Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
This repository contains the code to identify ITRAP filters for single-cell immune profiling data.
License
ITRAP is developed by Morten Nielsen's group at the Technical University of Denmark (DTU). ITRAP code and data can be used freely by academic groups for non-commercial purposes. If you plan to use ITRAP or any data provided with the script in any for-profit application, you are required to obtain a separate license (contact Morten Nielsen, [email protected]).
For scientific questions, please contact Morten Nielsen ([email protected]).
Run ITRAP
Designed with snakemake workflow (v5.7.4)
snakemake --config exp=exp13 run=run1 --use-conda
Run individual steps
Each script may also be run by command line. For help run scripts/ -h The Snakefile links the required environments for each script. The environment files are found in envs/.
Requirements
Anaconda or other Python source (Python 3.7.3) Specific requirements for each script are logged in envs/
Data
The pipeline expects a TSV file indexed by 10x barcodes, i.e. GEMs, containing features of TCR, pMHC, & cell hashing. These features may be generated using Cellranger multi .
The pipeline expects database of TCR-pMHC annotated sequences, which is stored in tools/tcr_dbs.csv.gz.
Citation
Code Snippets
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 | import pandas as pd import numpy as np import matplotlib.pyplot as plt import itertools from ast import literal_eval import re from scipy import stats from random import sample import seaborn as sns import matplotlib.gridspec as gridspec import argparse import os import sys sns.set_style('ticks', {'axes.edgecolor': '0', 'xtick.color': '0', 'ytick.color': '0'}) sns.set_context("paper",font_scale=2) def lst_converter(x): return x.split("|") def HLA_lst_converter(x): return [hla_lst.split(';') for hla_lst in x.split('|')] def HLA_cd8_converter(x): #define format of datetime return x.replace("[","").replace("]","").replace(",", "").replace("'","").split(" ") def cdr3_lst_converter(x): #define format of datetime return x.replace("[","").replace("]","").replace("'","").split(" ") def epitope_converter(x): #define format of datetime return [y for y in x.replace("[","").replace("]","").replace("\n","").split("'") if (y != '') & (y != ' ')] def peptide_hla_converter(x): return re.findall("\w+\s{1}\w{1}\d+", x.replace("[","").replace("]","").replace("\n","").replace("'","")) def literal_converter(val): # replace NaN with '' and perform literal eval on the rest try: return [] if val == '' else [v for v in literal_eval(val)] except: return [] if val == '' else [float(v) for v in lst_converter(val)] converters = {'peptide_HLA_lst': lst_converter, #peptide_hla_converter, 'umi_count_lst_mhc': literal_converter, #literal_eval, 'umi_count_lst_cd8': literal_converter, 'umi_count_lst_TRA': literal_converter,'umi_count_lst_TRB': literal_converter, 'cdr3_lst_TRA': lst_converter, #cdr3_lst_converter, 'cdr3_lst_TRB': lst_converter, #cdr3_lst_converter, 'HLA_lst_mhc': lst_converter, #cdr3_lst_converter, 'HLA_pool_cd8': lst_converter, #cdr3_lst_converter, 'HLA_cd8': lst_converter, #HLA_cd8_converter, 'HLA_lst_cd8': HLA_lst_converter,'sample_id_lst':literal_converter} def calc_binding_concordance(df, clonotype_fmt): gems_per_specificity = df.groupby([clonotype_fmt,'peptide_HLA']).gem.count().to_dict() df['gems_per_specificity'] = df.set_index([clonotype_fmt,'peptide_HLA']).index.map(gems_per_specificity) gems_per_spec_hla_match = df[df.HLA_match == True].groupby([clonotype_fmt, 'peptide_HLA']).gem.count().to_dict() df['gems_per_spec_hla_match'] = df.set_index([clonotype_fmt,'peptide_HLA']).index.map(gems_per_spec_hla_match) gems_per_clonotype = df.groupby([clonotype_fmt]).gem.count().to_dict() df['gems_per_clonotype'] = df[clonotype_fmt].map(gems_per_clonotype) df['binding_concordance'] = df.gems_per_specificity / df.gems_per_clonotype df['hla_concordance'] = df.gems_per_spec_hla_match / df.gems_per_specificity df['hla_concordance'] = df.hla_concordance.fillna(0) return df def get_argparser(): """Return an argparse argument parser.""" parser = argparse.ArgumentParser(prog = 'Evaluate clonotypes', description = 'Evaluates which clonotypes can be used for grid search to identify optimal UMI thresholds') add_arguments(parser) return parser def add_arguments(parser): parser.add_argument('--input', required=True, help='Filepath for data') parser.add_argument('--output', required=True, help='Filepath for output data') parser.add_argument('--plots', required=True, help='Filepath for output plots (must contain two placeholders, ie plt_dir/%s/%d.pdf)') ######################################################################################################### # Class # ######################################################################################################### class Evaluate_Clonotype(): """ An instance is a clonotype subset of the data. """ value_bin = set() # clonotypes Evaluate_Clonotype.value_bin trash_bin = set() # peptide-HLAs ct_checks = dict() def __init__(self, df, ct, selected_clonotypes, use_relative_umi=False, variable='peptide_HLA'): self.df = df[df.ct == ct] self.ct = int(ct) self.idx = self.df.index self.rel_umi = use_relative_umi self.fig_flg = 'None' self.variable = variable if self.variable == 'peptide_HLA': self.var_lst = 'peptide_HLA_lst' self.umi_lst = 'umi_count_lst_mhc' elif self.variable == 'sample_id': self.var_lst = 'sample_id_lst' self.umi_lst = 'umi_count_lst_cd8' elif self.variable == 'HLA_cd8': self.var_lst = 'HLA_pool_cd8' self.umi_lst = 'umi_count_lst_cd8' # Initialize list of clonotypes self.sel_cts = selected_clonotypes self.sel_cts.index = self.sel_cts.index.astype(int) # Initialize matrix of query count per GEM self.queries = df[self.var_lst].explode().drop_duplicates() self.mat = pd.DataFrame(index=self.queries, columns=df.gem.unique()) # Count no. of GEMs within grp that are annotated with a specific pMHC self.gems_per_query = self.df.explode(self.variable).groupby(self.variable).size() self.gems_per_all_q = pd.concat([self.gems_per_query, pd.Series(0, index=self.queries[~self.queries.isin(self.gems_per_query.index)])]) def sum_umi(self): # Sum UMIs for each peptide across GEMs (multiple peptides per GEM) for idx, row in self.df.iterrows(): if self.variable == 'HLA_cd8': var = 'HLA_lst_cd8' var_lst = [item for sublist in row[var] for item in sublist if item != ''] umi_lst = [row[self.umi_lst][i] for i, sublist in enumerate(row[var]) for item in sublist if item != ''] else: var = self.var_lst var_lst = row[self.var_lst] umi_lst = row[self.umi_lst] if len(row[self.umi_lst]) == len(row[var]): self.mat.loc[var_lst, row.gem] = umi_lst else: self.mat.loc[var_lst, row.gem] = [0] * len(var_lst) self.mat.fillna(0, inplace=True) def calc_summary(self): self.summary_df = self.mat.sum(axis=1).sort_values(ascending=False).to_frame().rename(columns={0:'s'}) self.summary_df['avg'] = self.mat.mean(axis=1) self.summary_df['col'] = 'grey' self.summary_df['r'] = self.summary_df.s / self.summary_df.s.max() # Unnecessary def calc_relative_umi(self): if self.variable == 'peptide_HLA': umi = 'umi_count_mhc' else: umi = 'umi_count_cd8' if self.rel_umi: self.mat = self.mat / self.df[umi].quantile(0.9, interpolation='lower') return self.df[umi] / self.df[umi].quantile(0.9, interpolation='lower') def select_queries(self, n=11): self.selected_queries = self.summary_df.head(n).index self.selected_mat = self.mat.loc[self.mat.index.isin(self.selected_queries), self.df.gem] def transform_data_for_plotting(self): """ For each row have unique combination of pMHC and GEM. """ self.plt_df = self.selected_mat.melt(ignore_index=False, var_name='gem', value_name='umi').fillna(0) self.plt_df.umi = self.plt_df.umi.astype(int) def add_gem_count(self): """ Make a variable for iterating over GEMs (fx in a GIF) """ dct = (self.plt_df.groupby('gem', sort=False).size() .to_frame().reset_index().reset_index().set_index('gem') .rename(columns={'index':'gem_count',0:'query_count'})) dct['gem_count'] = dct.gem_count + 1 # Make a var for iterating over GEMs self.plt_df['gem_count'] = self.plt_df.gem.map(dct.gem_count) def sort_data(self): self.plt_df.reset_index(inplace=True) if self.variable != 'sample_id': self.plt_df[self.var_lst] = self.plt_df[self.var_lst].astype("category") #why as category? self.plt_df[self.var_lst] = self.plt_df[self.var_lst].cat.set_categories(self.selected_queries) else: self.plt_df[self.var_lst] = self.plt_df[self.var_lst].fillna('').astype(str) #why do I have nans? self.plt_df.sort_values(by=self.var_lst, inplace=True) def transform_to_concordance(self): self.conc_df = (self.plt_df.sort_values(by=['gem','umi']) .drop_duplicates(subset='gem', keep='last') .groupby(self.var_lst).gem.count() .to_frame()) self.conc_df['clonotype'] = f'clonotype {self.ct}' self.conc_df.reset_index(inplace=True) self.conc_df['concordance'] = self.conc_df.gem / self.conc_df.gem.sum() self.conc_df.replace(0, np.nan, inplace=True) def plot_advanced_figure(self, figname): def get_legend_n_handle(l,h,key='gem'): leg = list() hdl = list() if key is None: keep = True else: keep = False for i,e in enumerate(l): if keep: if int(float(e)) > 0: leg.append(int(float(e))) hdl.append(h[i]) if e == key: keep = True return hdl, leg fig = plt.figure(figsize=(20,7)) fig.suptitle(f"Clonotype {self.ct}") gs = gridspec.GridSpec(1, 3, width_ratios=[2, 7, 2], wspace=0.2) #, left=0.05 ax1 = fig.add_subplot(gs[0]) ax2 = fig.add_subplot(gs[1]) ax3 = fig.add_subplot(gs[2]) ######################## # Add multipletplot ############################### tx1 = ax1.twinx() sns.scatterplot(data=self.plt_df, x="gem", y='peptide_HLA_lst', size='umi', color="gray", ax=ax1, legend='brief') h,l = ax1.get_legend_handles_labels() h,l = get_legend_n_handle(l, h, key=None) ax1.legend(h, l, bbox_to_anchor=(-1, 0.5), loc=10, frameon=False, title='UMI') sns.scatterplot(data=self.plt_df, x="gem", y='peptide_HLA_lst', size='umi', color="gray", ax=tx1, legend=False) ######################## # Add boxplot ############################### PROPS = {'boxprops':{'alpha':0.3}, 'medianprops':{'alpha':0.3}, 'whiskerprops':{'alpha':0.3}, 'capprops':{'alpha':0.3}} EMPTY = {'boxprops':{'alpha':0}, 'medianprops':{'alpha':0}, 'whiskerprops':{'alpha':0}, 'capprops':{'alpha':0}} ARGS = {'x':"umi", 'y':"peptide_HLA_lst", 'data':self.plt_df, 'showfliers':False} order = self.plt_df.peptide_HLA_lst.unique()#[::-1] tx2 = ax2.twinx() # hack to get matching ticks on the right