Jupyter Notebook Amber Protein Ligand Complex MD Setup tutorial using Biobb

public public 1yr ago Version: Version 3 0 bookmarks

Based on the official GROMACS tutorial .

This tutorials aim to illustrate the process of setting up a simulation system containing a protein , step by step, using the BioExcel Building Blocks library (biobb) wrapping the Ambertools MD package .

Settings

Biobb modules used

Auxiliar libraries used

  • nb_conda_kernels : Enables a Jupyter Notebook or JupyterLab application in one conda environment to access kernels for Python, R, and other languages found in other environments.

  • jupyter_contrib_nbextensions : Contains a collection of community-contributed unofficial extensions that add functionality to the Jupyter notebook.

  • nglview : Jupyter/IPython widget to interactively view molecular structures and trajectories in notebooks.

  • ipywidgets : Interactive HTML widgets for Jupyter notebooks and the IPython kernel.

  • plotly : Python interactive graphing library integrated in Jupyter notebooks.

  • simpletraj : Lightweight coordinate-only trajectory reader based on code from GROMACS, MDAnalysis and VMD.

  • gfortran : Fortran 95/2003/2008/2018 compiler for GCC, the GNU Compiler Collection.

Conda Installation

Take into account that, for this specific workflow, there are two environment files, one for linux OS and the other for mac OS:

linux

git clone https://github.com/bioexcel/biobb_wf_amber_md_setup.git
cd biobb_wf_amber_md_setup
conda env create -f conda_env/environment.linux.yml
conda activate biobb_AMBER_MDsetup_tutorials
jupyter nbextension enable python-markdown/main

macos

git clone https://github.com/bioexcel/biobb_wf_amber_md_setup.git
cd biobb_wf_amber_md_setup
conda env create -f conda_env/environment.macos.yml
conda activate biobb_AMBER_MDsetup_tutorials
jupyter nbextension enable python-markdown/main

Please execute the following commands before launching the Jupyter Notebook if you experience some issues with widgets such as NGL View (3D molecular visualization):

jupyter-nbextension enable --py --user widgetsnbextension
jupyter-nbextension enable --py --user nglview

Launch

Protein MD Setup tutorial

jupyter-notebook biobb_wf_amber_md_setup/notebooks/mdsetup/biobb_amber_setup_notebook.ipynb

Protein-Ligand Complex MD Setup tutorial

jupyter-notebook biobb_wf_amber_md_setup/notebooks/mdsetup_lig/biobb_amber_complex_setup_notebook.ipynb

Constant pH MD Setup tutorial

jupyter-notebook biobb_wf_amber_md_setup/notebooks/mdsetup_ph/biobb_amber_CpHMD_notebook.ipynb

ABC MD Setup tutorial

jupyter-notebook biobb_wf_amber_md_setup/notebooks/abcsetup/biobb_amber_ABC_setup.ipynb

Version

2023.3 Release

Copyright & Licensing

This software has been developed in the MMB group at the BSC & IRB for the European BioExcel , funded by the European Commission (EU H2020 823830 , EU H2020 675728 ).

Licensed under the Apache License 2.0 , see the file LICENSE for details.

Code Snippets

 2
 3
 4
 5
 6
 7
 8
 9
10
import nglview
import ipywidgets
import plotly
from plotly import subplots
import plotly.graph_objs as go

pdbCode = "3htb"
ligandCode = "JZ4"
mol_charge = 0
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Import module
from biobb_io.api.pdb import pdb

# Create properties dict and inputs/outputs
downloaded_pdb = pdbCode+'.pdb'

prop = {
    'pdb_code': pdbCode,
    'filter': False
}

#Create and launch bb
pdb(output_pdb_path=downloaded_pdb,
    properties=prop)
31
32
33
34
35
36
37
38
39
# Show protein
view = nglview.show_structure_file(downloaded_pdb)
view.clear_representations()
view.add_representation(repr_type='cartoon', selection='protein', color='sstruc')
view.add_representation(repr_type='ball+stick', radius='0.1', selection='water')
view.add_representation(repr_type='ball+stick', radius='0.5', selection='ligand')
view.add_representation(repr_type='ball+stick', radius='0.5', selection='ion')
view._remote_call('setSize', target='Widget', args=['','600px'])
view
43
44
45
46
47
48
49
50
51
# Import module
from biobb_structure_utils.utils.remove_pdb_water import remove_pdb_water

