Isoform Switch Detection Pipeline for RNASeq Data Using IsoformSwitchAnalyzer
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
Snakemake Workflow for Isoform Switches
This is a snakemake pipeline to detect isoform switches from RNASeq data. The pipeline is in progress. It uses IsoformSwitchAnalyzer tool so far. The pipeline detects alternative splicing and differential
Code Snippets
30 31 32 33 34 35 | shell: """ mkdir -p galore mkdir -p fastqc trim_galore --gzip --retain_unpaired --trim1 --fastqc --fastqc_args "--outdir fastqc" -o galore --paired {input.r1} {input.r2} """ |
48 49 50 51 | shell: """ salmon quant -i {params.index} --libType {params.lib} -1 {input.r1} -2 {input.r2} -o {params.outdir} -p 3 --writeUnmappedNames --seqBias --gcBias --validateMappings """ |
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 | shell: """ mkdir -p {params[1]}2 mkdir -p {params[2]}2 cp -r {params[1]}_SALMON.* {params[1]}2 cp -r {params[0]}_SALMON.* {params[1]}2 cp -r {params[2]}_SALMON.* {params[2]}2 cp -r {params[0]}_SALMON.* {params[2]}2 Rscript {config[SRC]}/splice_all.R {params[0]} {params[1]} {params[2]} {params[3]} {params[4]} {params[5]} cd {params[1]}2 Rscript {config[SRC]}/splice.R {params[0]} {params[1]} {params[3]} {params[4]} cd .. cd {params[2]}2 Rscript {config[SRC]}/splice.R {params[0]} {params[2]} {params[3]} {params[5]} """ |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 | library("IsoformSwitchAnalyzeR") args = commandArgs(trailingOnly=TRUE) control_condition = args[1] treat1_condition = args[2] treat2_condition = args[3] Nc = args[4] Nt1 = args[5] Nt2 =args[6] workdir = getwd() salmonQuant <- importIsoformExpression( parentDir =workdir) summary(salmonQuant) myDesign <- data.frame( sampleID = colnames(salmonQuant$abundance)[-1], condition = c( rep(treat1_condition, Nt1), rep(treat2_condition, Nt2), rep(control_condition, Nc) ) ) myDesign conditions <- data.frame(condition_1 =c(control_condition, control_condition), condition_2= c(treat1_condition, treat2_condition) ) summary(conditions) mySwitchList <- importRdata( isoformCountMatrix = salmonQuant$counts, isoformRepExpression = salmonQuant$abundance, designMatrix = myDesign, isoformExonAnnoation = "gencode.v40.chr_patch_hapl_scaff.annotation.gtf", isoformNtFasta = "gencode.v40.transcripts.fa", showProgress = TRUE, ignoreAfterBar = TRUE, comparisonsToMake=conditions ) head(mySwitchList$isoformFeatures,2) write.csv(mySwitchList$isoformFeatures, "mySwitchList_isoforms.csv") head(mySwitchList$exons,2) write.csv(mySwitchList$exons, "mySwitchList_exons.csv") head(mySwitchList$ntSequence,2) write.csv(mySwitchList$ntSequence, "mySwitchList_ntSeq.csv") mySwitchList <- subsetSwitchAnalyzeRlist( mySwitchList, subset = abs(mySwitchList$isoformFeatures$dIF) > 0.4 ) ##Prefilter mySwitchList <- preFilter( mySwitchList, geneExpressionCutoff = 5, isoformExpressionCutoff = 3, removeSingleIsoformGenes = TRUE ) summary(mySwitchList) head(mySwitchList) mySwitchList <- isoformSwitchTestDEXSeq( mySwitchList, reduceToSwitchingGenes=TRUE ) #Summarize switching features extractSwitchSummary(mySwitchList) mySwitchList <- extractSequence( mySwitchList, pathToOutput = workdir, removeLongAAseq=TRUE, alsoSplitFastaFile=TRUE, removeShortAAseq=TRUE, writeToFile=TRUE ) extractSwitchSummary(mySwitchList) write.csv(mySwitchList$isoformFeatures, "part1_isoformsfeatures.csv") write.csv(mySwitchList$exons, "part1_exons.csv") write.csv(mySwitchList$ntSequence, "part1_ntseq.csv") mySwitchList <- analyzeIntronRetention( mySwitchList, onlySwitchingGenes = TRUE, alpha = 0.05, dIFcutoff = 0.1, showProgress = TRUE, quiet = FALSE ) summary(mySwitchList) mySwitchList <- analyzeAlternativeSplicing( mySwitchList, onlySwitchingGenes=TRUE, alpha=0.05, dIFcutoff = 0.1, showProgress=TRUE, quiet=TRUE ) mySwitchList <- analyzeCPC2( mySwitchList, 'cpc2output.txt', removeNoncodinORFs = TRUE, codingCutoff = 0.725, quiet=FALSE ) mySwitchList <- analyzeIntronRetention( mySwitchList, onlySwitchingGenes = TRUE, alpha = 0.05, dIFcutoff = 0.1, showProgress = TRUE, quiet = FALSE ) mySwitchList <- analyzePFAM( mySwitchList, 'pfam.txt') mySwitchList <- analyzeSignalP( mySwitchList, 'protein_type.txt') consequencesOfInterest <- c('intron_retention','coding_potential', 'ORF_seq_similarity') #consequencesOfInterest <- c('isoform_seq_similarity','isoform_length','intron_retention','coding_potential','NMD_status','domain_length','domains_identified','ORF_length','ORF_seq_similarity', 'signal_peptide_identified') mySwitchList <- analyzeSwitchConsequences( mySwitchList, consequencesToAnalyze = consequencesOfInterest, dIFcutoff = 0.1, # very high cutoff for fast runtimes - you should use the default (0.1) showProgress=FALSE ) pdf(file = 'ConsequenceSummary.pdf', onefile = TRUE, height=6, width = 14, pointsize =7) consq_summary <- extractConsequenceSummary( mySwitchList, consequencesToAnalyze= consequencesOfInterest, plotGenes = TRUE, # enables analysis of genes (instead of isoforms) asFractionTotal = FALSE, # enables analysis of fraction of significant features returnResult = TRUE ) dev.off() write.csv(consq_summary, "consequences_summary.csv") pdf(file = 'ConsequenceEnrichment.pdf', onefile = TRUE, height=6, width = 9) extractConsequenceEnrichment( mySwitchList, consequencesToAnalyze = 'all', alpha=0.05, dIFcutoff = 0.1, countGenes = TRUE, analysisOppositeConsequence=TRUE, plot=TRUE, localTheme = theme_bw(base_size = 12), minEventsForPlotting = 5, ) dev.off() pdf(file = 'ConsequenceEnrichmentComparison.pdf', onefile = TRUE, height=6, width = 9) extractConsequenceEnrichmentComparison( mySwitchList, consequencesToAnalyze = 'all', alpha=0.05, dIFcutoff = 0.1, countGenes = TRUE, analysisOppositeConsequence=TRUE, plot=TRUE, localTheme = theme_bw(base_size = 14), minEventsForPlotting = 10, ) dev.off() pdf(file = 'SplicingEnrichment.pdf', onefile = TRUE, height=6, width = 9) extractSplicingEnrichmentComparison( mySwitchList, splicingToAnalyze = 'all', alpha = 0.05, dIFcutoff = 0.1, onlySigIsoforms = FALSE, countGenes = TRUE, plot = TRUE, localTheme = theme_bw(base_size = 14), minEventsForPlotting = 10, returnResult=FALSE ) dev.off() pdf(file = 'SwitchOverlap.pdf', onefile = TRUE, height=6, width = 9) switchoverlap <- extractSwitchOverlap( mySwitchList, filterForConsequences=TRUE, alpha = 0.05, dIFcutoff = 0.1, scaleVennIfPossible=TRUE, plotIsoforms = TRUE, plotSwitches = TRUE, plotGenes = TRUE ) head(switchoverlap) write.csv(switchoverlap, "switchoverlap.csv") dev.off() pdf(file = 'splicingsummary.pdf', onefile = FALSE, height=6, width = 9) extractSplicingSummary( mySwitchList, asFractionTotal = FALSE, plotGenes=TRUE ) dev.off() pdf(file = 'GeneEnrichment.pdf', onefile = FALSE, height=6, width = 9) extractSplicingEnrichment( mySwitchList, minEventsForPlotting=5, plot = TRUE ) dev.off() pdf(file = 'GenomeWide.pdf', onefile = FALSE, height=6, width = 9) myIsoforms <- extractSplicingGenomeWide( mySwitchList, featureToExtract = 'isoformUsage', splicingToAnalyze = 'all', alpha=0.05, dIFcutoff = 0.1, log2FCcutoff = 1, violinPlot=TRUE, alphas=c(0.05, 0.001), localTheme=theme_bw(), plot=TRUE, ) dev.off() mytoplist <- extractTopSwitches( mySwitchList, filterForConsequences = TRUE, n =50, sortByQvals = TRUE ) head(mytoplist) write.csv(mytoplist, "toplist_all.csv") switchPlotTopSwitches( mySwitchList, n=20, filterForConsequences = TRUE ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 | library("IsoformSwitchAnalyzeR") packageDescription("IsoformSwitchAnalyzeR")$Version