sns.boxplot(**ARGS, **PROPS, order=order, ax=ax2) sns.stripplot(data=self.plt_df, x="umi", y='peptide_HLA_lst', ax=ax2, order=order, jitter=0.2, edgecolor='white',linewidth=0.5, size=6) sns.boxplot(**ARGS, **EMPTY, order=order, ax=tx2) # Add significance bar if self.test_dist(): l = len(self.plt_df.peptide_HLA_lst.unique()) - 1 y = [0,0,1,1] #[l, l, l-1, l-1] # x0 = self.plt_df.umi.max() x1 = x0 * 1.02 x2 = x0 * 1.025 x3 = x0 * 1.035 ax2.plot([x1, x2, x2, x1], y, lw=0.7, c='0') #lw=1.5, ax2.plot(x3, np.mean(y), marker="*", c='0') ###################################### # Add concordance plot ######################################### # Hack to get colorbar plot = ax3.scatter([np.nan]*len(order), order, c=[np.nan]*len(order), cmap='viridis_r', vmin=0, vmax=1) fig.colorbar(plot, ax=ax3) sns.scatterplot(data=self.conc_df, x='clonotype', y='peptide_HLA_lst', size='gem', hue='concordance', hue_norm=(0,1), palette='viridis_r', ax=ax3) # Remove automatic sns legend for hue, keep only legend for size. h,l = ax3.get_legend_handles_labels() h,l = get_legend_n_handle(l, h, key='gem') ax3.legend(h, l, bbox_to_anchor=(1.5, 0.5), loc=6, frameon=False, title='GEM') ###################################### # Prettify ######################################### ax1.set_title('Peptide MHC multiplets') ax2.set_title('UMI distribution per peptide MHC') ax3.set_title('Concordance') xmax = round(self.plt_df.umi.max(), -1) ax2.set_xticks(np.arange(0, xmax+10, 10)) ax3.set_yticks([]) ax1.set_xticklabels([]) tx1.set_yticklabels([f'n= {n}' for n in self.plt_df.groupby('peptide_HLA_lst').size()]) ax2.set_yticklabels([]) ax3.set_yticklabels([]) ax1.set_xlabel('GEM') ax1.set_ylabel('Peptide HLA', labelpad=20) tx1.set_ylabel('') ax2.set_xlabel('Peptide UMI') ax2.set_ylabel('') tx2.set_ylabel('') ax3.set_ylabel('') ax3.set_xlabel('') tx1.tick_params(axis='y', pad=20) ax2.spines['bottom'].set_bounds(0, xmax) # Hack to fix x-axis sns.despine(trim=True, right=True, ax=ax1) sns.despine(trim=True, right=False, ax=tx1) sns.despine(trim=True, right=False, ax=ax2) sns.despine(trim=True, right=False, ax=tx2) sns.despine(trim=True, left=True, ax=ax3) plt.savefig(figname %(self.fig_flg, self.ct), bbox_inches='tight') plt.show() def get_plotting_stats(self): self.summed_umis = self.summary_df.s.head(10) self.summed_gems = (self.mat > 0).sum(axis=1) def test_dist(self): assert not self.selected_mat.isna().any().any() # Select the peptides to test: the most abundant and the second most abundant (UMI wise) p1 = self.summary_df.index[0] p2 = self.summary_df.index[1] # Extract the UMI distribution for the two selected peptides. s1 = self.selected_mat.T[p1] s2 = self.selected_mat.T[p2] if sum(s1.fillna(0)-s2.fillna(0)) == 0: return False w, p = stats.wilcoxon(s1.fillna(0)-s2.fillna(0), alternative='greater') if p <= 0.05: return True return False def get_imputed_query(self): return self.summary_df.index[0] def get_remaining_queries(self): return self.summary_df.index[1:10] def update_bins(self): Evaluate_Clonotype.value_bin.update([self.ct]) Evaluate_Clonotype.trash_bin.update(self.summary_df.index[1:10]) def update_variable_analysis(self): Evaluate_Clonotype.ct_checks[self.variable] = self.plt_df def update_flag(self, flag): self.fig_flg = flag ######################################################################################################### # Input # ######################################################################################################### try: INPUT = snakemake.input.data OUTPUT = snakemake.output.data PLOT = snakemake.params.plots except: parser = get_argparser() args = parser.parse_args() INPUT = args.input OUTPUT = args.output PLOT = args.plots ######################################################################################################## # Load # ######################################################################################################## df = pd.read_csv(INPUT, converters=converters) ######################################################################################################## # Prepare # ######################################################################################################## variables = ['peptide_HLA'] imp_vars = ['ct_pep'] no_hashing = True selected_clonotypes = df.groupby('ct').size() selected_clonotypes = selected_clonotypes[selected_clonotypes >= 10] # OBS! for ct, size in selected_clonotypes.items(): for variable, imp_var in zip(variables, imp_vars): inst = Evaluate_Clonotype(df, ct, selected_clonotypes, variable=variable) inst.sum_umi() inst.calc_summary() inst.select_queries() inst.transform_data_for_plotting() inst.add_gem_count() inst.sort_data() inst.transform_to_concordance() # Only relevant for pMHC... inst.update_variable_analysis() if inst.test_dist(): df.loc[inst.idx, imp_var] = inst.get_imputed_query() if variable == 'peptide_HLA': inst.update_bins() if ct in Evaluate_Clonotype.value_bin: tmp = calc_binding_concordance(df[df.ct == ct].copy(), 'ct') conc_pep = tmp[tmp.binding_concordance == tmp.binding_concordance.max()].peptide_HLA.unique()[0] if conc_pep == tmp.ct_pep.unique()[0]: inst.update_flag('significant_match') else: inst.update_flag('significant_mismatch') else: inst.update_flag('insignificant') ######################################################################################################## # Plot # ######################################################################################################## if no_hashing: fig, ax1 = plt.subplots(1,1) #, figsize=(7,7) # pMHC order = Evaluate_Clonotype.ct_checks[variable].peptide_HLA_lst.unique() #inst.plt_df.peptide_HLA_lst.unique()#[::-1] ARGS = {'x':"umi", 'y':"peptide_HLA_lst", 'data':Evaluate_Clonotype.ct_checks['peptide_HLA'], 'order':order, 'ax':ax1} sns.boxplot(**ARGS, showfliers=False) sns.stripplot(**ARGS, jitter=0.2, edgecolor='white',linewidth=0.5, size=6) ax1.set_title("Peptide HLA") sns.despine(trim=True, ax=ax1) fig.suptitle(f'Clonotype {inst.ct} ({size} GEMs)') fig.savefig(PLOT %(inst.fig_flg, inst.ct), bbox_inches='tight') plt.close() plt.clf() else: ### PLOTTING ### fig, (ax1, ax2, ax3) = plt.subplots(1,3, figsize=(20,7)) # pMHC order = Evaluate_Clonotype.ct_checks[variable].peptide_HLA_lst.unique() #inst.plt_df.peptide_HLA_lst.unique()#[::-1] ARGS = {'x':"umi", 'y':"peptide_HLA_lst", 'data':Evaluate_Clonotype.ct_checks['peptide_HLA'], 'order':order, 'ax':ax1} sns.boxplot(**ARGS, showfliers=False) sns.stripplot(**ARGS, jitter=0.2, edgecolor='white',linewidth=0.5, size=6) ax1.set_title("Peptide HLA") sns.despine(trim=True, ax=ax1) # Sample ARGS = {'x':"umi", 'y':"sample_id_lst", 'data':Evaluate_Clonotype.ct_checks['sample_id'], 'ax':ax3} sns.boxplot(**ARGS, showfliers=False) sns.stripplot(**ARGS, jitter=0.2, edgecolor='white',linewidth=0.5, size=6) ax3.set_title('Sample ID') sns.despine(trim=True, ax=ax3) # Hashing ARGS = {'x':"umi", 'y':"HLA_pool_cd8", 'data':Evaluate_Clonotype.ct_checks['HLA_cd8'], 'ax':ax2} sns.boxplot(**ARGS, showfliers=False) sns.stripplot(**ARGS, jitter=0.2, edgecolor='white',linewidth=0.5, size=6) ax2.set_title('Sample HLA') sns.despine(trim=True, ax=ax2) fig.suptitle(f'Clonotype {inst.ct} ({size} GEMs)') fig.savefig(PLOT %(inst.fig_flg, inst.ct), bbox_inches='tight') plt.close() plt.clf() # Possible fix: # https://github.com/mwaskom/seaborn/commit/1a537c100dd58c4a22187b8f2a02ab53a88030a2 # Check the sns version on computerome. ######################################################################################################## # Eval # ######################################################################################################## def notnan(var): return var == var def determine_pep_match(row): if notnan(row.peptide_HLA) & notnan(row.ct_pep): return row.peptide_HLA == row.ct_pep else: return np.nan df['HLA_mhc'] = df.peptide_HLA.str.split(' ', expand=True)[1] df['pep_match'] = df.apply(lambda row: determine_pep_match(row), axis=1) df['valid_ct'] = df.ct.isin(Evaluate_Clonotype.value_bin) df.to_csv(OUTPUT, index=False) |
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 | import re import numpy as np import pandas as pd from ast import literal_eval from itertools import chain, combinations import os import sys import argparse def HLA_cd8_converter(x): # "['A0201', 'A2501', 'B0702', 'B3501', 'C0401', 'C0702']" return x.replace("[","").replace("]","").replace(",", "").replace("'","").split(" ") def cdr3_lst_converter(x): # "['A0201' 'A0101' 'B0801']" return x.replace("[","").replace("]","").replace("'","").split(" ") def epitope_converter(x): # "['06_1_1' '45_1_49' 'V15_A1 CMV pp50 VTE' '45_1_3' '47_1_78'\n 'V17_B8 EBV BZLF1 (C9)']" return [y for y in x.replace("[","").replace("]","").replace("\n","").split("'") if (y != '') & (y != ' ')] def peptide_hla_converter(x): # "['ALPGVPPV A0201' 'RQAYLTNQY A0101' 'VTEHDTLLY A0101' 'EERQAYLTNQY A0101'\n 'AMLIRDRL B0801' 'RAKFKQLL B0801' 'p1.a1 *A0101']" return re.findall("\w+\s{1}\w{1}\d+|p1.a1 p\*\w\d{4}", x.replace("[","").replace("]","").replace("\n","").replace("'","")) def literal_converter(val): # replace NaN with '' and perform literal eval on the rest return [] if val == '' else literal_eval(val) converters = {'peptide_HLA_lst': peptide_hla_converter, 'umi_count_lst_mhc': literal_eval, 'umi_count_lst_TRA': literal_converter,'umi_count_lst_TRB': literal_converter, 'cdr3_lst_TRA': cdr3_lst_converter, 'cdr3_lst_TRB': cdr3_lst_converter, 'HLA_lst_mhc': cdr3_lst_converter,'HLA_cd8': HLA_cd8_converter} def calc_binding_concordance(df, clonotype_fmt): gems_per_specificity = df.groupby([clonotype_fmt,'peptide_HLA']).gem.count().to_dict() df['gems_per_specificity'] = df.set_index([clonotype_fmt,'peptide_HLA']).index.map(gems_per_specificity) gems_per_spec_hla_match = df[df.HLA_match == True].groupby([clonotype_fmt, 'peptide_HLA']).gem.count().to_dict() df['gems_per_spec_hla_match'] = df.set_index([clonotype_fmt,'peptide_HLA']).index.map(gems_per_spec_hla_match) gems_per_clonotype = df.groupby([clonotype_fmt]).gem.count().to_dict() df['gems_per_clonotype'] = df[clonotype_fmt].map(gems_per_clonotype) df['binding_concordance'] = df.gems_per_specificity / df.gems_per_clonotype df['hla_concordance'] = df.gems_per_spec_hla_match / df.gems_per_specificity df['hla_concordance'] = df.hla_concordance.fillna(0) return df def get_argparser(): """Return an argparse argument parser.""" parser = argparse.ArgumentParser(prog = 'Grid Search', description = 'Searching UMI thresholds to clean data based on clonotypes with significant pMHC profile.') add_arguments(parser) return parser def add_arguments(parser): parser.add_argument('--input', required=True, help='Filepath for data') parser.add_argument('--ext_thr', required=False, default=0, help='External