# Create properties dict and inputs/outputs
nowat_pdb = pdbCode+'.nowat.pdb'

#Create and launch bb
remove_pdb_water(input_pdb_path=downloaded_pdb,
    output_pdb_path=nowat_pdb)
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Import module
from biobb_structure_utils.utils.remove_ligand import remove_ligand

# Removing PO4 ligands:

# Create properties dict and inputs/outputs
nopo4_pdb = pdbCode+'.noPO4.pdb'

prop = {
    'ligand' : 'PO4'
}

#Create and launch bb
remove_ligand(input_structure_path=nowat_pdb,
    output_structure_path=nopo4_pdb,
    properties=prop)

# Removing BME ligand:

# Create properties dict and inputs/outputs
nobme_pdb = pdbCode+'.noBME.pdb'

prop = {
    'ligand' : 'BME'
}

#Create and launch bb
remove_ligand(input_structure_path=nopo4_pdb,
    output_structure_path=nobme_pdb,
    properties=prop)
88
89
90
91
92
93
94
# Show protein
view = nglview.show_structure_file(nobme_pdb)
view.clear_representations()
view.add_representation(repr_type='cartoon', selection='protein', color='sstruc')
view.add_representation(repr_type='ball+stick', radius='0.5', selection='hetero')
view._remote_call('setSize', target='Widget', args=['','600px'])
view
 98
 99
100
101
102
103
104
105
106
107
# Import module
from biobb_amber.pdb4amber.pdb4amber_run import pdb4amber_run

# Create prop dict and inputs/outputs
output_pdb4amber_path = 'structure.pdb4amber.pdb'

# Create and launch bb
pdb4amber_run(input_pdb_path=nobme_pdb,
            output_pdb_path=output_pdb4amber_path,
            properties=prop)
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
# Create Ligand system topology, STEP 1
# Extracting Ligand JZ4
# Import module
from biobb_structure_utils.utils.extract_heteroatoms import extract_heteroatoms

# Create properties dict and inputs/outputs
ligandFile = ligandCode+'.pdb'

prop = {
     'heteroatoms' : [{"name": "JZ4"}]
}

extract_heteroatoms(input_structure_path=output_pdb4amber_path,
     output_heteroatom_path=ligandFile,
     properties=prop)
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Create Ligand system topology, STEP 2
# Reduce_add_hydrogens: add Hydrogen atoms to a small molecule (using Reduce tool from Ambertools package)
# Import module
from biobb_chemistry.ambertools.reduce_add_hydrogens import reduce_add_hydrogens

# Create prop dict and inputs/outputs
output_reduce_h = ligandCode+'.reduce.H.pdb' 

prop = {
    'nuclear' : 'true'
}

# Create and launch bb
reduce_add_hydrogens(input_path=ligandFile,
                   output_path=output_reduce_h,
                   properties=prop)
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Create Ligand system topology, STEP 3
# Babel_minimize: Structure energy minimization of a small molecule after being modified adding hydrogen atoms
# Import module
from biobb_chemistry.babelm.babel_minimize import babel_minimize

# Create prop dict and inputs/outputs
output_babel_min = ligandCode+'.H.min.mol2'   

prop = {
    'method' : 'sd',
    'criteria' : '1e-10',
    'force_field' : 'GAFF'
}


