFRP\n') for i in range(len(sample_ids_file)): out.write('%s\t%s\t%s\t%s\n' % (sample_ids_file[i], total_fragments[i], peak_fragments[i], peak_fragments[i]/total_fragments[i])) out.close() |
51 52 | shell: 'fastqc {input.fastq} -o {params}' |
61 62 | shell: 'fastqc {input.fastq} -o {params}' |
78 79 | shell: 'fastp -w {threads} {params} -i {input.R1} -I {input.R2} -o {output.R1} -O {output.R2} --html {output.html} --json {output.json} 2> {log}' |
92 93 94 95 96 97 98 | shell: 'bowtie2 {params} -x %s --threads {threads} -1 {input.R1} -2 {input.R2} 2> {log} | samtools view -bh -q 3 > alignment/{wildcards.sample}.bam' % (genome) rule align_spike: input: R1='trim/{sample}_trimmed_R1.fastq.gz', R2='trim/{sample}_trimmed_R2.fastq.gz' |
106 107 108 109 110 111 | shell: 'bowtie2 {params} -x %s --threads {threads} -1 {input.R1} -2 {input.R2} 2> {log} | samtools view -bh -q 3 > alignment/{wildcards.sample}_ecoli.bam' % (spike_genome) rule sort: input: 'alignment/{sample}.bam' |
115 116 | shell: 'samtools sort -@ {threads} {input} > {output}' |
124 125 | shell: 'samtools index -@ {threads} {input} > {output}' |
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | shell: """ depth=`samtools view alignment/{wildcards.sample}_ecoli.bam | wc -l` depth=$((depth/2)) echo $depth scale_fac=`echo "10000 / $depth" | bc -l` echo $scale_fac bedtools bamtobed -bedpe -i alignment/{wildcards.sample}.bam | cut -f 1,2,6 | sort -k1,1 -k2,2n -k3,3n > alignment/bed/{wildcards.sample}.bed """ 'bedtools genomecov -bg -i alignment/bed/{wildcards.sample}.bed -scale $scale_fac -g %s > alignment/bed/{wildcards.sample}.bedgraph' % (chr_lens) rule SEACR: input: exp='alignment/bed/{sample}_Antibody.bedgraph', con='alignment/bed/{sample}_Control.bedgraph' |
153 154 | shell: 'bash SEACR_1.3.sh {input.exp} {input.con} {params} peaks/{wildcards.sample}' |
161 162 163 164 | shell: """ samtools view {input} | awk -F'\t' 'function abs(x){{return ((x < 0.0) ? -x : x)}} {{print abs($9)}}' | sort | uniq -c | awk -v OFS="\t" '{{print $2, $1/2}}' > {output} """ |
171 172 | script: 'FRP.py' |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/mgildea87/CUT-RUN
Name:
cut-run
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
None
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...