threshold for delta_umi_mhc') parser.add_argument('--output', required=True, help='Filepath for output data') try: INPUT = snakemake.input.valid_df OUTPUT = snakemake.output.grid D_UMI_MHC = float(snakemake.params.ext_thr) except: parser = get_argparser() args = parser.parse_args() INPUT = args.input OUTPUT = args.output D_UMI_MHC = float(args.ext_thr) # Main df = pd.read_csv(INPUT, converters=converters).fillna(value={"umi_count_mhc": 0, "delta_umi_mhc": 0, "umi_count_mhc_rel":0, "umi_count_cd8": 0, "delta_umi_cd8": 0, "umi_count_TRA": 0, "delta_umi_TRA": 0, "umi_count_TRB": 0, "delta_umi_TRB": 0}) value_bin = df[~df.ct_pep.isna()].ct.unique() # sign. peptides # Set range of thresholds umi_count_TRA_l = np.arange(0, df.umi_count_TRA.quantile(0.4, interpolation='higher')) delta_umi_TRA_l = np.arange(0, 4) #2**np.linspace(-0.4,1.5,10) umi_count_TRB_l = np.arange(0, df.umi_count_TRB.quantile(0.4, interpolation='higher')) delta_umi_TRB_l = np.arange(0, 4) #2**np.linspace(-0.4,1.5,10) umi_count_mhc_l = np.arange(1, df.umi_count_mhc.quantile(0.5, interpolation='higher')) delta_umi_mhc_l = [D_UMI_MHC] umi_relat_mhc_l = [0] #[D_UMI_MHC/10000] observations = (len(umi_count_TRA_l) * len(delta_umi_TRA_l) * len(umi_count_TRB_l) * len(delta_umi_TRB_l) * len(umi_count_mhc_l) * len(delta_umi_mhc_l) * len(umi_relat_mhc_l)) features = ['accuracy','n_matches','n_mismatches', 'trash_gems','ratio_retained_gems','trash_cts','ratio_retained_cts','avg_conc', #'ct','gems_per_ct','ct_pep', 'umi_count_mhc','umi_relat_mhc_l','delta_umi_mhc', 'umi_count_TRA','delta_umi_TRA', 'umi_count_TRB','delta_umi_TRB', 'trash_gems_total','ratio_retained_gems_total','trash_cts_total','ratio_retained_cts_total'] table = pd.DataFrame(columns=features) N_total_gems = len(df) N_total_tcrs = len(df.ct.unique()) n_total_gems = len(df[df.ct.isin(value_bin)]) n_total_tcrs = len(value_bin) i = -1 for uca in umi_count_TRA_l: for dua in delta_umi_TRA_l: for ucb in umi_count_TRB_l: for dub in delta_umi_TRB_l: for ucm in umi_count_mhc_l: for urm in umi_relat_mhc_l: for dum in delta_umi_mhc_l: i += 1 filter_bool = ((df.umi_count_TRA >= uca) & (df.delta_umi_TRA >= dua) & (df.umi_count_TRB >= ucb) & (df.delta_umi_TRB >= dub) & (df.umi_count_mhc >= ucm) & (df.delta_umi_mhc >= dum) & (df.umi_count_mhc_rel >= urm)) flt = df[filter_bool & df.ct.isin(value_bin)].copy() flt = calc_binding_concordance(flt, 'ct') n_gems = len(flt) n_tcrs = len(flt.ct.unique()) conc = flt.binding_concordance.mean() assert not flt.pep_match.isna().any(), 'Make sure flt only contains value cts' assert n_gems == len(flt.pep_match.dropna()) n_mat = flt.pep_match.sum() n_mis = n_gems - n_mat g_trash = n_total_gems - n_gems t_trash = n_total_tcrs - len(flt.ct.unique()) G_trash = N_total_gems - n_gems T_trash = N_total_tcrs - n_tcrs g_ratio = round(n_gems / n_total_gems, 3) t_ratio = round(n_tcrs / n_total_tcrs, 3) G_ratio = round(n_gems / N_total_gems, 3) T_ratio = round(n_tcrs / N_total_tcrs, 3) acc = round(n_mat/n_gems, 3) table.loc[i] = (acc, n_mat, n_mis, g_trash, g_ratio, t_trash, t_ratio, conc, ucm, urm, dum, uca, dua, ucb, dub, G_trash, G_ratio, T_trash, T_ratio) if i % 1000 == 0: print(f'{round(i/observations * 100, 2)}% done') table.to_csv(OUTPUT, index=False) |
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 | import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.transforms as transforms import itertools from ast import literal_eval import re from scipy import stats from random import sample import random import re import statistics import argparse plt.style.use('ggplot') def HLA_cd8_converter(x): return x.replace("[","").replace("]","").replace(",", "").replace("'","").split(" ") def cdr3_lst_converter(x): return x.replace("[","").replace("]","").replace("'","").split(" ") def epitope_converter(x): return [y for y in x.replace("[","").replace("]","").replace("\n","").split("'") if (y != '') & (y != ' ')] def peptide_hla_converter(x): return re.findall("\w+\s{1}\w{1}\d+", x.replace("[","").replace("]","").replace("\n","").replace("'","")) def literal_converter(val): # replace NaN with '' and perform literal eval on the rest return [] if val == '' else literal_eval(val) converters = {'peptide_HLA_lst': peptide_hla_converter, 'umi_count_lst_mhc': literal_eval, 'umi_count_lst_cd8': literal_converter, 'umi_count_lst_TRA': literal_converter,'umi_count_lst_TRB': literal_converter, 'cdr3_lst_TRA': cdr3_lst_converter, 'cdr3_lst_TRB': cdr3_lst_converter, 'HLA_lst_mhc': cdr3_lst_converter, 'HLA_pool_cd8':cdr3_lst_converter, 'HLA_cd8': HLA_cd8_converter, 'HLA_lst_cd8':literal_converter,'sample_id_lst':literal_converter} # def plot_grid(grid, opt_thr_idx, output): x_min = grid.index.max()*0.01 x_max = grid.index.max() fig = plt.figure(figsize=(16,9)) ax = plt.gca() trans = transforms.blended_transform_factory(ax.transAxes, ax.transData) x = grid.index y = grid.accuracy plt.scatter(x,y, label='Accuracy', marker='.') x = grid.index y = grid.ratio_retained_gems plt.scatter(x,y, label='Retained GEMs', marker='.') x = grid.index y = grid.mix_mean plt.scatter(x,y, label='Mix mean', marker='.') acc, rat = grid.loc[opt_thr_idx, ['accuracy','ratio_retained_gems']] plt.hlines(y=[acc, rat], xmin=-x_min, xmax=opt_thr_idx, colors='grey', linestyles='--') plt.vlines(x=opt_thr_idx, ymin=0.05, ymax=acc, colors='grey', linestyles='--') t = ', '.join(grid.loc[opt_thr_idx, ['umi_count_mhc','delta_umi_mhc', 'umi_count_TRA','delta_umi_TRA', 'umi_count_TRB','delta_umi_TRB']].astype(int).astype(str).to_list()) plt.text(opt_thr_idx, 0.04, t, ha='center', va='top') plt.text(-0.01, acc, str(acc), ha='right', va='center', transform=trans) plt.text(-0.01, rat, str(rat), ha='right', va='center', transform=trans) plt.xlim(-x_min, x_max + x_min) plt.ylim(-0.01, 1.01) plt.legend(bbox_to_anchor=(0.99, 0.5), loc='center right', frameon=False) plt.xlabel('Grid index') for f in output: plt.savefig(f, bbox_inches='tight') def get_argparser(): """Return an argparse argument parser.""" parser = argparse.ArgumentParser(prog = 'Extract Optimal Threshold', description = 'Evaluates the grid search, plots the grid, and extracts the optimal threshold.') add_arguments(parser) return parser def add_arguments(parser): parser.add_argument('--data', required=True, help='Filepath for data') parser.add_argument('--grids', required=True, nargs='+', help='List of filepaths for grids') parser.add_argument('--output', required=True, help='Filepath for output data') parser.add_argument('--plot', required=True, nargs='+', help='Filepath for output plot') try: VALID = snakemake.input.valid GRIDS = snakemake.input.grids PLOT = snakemake.output.plots THRESHOLD = snakemake.output.opt_thr except: parser = get_argparser() args = parser.parse_args() VALID = args.data GRIDS = args.grids PLOT = args.plot THRESHOLD = args.output # # Load valid_df = pd.read_csv(VALID, converters=converters).fillna('') tmp = list() for filename in GRIDS: tmp.append(pd.read_csv(filename)) grid = pd.concat(tmp) # # Main n = 2 grid['mix_mean'] = (grid.accuracy * n + grid.ratio_retained_gems)/(n+1) # Set index according to sorting so that plot will look nicer grid.sort_values(by=['accuracy','ratio_retained_gems'], inplace=True) grid.reset_index(drop=True, inplace=True) optimal_thresholds = (grid .sort_values(by=['mix_mean', 'accuracy','ratio_retained_gems', #'umi_count_mhc_rel', 'umi_count_mhc', 'delta_umi_mhc','umi_count_TRB','delta_umi_TRB'], ascending=[True, True, True, False, False, False, False]) .tail(20)) # Get index of optimal threshold opt_thr_idx = optimal_thresholds.tail(1).index[0] # Get threshold values opt_thr = optimal_thresholds.loc[opt_thr_idx, ['umi_count_mhc','delta_umi_mhc', #'umi_count_mhc_rel', #'umi_count_cd8','delta_umi_cd8', 'umi_count_TRA','delta_umi_TRA', 'umi_count_TRB','delta_umi_TRB']] opt_thr.to_csv(THRESHOLD, header=None) plot_grid(grid, opt_thr_idx, PLOT) |
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 | import pandas as pd import numpy as np from ast import literal_eval import re import yaml import argparse def get_argparser(): """Return an argparse argument parser.""" parser = argparse.ArgumentParser(prog = 'Set filters', description = 'Generates boolean arrays by which to filter data on.') add_arguments(parser) return parser def add_arguments(parser): parser.add_argument('--data', required=True, help='Filepath for data') parser.add_argument('--opt-thr', required=True, help='Filepaths for optimal threshold') parser.add_argument('--setting', required=True, choices=['indv','comb'], help='Defined whether filters are applied individually or combined additively.') parser.add_argument('--labels', required=True, help='Filepath for output filter labels') parser.add_argument('--filters', required=True, help='Filepath for output filters') def HLA_cd8_converter(x): return x.replace("[","").replace("]","").replace(",", "").replace("'","").split(" ") def cdr3_lst_converter(x): return x.replace("[","").replace("]","").replace("'","").split(" ") def epitope_converter(x): return [y for y in x.replace("[","").replace("]","").replace("\n","").split("'") if (y != '') & (y != ' ')] def peptide_hla_converter(x): return re.findall("\w+\s{1}\w{1}\d+", x.replace("[","").replace("]","").replace("\n","").replace("'","")) def literal_converter(val): # replace NaN with '' and perform literal eval on the rest return [] if val == '' else literal_eval(val) converters = {'peptide_HLA_lst': peptide_hla_converter, 'umi_count_lst_mhc': literal_eval, 'umi_count_lst_TRA': literal_converter,'umi_count_lst_TRB': literal_converter, 'cdr3_lst_TRA': cdr3_lst_converter, 'cdr3_lst_TRB': cdr3_lst_converter, 'HLA_lst_mhc': cdr3_lst_converter,'HLA_cd8': HLA_cd8_converter} # def notnan(x): return x == x def get_multiplets(df): dct = df.groupby(['ct','peptide_HLA']).gem.count() > 1 idx = df.set_index(['ct','peptide_HLA']).index.map(dct) return pd.Series(idx.fillna(False)) ########################################################## # Load # ########################################################## try: VALID = snakemake.input.valid THRESHOLD = snakemake.input.opt_thr filter_set = snakemake.params.flt YAML = snakemake.output.lbl DATA = snakemake.output.flt except: parser = get_argparser() args = parser.parse_args() VALID = args.data THRESHOLD = args.opt_thr filter_set = args.setting YAML = args.labels DATA = args.filters opt_thr = pd.read_csv(THRESHOLD, index_col=0, header=None, names=['thr']).thr.dropna() df = pd.read_csv(VALID, converters=converters, low_memory=False) ########################################################## # Prep # ########################################################## # when filtering for optimal threshold it is important to have values in UMI and delta df.fillna({'umi_count_mhc':0, 'delta_umi_mhc':0, "umi_count_mhc_rel":0, 'umi_count_TRA':0, 'delta_umi_TRA':0, 'umi_count_TRB':0, 'delta_umi_TRB':0}, inplace=True) # Add extra features df.single_barcode_mhc = np.where(df.peptide_HLA_lst.apply(len) > 1, 'pMHC singlet','pMHC multiplet') df['clonotype_multiplet'] = df.ct.map(df.groupby('ct').size() > 1) df['HLA_match_per_gem'] = df.apply(lambda row: row.HLA_mhc in row.HLA_cd8 if row.HLA_cd8 == row.HLA_cd8 else False, axis=1) df['complete_tcrs'] = df.cdr3_TRA.notna() & df.cdr3_TRB.notna() ########################################################## # Filters # ########################################################## # idx0: raw # idx1: UMI thresholds # idx2: Hashing singlets # idx3: Matching HLA # idx4: Complete TCRs # idx5: Specificity multiplets # idx6: Is cell (Cellranger) # idx7: Viable cells (GEX) idx0 = ~df.gem.isna() idx1 = eval(' & '.join([f'(df.{k} >= {abs(v)})' for k,v in opt_thr.items()])) idx2 = df.hto_global_class == 'Singlet' idx3 = df.apply(lambda row: row.peptide_HLA.split()[-1] in row.HLA_cd8 if (notnan(row.peptide_HLA) & notnan(row.HLA_cd8)) else False, axis=1) idx4 = df['complete_tcrs'] #exclude_single-chain_TCRs idx5 = get_multiplets(df) try: idx6 = df.cell_flag # is_cell except AttributeError: idx6 = df.gem.isna() # All false idx7 = df.gex if filter_set == 'indv': # Showing individual effects of filtering filterings = [idx0, idx1, idx3, idx2, idx4, idx5, idx6, idx7] labels = ['total','optimal threshold', 'matching HLA', 'hashing singlets', 'complete TCRs', 'specificity multiplets', 'is cell%s' %(' (GEX)' if any(idx6) else ''), 'is viable cell'] palette = ['grey','yellow','#ffffcc','#c7e9b4','#7fcdbb','#41b6c4','#2c7fb8','black'] flt_to_remove = list() for i, flt in enumerate(filterings): if sum(flt) == 0: flt_to_remove.append(i) for i in flt_to_remove[::-1]: del filterings[i] del labels[i] del palette[i] elif filter_set == 'comb': # Showing combined effects in the same order labels = ['total','optimal threshold', 'matching HLA', 'hashing singlets', 'complete TCRs', 'specificity multiplets', 'is cell%s' %(' (GEX)' if any(idx6) else ''), 'is viable cell'] palette = ['grey','yellow','#ffffcc','#c7e9b4','#7fcdbb','#41b6c4','#2c7fb8','black'] #'#253494' flt_to_remove = list() filterings = [idx0] for i, flt in enumerate([idx1, idx3, idx2, idx4, idx5, idx6, idx7], start=1): remaining_gems = sum(filterings[-1] & flt) if remaining_gems > 0: filterings.append((filterings[-1] & flt)) else: flt_to_remove.append(i) for i in flt_to_remove[::-1]: del labels[i] del palette[i] else: print('filterset name unknown') ########################################################## # Output prep # ########################################################## dct = dict(labels = labels, palette = palette) tmp = pd.concat(filterings, axis=1) tmp.columns = labels ########################################################## # Write output to file # ########################################################## with open(YAML, 'w') as outfile: yaml.dump(dct, outfile) tmp.to_csv(DATA, index=False) |
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 | import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib import re from ast import literal_eval import seaborn as sns import os import yaml import argparse sns.set_style('ticks', {'axes.edgecolor': '0', 'xtick.color': '0', 'ytick.color': '0'}) def get_argparser(): """Return an argparse argument parser.""" parser = argparse.ArgumentParser(prog = 'Plot staircase', description = 'Generates staircase plots from all filters.') add_arguments(parser) return parser def add_arguments(parser): parser.add_argument('--data', required=True, help='Filepath for data') parser.add_argument('--labels', required=True, help='Filepath for output filter labels') parser.add_argument('--filters', required=True, help='Filepath for filters') parser.add_argument('--out-dir', required=True, help='Directory to place output plots') def HLA_cd8_converter(x): return x.replace("[","").replace("]","").replace(",", "").replace("'","").split(" ") def cdr3_lst_converter(x): return x.replace("[","").replace("]","").replace("'","").split(" ") def epitope_converter(x): return [y for y in x.replace("[","").replace("]","").replace("\n","").split("'") if (y != '') & (y != ' ')] def peptide_hla_converter(x): return re.findall("\w+\s{1}\w{1}\d+", x.replace("[","").replace("]","").replace("\n","").replace("'","")) def literal_converter(val): # replace NaN with '' and perform literal eval on the rest return [] if val == '' else literal_eval(val) converters = {'peptide_HLA_lst': peptide_hla_converter, 'umi_count_lst_mhc': literal_eval, 'umi_count_lst_TRA': literal_converter,'umi_count_lst_TRB': literal_converter, 'cdr3_lst_TRA': cdr3_lst_converter, 'cdr3_lst_TRB': cdr3_lst_converter, 'HLA_lst_mhc': cdr3_lst_converter,'HLA_cd8': HLA_cd8_converter} # def notnan(x): return x == x def get_multiplets(df): dct = df.groupby(['ct','peptide_HLA']).gem.count() > 1 idx = df.set_index(['ct','peptide_HLA']).index.map(dct) return idx.fillna(False) def calc_binding_concordance(df, clonotype_fmt): gems_per_specificity = df.groupby([clonotype_fmt,'peptide_HLA']).gem.count().to_dict() df['gems_per_specificity'] = df.set_index([clonotype_fmt,'peptide_HLA']).index.map(gems_per_specificity) gems_per_spec_hla_match = df[df.HLA_match == True].groupby([clonotype_fmt, 'peptide_HLA']).gem.count().to_dict() df['gems_per_spec_hla_match'] = df.set_index([clonotype_fmt,'peptide_HLA']).index.map(gems_per_spec_hla_match) gems_per_clonotype = df.groupby([clonotype_fmt]).gem.count().to_dict() df['gems_per_clonotype'] = df[clonotype_fmt].map(gems_per_clonotype) df['binding_concordance'] = df.gems_per_specificity / df.gems_per_clonotype df['hla_concordance'] = df.gems_per_spec_hla_match / df.gems_per_specificity df['hla_concordance'] = df.hla_concordance.fillna(0) return df def plot_specificity(title, df, max_gems, save=True): # Sort df.ct = df.ct.astype(int).astype(str) try: df.sort_values(by=['epitope_rank','gems_per_specificity','binding_concordance'], ascending=[True, False, False], inplace=True) except KeyError: df.sort_values(by=['gems_per_specificity','binding_concordance'], ascending=[True, False, False], inplace=True) # devide GEMs by max concordance and outliers dct = df.groupby('ct').binding_concordance.max() df['max_conc'] = df.ct.map(dct) idx = df.binding_concordance == df.max_conc def modify_legend(h,l): flag = False labels = [] handles = [] for e, le in enumerate(l): if flag: labels.append(le) handles.append(h[e]) if le == 'gems_per_specificity': flag = True idxs = np.linspace(0,len(labels)-1,5) l = [] h = [] for i in idxs: l.append(labels[int(i)]) h.append(handles[int(i)]) return h,l # Style # https://seaborn.pydata.org/generated/seaborn.axes_style.html sns.set_style('ticks', {'axes.edgecolor': '0', #'axes.facecolor':'lightgrey', 'xtick.color': '0', 'ytick.color': '0'}) sns.set_context("paper",font_scale=2) fig_height = int(df.peptide_HLA.nunique()/2) # 6 fig = plt.figure(figsize=(20,fig_height)) # 6 sns.scatterplot(data=df[idx], x='ct', y='peptide_HLA', size='gems_per_specificity', sizes=(10,1000), size_norm=(1,max_gems), hue='binding_concordance', palette='viridis_r', hue_norm=(0,1), legend='full', linewidth=0) sns.scatterplot(data=df[~idx], x='ct', y='peptide_HLA', size='gems_per_specificity', sizes=(10,1000), size_norm=(1,max_gems), hue='binding_concordance', palette='viridis_r', hue_norm=(0,1), legend=False, linewidth=0) ax = plt.gca() sm = plt.cm.ScalarMappable(norm=matplotlib.colors.Normalize(vmin=0,vmax=1), cmap='viridis_r') sm.set_array([]) # hack for cbar fig.colorbar(sm, ax=ax, orientation='horizontal', label='Binding Concordance', fraction=0.06*6/fig_height, pad=0.15*6/fig_height) h,l = ax.get_legend_handles_labels() h,l = modify_legend(h,l) ax.legend(h, l, bbox_to_anchor=(0.5, -0.5*6/fig_height), loc=9, frameon=False, title='GEMs', ncol=len(l)) plt.xlabel('%d clonotypes (across %d GEMs)' %(df.ct.nunique(), df.gem.nunique())) plt.ylabel('') sns.despine(bottom=False, trim=True, offset={'left':-30}) ax.set_xticks([]) ax.set_xticklabels([]) if save: plt.savefig(title, bbox_inches='tight', dpi=100) plt.show() ########################################################## # Main # ########################################################## try: VALID = snakemake.input.df FLT = snakemake.input.lbl IDX = snakemake.input.flt OUT_DIR = os.path.dirname(snakemake.output[0]) except: parser = get_argparser() args = parser.parse_args() VALID = args.data FLT = args.labels IDX = args.filters OUT_DIR = args.out_dir df = pd.read_csv(VALID, converters=converters) df.fillna({'umi_count_mhc':0, 'delta_umi_mhc':0, 'umi_count_mhc_rel':0, 'umi_count_cd8':0, 'delta_umi_cd8':0, 'umi_count_TRA':0, 'delta_umi_TRA':0, 'umi_count_TRB':0, 'delta_umi_TRB':0, 'cdr3_TRA':'','cdr3_TRB':''}, inplace=True) df = calc_binding_concordance(df.copy(), 'ct') idx_df = pd.read_csv(IDX) ########################################################## # Filters # ########################################################## with open(FLT, 'r') as f: flt = yaml.load(f, Loader=yaml.FullLoader) globals().update(flt) ########################################################## # Compute statistics # ########################################################## for label in labels: idx = idx_df[label] plt_df = calc_binding_concordance(df[idx].copy(), 'ct') filename = os.path.join(OUT_DIR, '%s.png' %( '_'.join(label.split()) ) ) max_gems = df.gems_per_specificity.max() if df.gems_per_specificity.max() < 1000 else 1000 plot_specificity(filename, plt_df, max_gems, save=True) plt.cla() plt.clf() plt.close() |
43 44 45 46 47 | shell: "python scripts/F_comp_cred_specificities.py \ --input {input.data} \ --output {output.data} \ --plots {params.plots}" |
58 59 60 61 62 | shell: "python scripts/G1_grid_search.py \ --input {input.valid_df} \ --ext_thr {wildcards.ext_thr} \ --output {output.grid}" |
75 76 77 78 79 80 | shell: "python scripts/G2_extract_optimal_threshold.py \ --data {input.valid} \ --grids {input.grids} \ --output {output.opt_thr} \ --plot {output.plots}" |
95 96 97 98 99 100 101 | shell: "python scripts/H_set_filters.py \ --data {input.valid} \ --opt-thr {input.opt_thr} \ --setting {params.flt} \ --labels {output.lbl} \ --filters {output.flt}" |
114 115 116 117 118 119 | shell: "python scripts/I_filter_impact.staircase.py \ --data {input.df} \ --labels {input.lbl} \ --filters {input.flt} \ --out-dir {params}" |
Support
- Future updates