# Create and launch bb
babel_minimize(input_path=output_reduce_h,
              output_path=output_babel_min,
              properties=prop)
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Show different structures generated (for comparison)

view1 = nglview.show_structure_file(ligandFile)
view1.add_representation(repr_type='ball+stick')
view1._remote_call('setSize', target='Widget', args=['350px','400px'])
view1.camera='orthographic'
view1
view2 = nglview.show_structure_file(output_reduce_h)
view2.add_representation(repr_type='ball+stick')
view2._remote_call('setSize', target='Widget', args=['350px','400px'])
view2.camera='orthographic'
view2
view3 = nglview.show_structure_file(output_babel_min)
view3.add_representation(repr_type='ball+stick')
view3._remote_call('setSize', target='Widget', args=['350px','400px'])
view3.camera='orthographic'
view3
ipywidgets.HBox([view1, view2, view3])
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# Create Ligand system topology, STEP 4
# Acpype_params_gmx: Generation of topologies for AMBER with ACPype
# Import module
from biobb_chemistry.acpype.acpype_params_ac import acpype_params_ac

# Create prop dict and inputs/outputs
output_acpype_inpcrd = ligandCode+'params.inpcrd'
output_acpype_frcmod = ligandCode+'params.frcmod'
output_acpype_lib = ligandCode+'params.lib'
output_acpype_prmtop = ligandCode+'params.prmtop'
output_acpype = ligandCode+'params'

prop = {
    'basename' : output_acpype,
    'charge' : mol_charge
}

# Create and launch bb
acpype_params_ac(input_path=output_babel_min, 
                output_path_inpcrd=output_acpype_inpcrd,
                output_path_frcmod=output_acpype_frcmod,
                output_path_lib=output_acpype_lib,
                output_path_prmtop=output_acpype_prmtop,
                properties=prop)
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Import module
from biobb_amber.leap.leap_gen_top import leap_gen_top

# Create prop dict and inputs/outputs
output_pdb_path = 'structure.leap.pdb'
output_top_path = 'structure.leap.top'
output_crd_path = 'structure.leap.crd'

prop = {
    "forcefield" : ["protein.ff14SB","gaff"]
}

# Create and launch bb
leap_gen_top(input_pdb_path=output_pdb4amber_path,
           input_lib_path=output_acpype_lib,
           input_frcmod_path=output_acpype_frcmod,
           output_pdb_path=output_pdb_path,
           output_top_path=output_top_path,
           output_crd_path=output_crd_path,
           properties=prop)
241
242
243
244
245
246
247
248
249
250
251
import nglview
import ipywidgets

# Show protein
view = nglview.show_structure_file(output_pdb_path)
view.clear_representations()
view.add_representation(repr_type='cartoon', selection='protein', opacity='0.4')
view.add_representation(repr_type='ball+stick', selection='protein')
view.add_representation(repr_type='ball+stick', radius='0.5', selection='JZ4')
view._remote_call('setSize', target='Widget', args=['','600px'])
view
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# Import module
from biobb_amber.sander.sander_mdrun import sander_mdrun

# Create prop dict and inputs/outputs
output_h_min_traj_path = 'sander.h_min.x'
output_h_min_rst_path = 'sander.h_min.rst'
output_h_min_log_path = 'sander.h_min.log'

prop = {
    'simulation_type' : "min_vacuo",
    "mdin" : { 
        'maxcyc' : 500,
        'ntpr' : 5,
        'ntr' : 1,
        'restraintmask' : '\":*&!@H=\"',
        'restraint_wt' : 50.0
    }
}

# Create and launch bb
sander_mdrun(input_top_path=output_top_path,
            input_crd_path=output_crd_path,
            input_ref_path=output_crd_path,
            output_traj_path=output_h_min_traj_path,
            output_rst_path=output_h_min_rst_path,
            output_log_path=output_h_min_log_path,
            properties=prop)
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# Import module
from biobb_amber.process.process_minout import process_minout

# Create prop dict and inputs/outputs
output_h_min_dat_path = 'sander.h_min.energy.dat'

prop = {
    "terms" : ['ENERGY']
}

# Create and launch bb
process_minout(input_log_path=output_h_min_log_path,
            output_dat_path=output_h_min_dat_path,
            properties=prop)
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
#Read data from file and filter energy values higher than 1000 Kj/mol^-1
with open(output_h_min_dat_path,'r') as energy_file:
    x,y = map(
        list,
        zip(*[
            (float(line.split()[0]),float(line.split()[1]))
            for line in energy_file 
            if not line.startswith(("#","@")) 
            if float(line.split()[1]) < 1000 
        ])
    )

plotly.offline.init_notebook_mode(connected=True)

fig = {
    "data": [go.Scatter(x=x, y=y)],
    "layout": go.Layout(title="Energy Minimization",
                        xaxis=dict(title = "Energy Minimization Step"),
                        yaxis=dict(title = "Potential Energy kcal/mol")
                       )
}

plotly.offline.iplot(fig)
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
# Import module
from biobb_amber.sander.sander_mdrun import sander_mdrun