args = commandArgs(trailingOnly=TRUE) control_condition = args[1] treat_condition = args[2] Nc = args[3] Nt = args[4] workdir = getwd() salmonQuant <- importIsoformExpression( parentDir =workdir) summary(salmonQuant) myDesign <- data.frame( sampleID = colnames(salmonQuant$abundance)[-1], condition = c(rep(treat_condition, Nt), rep(control_condition,Nc) ) ) myDesign conditions <- data.frame(condition_1 = control_condition, condition_2=treat_condition) mySwitchList <- importRdata( isoformCountMatrix = salmonQuant$counts, isoformRepExpression = salmonQuant$abundance, designMatrix = myDesign, isoformExonAnnoation = "gencode.v40.chr_patch_hapl_scaff.annotation.gtf", isoformNtFasta = "gencode.v40.transcripts.fa", showProgress = TRUE, ignoreAfterBar = TRUE, comparisonsToMake=conditions ) out = paste(treat_condition,"mySwitchList_isoforms.csv", sep="_") head(mySwitchList$isoformFeatures,2) write.csv(mySwitchList$isoformFeatures, out) head(mySwitchList$exons,2) out = paste(treat_condition, "mySwitchList_exons.csv", sep ="_") write.csv(mySwitchList$exons, out) head(mySwitchList$ntSequence,2) out = paste(treat_condition, "mySwitchList_ntSeq.csv", sep = "_") write.csv(mySwitchList$ntSequence, out) mySwitchList <- subsetSwitchAnalyzeRlist( mySwitchList, subset = abs(mySwitchList$isoformFeatures$dIF) > 0.4 ) ##Prefilter mySwitchList <- preFilter( mySwitchList, geneExpressionCutoff = 5, isoformExpressionCutoff = 3, removeSingleIsoformGenes = TRUE ) summary(mySwitchList) head(mySwitchList) mySwitchList <- isoformSwitchTestDEXSeq( mySwitchList, reduceToSwitchingGenes=TRUE ) #Summarize switching features extractSwitchSummary(mySwitchList) mySwitchList <- extractSequence( mySwitchList, pathToOutput = workdir, removeLongAAseq=TRUE, alsoSplitFastaFile=TRUE, removeShortAAseq=TRUE, writeToFile=TRUE ) extractSwitchSummary(mySwitchList) out = paste(treat_condition, "part1_isoformsfeatures.csv", sep ="_") write.csv(mySwitchList$isoformFeatures, out) out = paste(treat_condition, "part1_exons.csv", sep ="_") write.csv(mySwitchList$exons, out) out = paste(treat_condition, "part1_ntseq.csv", sep= "_") write.csv(mySwitchList$ntSequence, out) mySwitchList <- analyzeIntronRetention( mySwitchList, onlySwitchingGenes = TRUE, alpha = 0.05, dIFcutoff = 0.1, showProgress = TRUE, quiet = FALSE ) summary(mySwitchList) out =paste(treat_condition, "cpc2output.txt", sep ="_") out mySwitchList <- analyzeCPC2( mySwitchList, out, removeNoncodinORFs = TRUE, codingCutoff = 0.725, quiet=FALSE ) out = paste(treat_condition, 'pfam.txt', sep = "_") mySwitchList <- analyzePFAM( mySwitchList, out) out = paste(treat_condition, "protein_type.txt", sep ="_") mySwitchList <- analyzeSignalP( mySwitchList, out) consequencesOfInterest <- c('intron_retention','coding_potential', 'ORF_seq_similarity') #consequencesOfInterest <- c('isoform_seq_similarity','isoform_length','intron_retention','coding_potential','NMD_status','domain_length','domains_identified','ORF_length','ORF_seq_similarity', 'signal_peptide_identified') mySwitchList <- analyzeSwitchConsequences( mySwitchList, consequencesToAnalyze = consequencesOfInterest, dIFcutoff = 0.1, # very high cutoff for fast runtimes - you should use the default (0.1) showProgress=FALSE ) out = paste(treat_condition, "ConsequenceSummary.pdf", sep ="_") pdf(file = out, onefile = TRUE, height=6, width = 14, pointsize =7) consq_summary <- extractConsequenceSummary( mySwitchList, consequencesToAnalyze= consequencesOfInterest, plotGenes = TRUE, # enables analysis of genes (instead of isoforms) asFractionTotal = FALSE, # enables analysis of fraction of significant features returnResult = TRUE ) dev.off() out = paste(treat_condition, "consequence_summary.csv", sep ="_") write.csv(consq_summary, out) mytoplist <- extractTopSwitches( mySwitchList, filterForConsequences = TRUE, n =50, sortByQvals = TRUE ) head(mytoplist) out = paste(treat_condition, "toplist.csv", sep ="_") write.csv(mytoplist, out) mySwitchList <- analyzeAlternativeSplicing( mySwitchList, onlySwitchingGenes=TRUE, alpha=0.05, dIFcutoff = 0.1, showProgress=TRUE, quiet=TRUE ) summary(mySwitchList$AlternativeSplicingAnalysis) ### overview of number of intron retentions (IR) out = paste(treat_condition, "AlternativeSplicing.csv", sep ="_") write.csv(mySwitchList$AlternativeSplicingAnalysis, out) mySwitchList <- analyzeIntronRetention( mySwitchList, onlySwitchingGenes = TRUE, alpha = 0.05, dIFcutoff = 0.1, showProgress = TRUE, quiet = FALSE ) out = paste(treat_condition, "consequence.csv", sep ="_") write.csv(mySwitchList$switchConsequence, out) out = paste(treat_condition, "splicingsummary.pdf", sep="_") pdf(file = out, onefile = FALSE, height=6, width = 9) extractSplicingSummary( mySwitchList, asFractionTotal = FALSE, plotGenes=TRUE ) dev.off() out = paste(treat_condition, "GeneEnrichment.pdf", sep="_") pdf(file = out, onefile = FALSE, height=6, width = 9) extractSplicingEnrichment( mySwitchList, minEventsForPlotting=5, plot = TRUE ) dev.off() out = paste(treat_condition, "GenomeWide.pdf", sep ="_") pdf(file = out, onefile = FALSE, height=6, width = 9) extractSplicingGenomeWide( mySwitchList, featureToExtract = 'isoformUsage', splicingToAnalyze = 'all', alpha=0.05, dIFcutoff = 0.1, log2FCcutoff = 1, violinPlot=TRUE, alphas=c(0.05, 0.001), localTheme=theme_bw(), plot=TRUE, ) dev.off() ### Visual analysis # Indiviudal switches switchPlotTopSwitches( mySwitchList, n=20, filterForConsequences = TRUE ) ### Summary extractSwitchSummary(mySwitchList, filterForConsequences = TRUE) out = paste(treat_condition, "volcanoplots.pdf", sep ="_") pdf(file = out, onefile = TRUE, height=6, width = 9) ggplot(data=mySwitchList$isoformFeatures, aes(x=dIF, y=-log10(isoform_switch_q_value))) + geom_point( aes( color=abs(dIF) > 0.1 & isoform_switch_q_value < 0.05 ), # default cutoff size=1 ) + geom_hline(yintercept = -log10(0.05), linetype='dashed') + # default cutoff geom_vline(xintercept = c(-0.1, 0.1), linetype='dashed') + # default cutoff #facet_wrap( ~ condition_2) + facet_grid(condition_1 ~ condition_2) + # alternative to facet_wrap if you have overlapping conditions scale_color_manual('Signficant\nIsoform Switch', values = c('black','red')) + labs(x='dIF', y='-Log10 ( Isoform Switch Q Value )') + theme_bw() dev.off() out = paste(treat_condition, "overview.pdf", sep="_") pdf(file = out, onefile = TRUE, height=6, width = 9) ggplot(data=mySwitchList$isoformFeatures, aes(x=gene_log2_fold_change, y=dIF)) + geom_point( aes( color=abs(dIF) > 0.1 & isoform_switch_q_value < 0.05 ), # default cutoff size=1 ) + #facet_wrap(~ condition_2) + facet_grid(condition_1 ~ condition_2) + # alternative to facet_wrap if you have overlapping conditions geom_hline(yintercept = 0, linetype='dashed') + geom_vline(xintercept = 0, linetype='dashed') + scale_color_manual('Signficant\nIsoform Switch', values = c('black','red')) + labs(x='Gene log2 fold change', y='dIF') + theme_bw() dev.off() out = paste(treat_condition, "ConsequenceEnrichment.pdf", sep ="_") pdf(file = out, onefile = TRUE, height=6, width = 9) extractConsequenceEnrichment( mySwitchList, consequencesToAnalyze = 'all', alpha=0.05, dIFcutoff = 0.1, countGenes = TRUE, analysisOppositeConsequence=TRUE, plot=TRUE, localTheme = theme_bw(base_size = 12), minEventsForPlotting = 5, ) dev.off() |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/SherineAwad/IsoformSwitches
Name:
isoformswitches
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
None
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...