# Create prop dict and inputs/outputs
output_n_min_traj_path = 'sander.n_min.x'
output_n_min_rst_path = 'sander.n_min.rst'
output_n_min_log_path = 'sander.n_min.log'

prop = {
    'simulation_type' : "min_vacuo",
    "mdin" : { 
        'maxcyc' : 500,
        'ntpr' : 5,
        'restraintmask' : '\":' + ligandCode + '\"',
        'restraint_wt' : 500.0
    }
}

# Create and launch bb
sander_mdrun(input_top_path=output_top_path,
            input_crd_path=output_h_min_rst_path,
            output_traj_path=output_n_min_traj_path,
            output_rst_path=output_n_min_rst_path,
            output_log_path=output_n_min_log_path,
            properties=prop)
356
357
358
359
360
361
362
363
364
365
366
367
368
369
# Import module
from biobb_amber.process.process_minout import process_minout

# Create prop dict and inputs/outputs
output_n_min_dat_path = 'sander.n_min.energy.dat'

prop = {
    "terms" : ['ENERGY']
}

# Create and launch bb
process_minout(input_log_path=output_n_min_log_path,
            output_dat_path=output_n_min_dat_path,
            properties=prop)
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
#Read data from file and filter energy values higher than 1000 Kj/mol^-1
with open(output_n_min_dat_path,'r') as energy_file:
    x,y = map(
        list,
        zip(*[
            (float(line.split()[0]),float(line.split()[1]))
            for line in energy_file 
            if not line.startswith(("#","@")) 
            if float(line.split()[1]) < 1000 
        ])
    )

plotly.offline.init_notebook_mode(connected=True)

fig = {
    "data": [go.Scatter(x=x, y=y)],
    "layout": go.Layout(title="Energy Minimization",
                        xaxis=dict(title = "Energy Minimization Step"),
                        yaxis=dict(title = "Potential Energy kcal/mol")
                       )
}

plotly.offline.iplot(fig)
399
400
401
402
403
404
405
406
407
408
# Import module
from biobb_amber.ambpdb.amber_to_pdb import amber_to_pdb

# Create prop dict and inputs/outputs
output_ambpdb_path = 'structure.ambpdb.pdb'

# Create and launch bb
amber_to_pdb(input_top_path=output_top_path,
            input_crd_path=output_h_min_rst_path,
            output_pdb_path=output_ambpdb_path)
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
# Import module
from biobb_amber.leap.leap_solvate import leap_solvate

# Create prop dict and inputs/outputs
output_solv_pdb_path = 'structure.solv.pdb'
output_solv_top_path = 'structure.solv.parmtop'
output_solv_crd_path = 'structure.solv.crd'

prop = {
    "forcefield" : ["protein.ff14SB","gaff"],
    "water_type": "TIP3PBOX",
    "distance_to_molecule": "9.0",   
    "box_type": "truncated_octahedron"
}

# Create and launch bb
leap_solvate(input_pdb_path=output_ambpdb_path,
             input_lib_path=output_acpype_lib,
             input_frcmod_path=output_acpype_frcmod,
             output_pdb_path=output_solv_pdb_path,
             output_top_path=output_solv_top_path,
             output_crd_path=output_solv_crd_path,
             properties=prop)
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
# Import module
from biobb_amber.leap.leap_add_ions import leap_add_ions

# Create prop dict and inputs/outputs
output_ions_pdb_path = 'structure.ions.pdb'
output_ions_top_path = 'structure.ions.parmtop'
output_ions_crd_path = 'structure.ions.crd'

prop = {
    "forcefield" : ["protein.ff14SB","gaff"],
    "neutralise" : True,
    "positive_ions_type": "Na+",
    "negative_ions_type": "Cl-",
    "ionic_concentration" : 150, # 150mM
    "box_type": "truncated_octahedron"
}

# Create and launch bb
leap_add_ions(input_pdb_path=output_solv_pdb_path,
            input_lib_path=output_acpype_lib,
            input_frcmod_path=output_acpype_frcmod,
           output_pdb_path=output_ions_pdb_path,
           output_top_path=output_ions_top_path,
           output_crd_path=output_ions_crd_path,
           properties=prop)
466
467
468
469
470
471
472
473
# Show protein
view = nglview.show_structure_file(output_ions_pdb_path)
view.clear_representations()
view.add_representation(repr_type='cartoon', selection='protein')
view.add_representation(repr_type='ball+stick', selection='solvent')
view.add_representation(repr_type='spacefill', selection='Cl- Na+')
view._remote_call('setSize', target='Widget', args=['','600px'])
view
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
# Import module
from biobb_amber.sander.sander_mdrun import sander_mdrun

# Create prop dict and inputs/outputs
output_min_traj_path = 'sander.min.x'
output_min_rst_path = 'sander.min.rst'
output_min_log_path = 'sander.min.log'

prop = {
    "simulation_type" : "minimization",
    "mdin" : { 
        'maxcyc' : 300, # Reducing the number of minimization steps for the sake of time
        'ntr' : 1,      # Overwritting restrain parameter
        'restraintmask' : '\"!:WAT,Cl-,Na+\"',      # Restraining solute
        'restraint_wt' : 15.0                       # With a force constant of 50 Kcal/mol*A2
    }
}

# Create and launch bb
sander_mdrun(input_top_path=output_ions_top_path,
            input_crd_path=output_ions_crd_path,
            input_ref_path=output_ions_crd_path,
            output_traj_path=output_min_traj_path,
            output_rst_path=output_min_rst_path,
            output_log_path=output_min_log_path,
            properties=prop)
506
507
508
509
510
511
512
513
514
515
516
517
518
519
# Import module
from biobb_amber.process.process_minout import process_minout

# Create prop dict and inputs/outputs
output_dat_path = 'sander.min.energy.dat'

prop = {
    "terms" : ['ENERGY']
}

# Create and launch bb
process_minout(input_log_path=output_min_log_path,
            output_dat_path=output_dat_path,
            properties=prop)
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
#Read data from file and filter energy values higher than 1000 Kj/mol^-1
with open(output_dat_path,'r') as energy_file:
    x,y = map(
        list,
        zip(*[
            (float(line.split()[0]),float(line.split()[1]))
            for line in energy_file 
            if not line.startswith(("#","@")) 
            if float(line.split()[1]) < 1000 
        ])
    )

plotly.offline.init_notebook_mode(connected=True)

fig = {
    "data": [go.Scatter(x=x, y=y)],
    "layout": go.Layout(title="Energy Minimization",
                        xaxis=dict(title = "Energy Minimization Step"),
                        yaxis=dict(title = "Potential Energy kcal/mol")
                       )
}

plotly.offline.iplot(fig)
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
# Import module
from biobb_amber.sander.sander_mdrun import sander_mdrun

# Create prop dict and inputs/outputs
output_heat_traj_path = 'sander.heat.netcdf'
output_heat_rst_path = 'sander.heat.rst'
output_heat_log_path = 'sander.heat.log'

prop = {
    "simulation_type" : "heat",
    "mdin" : { 
        'nstlim' : 2500, # Reducing the number of steps for the sake of time (5ps)
        'ntr' : 1,     # Overwritting restrain parameter
        'restraintmask' : '\"!:WAT,Cl-,Na+\"',      # Restraining solute
        'restraint_wt' : 10.0                       # With a force constant of 10 Kcal/mol*A2
    }
}

# Create and launch bb
sander_mdrun(input_top_path=output_ions_top_path,
            input_crd_path=output_min_rst_path,
            input_ref_path=output_min_rst_path,
            output_traj_path=output_heat_traj_path,
            output_rst_path=output_heat_rst_path,
            output_log_path=output_heat_log_path,
            properties=prop)
578
579
580
581
582
583
584
585
586
587
588
589
590
591
# Import module
from biobb_amber.process.process_mdout import process_mdout

# Create prop dict and inputs/outputs
output_dat_heat_path = 'sander.md.temp.dat'

prop = {
    "terms" : ['TEMP']
}

# Create and launch bb
process_mdout(input_log_path=output_heat_log_path,
            output_dat_path=output_dat_heat_path,
            properties=prop)
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
#Read data from file and filter energy values higher than 1000 Kj/mol^-1
with open(output_dat_heat_path,'r') as energy_file:
    x,y = map(
        list,
        zip(*[
            (float(line.split()[0]),float(line.split()[1]))
            for line in energy_file 
            if not line.startswith(("#","@")) 
            if float(line.split()[1]) < 1000 
        ])
    )

plotly.offline.init_notebook_mode(connected=True)

fig = {
    "data": [go.Scatter(x=x, y=y)],
    "layout": go.Layout(title="Heating process",
                        xaxis=dict(title = "Heating Step (ps)"),
                        yaxis=dict(title = "Temperature (K)")
                       )
}

plotly.offline.iplot(fig)
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
# Import module
from biobb_amber.sander.sander_mdrun import sander_mdrun

# Create prop dict and inputs/outputs
output_nvt_traj_path = 'sander.nvt.netcdf'
output_nvt_rst_path = 'sander.nvt.rst'
output_nvt_log_path = 'sander.nvt.log'

prop = {
    "simulation_type" : 'nvt',
    "mdin" : { 
        'nstlim' : 500, # Reducing the number of steps for the sake of time (1ps)
        'ntr' : 1,     # Overwritting restrain parameter
        'restraintmask' : '\"!:WAT,Cl-,Na+ & !@H=\"',      # Restraining solute heavy atoms
        'restraint_wt' : 5.0                              # With a force constant of 5 Kcal/mol*A2
    }
}

# Create and launch bb
sander_mdrun(input_top_path=output_ions_top_path,
            input_crd_path=output_heat_rst_path,
            input_ref_path=output_heat_rst_path,
            output_traj_path=output_nvt_traj_path,
            output_rst_path=output_nvt_rst_path,
            output_log_path=output_nvt_log_path,
            properties=prop)
650
651
652
653
654
655
656
657
658
659
660
661
662
663
# Import module
from biobb_amber.process.process_mdout import process_mdout

# Create prop dict and inputs/outputs
output_dat_nvt_path = 'sander.md.nvt.temp.dat'

prop = {
    "terms" : ['TEMP']
}

# Create and launch bb
process_mdout(input_log_path=output_nvt_log_path,
            output_dat_path=output_dat_nvt_path,
            properties=prop)
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
#Read data from file and filter energy values higher than 1000 Kj/mol^-1
with open(output_dat_nvt_path,'r') as energy_file:
    x,y = map(
        list,
        zip(*[
            (float(line.split()[0]),float(line.split()[1]))
            for line in energy_file 
            if not line.startswith(("#","@")) 
            if float(line.split()[1]) < 1000 
        ])
    )

plotly.offline.init_notebook_mode(connected=True)

fig = {
    "data": [go.Scatter(x=x, y=y)],
    "layout": go.Layout(title="NVT equilibration",
                        xaxis=dict(title = "Equilibration Step (ps)"),
                        yaxis=dict(title = "Temperature (K)")
                       )
}

plotly.offline.iplot(fig)
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
# Import module
from biobb_amber.sander.sander_mdrun import sander_mdrun

# Create prop dict and inputs/outputs
output_npt_traj_path = 'sander.npt.netcdf'
output_npt_rst_path = 'sander.npt.rst'
output_npt_log_path = 'sander.npt.log'

prop = {
    "simulation_type" : 'npt',
    "mdin" : { 
        'nstlim' : 500, # Reducing the number of steps for the sake of time (1ps)
        'ntr' : 1,     # Overwritting restrain parameter
        'restraintmask' : '\"!:WAT,Cl-,Na+ & !@H=\"',      # Restraining solute heavy atoms
        'restraint_wt' : 2.5                               # With a force constant of 2.5 Kcal/mol*A2
    }
}

# Create and launch bb
sander_mdrun(input_top_path=output_ions_top_path,
            input_crd_path=output_nvt_rst_path,
            input_ref_path=output_nvt_rst_path,
            output_traj_path=output_npt_traj_path,
            output_rst_path=output_npt_rst_path,
            output_log_path=output_npt_log_path,
            properties=prop)
722
723
724
725
726
727
728
729
730
731
732
733
734
735
# Import module
from biobb_amber.process.process_mdout import process_mdout

# Create prop dict and inputs/outputs
output_dat_npt_path = 'sander.md.npt.dat'

prop = {
    "terms" : ['PRES','DENSITY']
}

# Create and launch bb
process_mdout(input_log_path=output_npt_log_path,
            output_dat_path=output_dat_npt_path,
            properties=prop)
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
# Read pressure and density data from file 
with open(output_dat_npt_path,'r') as pd_file:
    x,y,z = map(
        list,
        zip(*[
            (float(line.split()[0]),float(line.split()[1]),float(line.split()[2]))
            for line in pd_file 
            if not line.startswith(("#","@")) 
        ])
    )

plotly.offline.init_notebook_mode(connected=True)

trace1 = go.Scatter(
    x=x,y=y
)
trace2 = go.Scatter(
    x=x,y=z
)

fig = subplots.make_subplots(rows=1, cols=2, print_grid=False)

fig.append_trace(trace1, 1, 1)
fig.append_trace(trace2, 1, 2)

fig['layout']['xaxis1'].update(title='Time (ps)')
fig['layout']['xaxis2'].update(title='Time (ps)')
fig['layout']['yaxis1'].update(title='Pressure (bar)')
fig['layout']['yaxis2'].update(title='Density (Kg*m^-3)')

fig['layout'].update(title='Pressure and Density during NPT Equilibration')
fig['layout'].update(showlegend=False)

plotly.offline.iplot(fig)
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
# Import module
from biobb_amber.sander.sander_mdrun import sander_mdrun

# Create prop dict and inputs/outputs
output_free_traj_path = 'sander.free.netcdf'
output_free_rst_path = 'sander.free.rst'
output_free_log_path = 'sander.free.log'

prop = {
    "simulation_type" : 'free',
    "mdin" : { 
        'nstlim' : 2500, # Reducing the number of steps for the sake of time (5ps)
        'ntwx' : 500  # Print coords to trajectory every 500 steps (1 ps)
    }
}

# Create and launch bb
sander_mdrun(input_top_path=output_ions_top_path,
            input_crd_path=output_npt_rst_path,
            output_traj_path=output_free_traj_path,
            output_rst_path=output_free_rst_path,
            output_log_path=output_free_log_path,
            properties=prop)
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
# cpptraj_rms: Computing Root Mean Square deviation to analyse structural stability 
#              RMSd against minimized and equilibrated snapshot (backbone atoms)   

# Import module
from biobb_analysis.ambertools.cpptraj_rms import cpptraj_rms

# Create prop dict and inputs/outputs
output_rms_first = pdbCode+'_rms_first.dat'

prop = {
    'mask': 'backbone',
    'reference': 'first'
}

# Create and launch bb
cpptraj_rms(input_top_path=output_ions_top_path,
            input_traj_path=output_free_traj_path,
            output_cpptraj_path=output_rms_first,
            properties=prop)
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
# cpptraj_rms: Computing Root Mean Square deviation to analyse structural stability 
#              RMSd against experimental structure (backbone atoms)   

# Import module
from biobb_analysis.ambertools.cpptraj_rms import cpptraj_rms

# Create prop dict and inputs/outputs
output_rms_exp = pdbCode+'_rms_exp.dat'

prop = {
    'mask': 'backbone',
    'reference': 'experimental'
}

# Create and launch bb
cpptraj_rms(input_top_path=output_ions_top_path,
            input_traj_path=output_free_traj_path,
            output_cpptraj_path=output_rms_exp,
            input_exp_path=output_pdb_path, 
            properties=prop)
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
# Read RMS vs first snapshot data from file 
with open(output_rms_first,'r') as rms_first_file:
    x,y = map(
        list,
        zip(*[
            (float(line.split()[0]),float(line.split()[1]))
            for line in rms_first_file 
            if not line.startswith(("#","@")) 
        ])
    )

# Read RMS vs experimental structure data from file 
with open(output_rms_exp,'r') as rms_exp_file:
    x2,y2 = map(
        list,
        zip(*[
            (float(line.split()[0]),float(line.split()[1]))
            for line in rms_exp_file
            if not line.startswith(("#","@")) 
        ])
    )

trace1 = go.Scatter(
    x = x,
    y = y,
    name = 'RMSd vs first'
)

trace2 = go.Scatter(
    x = x,
    y = y2,
    name = 'RMSd vs exp'
)

data = [trace1, trace2]

plotly.offline.init_notebook_mode(connected=True)

fig = {
    "data": data,
    "layout": go.Layout(title="RMSd during free MD Simulation",
                        xaxis=dict(title = "Time (ps)"),
                        yaxis=dict(title = "RMSd (Angstrom)")
                       )
}

plotly.offline.iplot(fig)
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
# cpptraj_rgyr: Computing Radius of Gyration to measure the protein compactness during the free MD simulation 

# Import module
from biobb_analysis.ambertools.cpptraj_rgyr import cpptraj_rgyr

# Create prop dict and inputs/outputs
output_rgyr = pdbCode+'_rgyr.dat'

prop = {
    'mask': 'backbone'
}

# Create and launch bb
cpptraj_rgyr(input_top_path=output_ions_top_path,
            input_traj_path=output_free_traj_path,
            output_cpptraj_path=output_rgyr,
            properties=prop)
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
# Read Rgyr data from file 
with open(output_rgyr,'r') as rgyr_file:
    x,y = map(
        list,
        zip(*[
            (float(line.split()[0]),float(line.split()[1]))
            for line in rgyr_file 
            if not line.startswith(("#","@")) 
        ])
    )

plotly.offline.init_notebook_mode(connected=True)

fig = {
    "data": [go.Scatter(x=x, y=y)],
    "layout": go.Layout(title="Radius of Gyration",
                        xaxis=dict(title = "Time (ps)"),
                        yaxis=dict(title = "Rgyr (Angstrom)")
                       )
}

plotly.offline.iplot(fig)
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
# cpptraj_image: "Imaging" the resulting trajectory
#                Removing water molecules and ions from the resulting structure

# Import module
from biobb_analysis.ambertools.cpptraj_image import cpptraj_image

# Create prop dict and inputs/outputs
output_imaged_traj = pdbCode+'_imaged_traj.trr'

prop = {
    'mask': 'solute',
    'format': 'trr'
}

# Create and launch bb
cpptraj_image(input_top_path=output_ions_top_path,
            input_traj_path=output_free_traj_path,
            output_cpptraj_path=output_imaged_traj,
            properties=prop)
964
965
966
967
968
969
# Show trajectory
view = nglview.show_simpletraj(nglview.SimpletrajTrajectory(output_imaged_traj, output_ambpdb_path), gui=True)
view.clear_representations()
view.add_representation('cartoon', color='sstruc')
view.add_representation('licorice', selection='JZ4', color='element', radius=1)
view
ShowHide 37 more snippets with no or duplicated tags.

Login to post a comment if you would like to share your experience with this workflow.

Do you know this workflow well? If so, you can request seller status , and start supporting this workflow.

Free

Created: 1yr ago
Updated: 1yr ago
Maitainers: public
URL: https://github.com/bioexcel/biobb_wf_amber_md_setup
Name: jupyter-notebook-amber-protein-ligand-complex-md-s
Version: Version 3
Badge:
workflow icon

Insert copied code into your website to add a link to this workflow.

Downloaded: 0
Copyright: Public Domain
License: None
  • Future updates

Related Workflows

cellranger-snakemake-gke
snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...