Jupyter Notebook Protein Ligand Complex MD Setup tutorial using Biobb.

public public 1yr ago Version: Version 5 0 bookmarks

Based on the official GROMACS tutorial .

This tutorial aims to illustrate the process of setting up a simulation system containing a protein in complex with a ligand , step by step, using the BioExcel Building Blocks library (biobb) . The particular example used is the T4 lysozyme L99A/M102Q protein (PDB code 3HTB), in complex with the 2-propylphenol small molecule (3-letter Code JZ4).

Settings

Biobb modules used

Auxiliar libraries used

  • nb_conda_kernels : Enables a Jupyter Notebook or JupyterLab application in one conda environment to access kernels for Python, R, and other languages found in other environments.

  • nglview : Jupyter/IPython widget to interactively view molecular structures and trajectories in notebooks.

  • ipywidgets : Interactive HTML widgets for Jupyter notebooks and the IPython kernel.

  • os : Python miscellaneous operating system interfaces

  • plotly : Python interactive graphing library integrated in Jupyter notebooks.

  • simpletraj : Lightweight coordinate-only trajectory reader based on code from GROMACS, MDAnalysis and VMD.

Conda Installation and Launch

git clone https://github.com/bioexcel/biobb_wf_protein-complex_md_setup.git
cd biobb_wf_protein-complex_md_setup
conda env create -f conda_env/environment.yml
conda activate biobb_Protein-Complex_MDsetup_tutorial
jupyter nbextension enable python-markdown/main
jupyter-notebook biobb_wf_protein-complex_md_setup/notebooks/biobb_Protein-Complex_MDsetup_tutorial.ipynb

Please execute the following commands before launching the Jupyter Notebook if you experience some

jupyter-nbextension enable --py --user widgetsnbextension
jupyter-nbextension enable --py --user nglview

Tutorial

Click here to view tutorial in Read the Docs

Version

2023.3

Copyright & Licensing

This software has been developed in the MMB group at the BSC & IRB for the European BioExcel , funded by the European Commission (EU H2020 823830 , EU H2020 675728 ).

Licensed under the Apache License 2.0 , see the file LICENSE for details.

Code Snippets

2
3
4
5
6
7
8
9
import nglview
import ipywidgets
import os
import zipfile

pdbCode = "3HTB"
ligandCode = "JZ4"
mol_charge = 0
13
14
15
16
17
18
19
20
21
22
23
24
25
26
# Downloading desired PDB file 
# Import module
from biobb_io.api.pdb import pdb

# Create properties dict and inputs/outputs
downloaded_pdb = pdbCode+'.orig.pdb'
prop = {
    'pdb_code': pdbCode,
    'filter': False
}

# Create and launch bb
pdb(output_pdb_path=downloaded_pdb,
    properties=prop)
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# Extracting Protein, Ligand and Protein-Ligand Complex to three different files
# Import module
from biobb_structure_utils.utils.extract_heteroatoms import extract_heteroatoms
from biobb_structure_utils.utils.extract_molecule import extract_molecule
from biobb_structure_utils.utils.cat_pdb import cat_pdb

# Create properties dict and inputs/outputs
proteinFile = pdbCode+'.pdb'
ligandFile = ligandCode+'.pdb'
complexFile = pdbCode+'_'+ligandCode+'.pdb'

prop = {
     'heteroatoms' : [{"name": "JZ4"}]
}

extract_heteroatoms(input_structure_path=downloaded_pdb,
     output_heteroatom_path=ligandFile,
     properties=prop)

extract_molecule(input_structure_path=downloaded_pdb,
     output_molecule_path=proteinFile)

print(proteinFile, ligandFile, complexFile)

cat_pdb(input_structure1=proteinFile,
       input_structure2=ligandFile,
       output_structure_path=complexFile)
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Show structures: protein, ligand and protein-ligand complex
view1 = nglview.show_structure_file(proteinFile)
view1._remote_call('setSize', target='Widget', args=['350px','400px'])
view1.camera='orthographic'
view1
view2 = nglview.show_structure_file(ligandFile)
view2.add_representation(repr_type='ball+stick')
view2._remote_call('setSize', target='Widget', args=['350px','400px'])
view2.camera='orthographic'
view2
view3 = nglview.show_structure_file(complexFile)
view3.add_representation(repr_type='licorice', radius='.5', selection=ligandCode)
view3._remote_call('setSize', target='Widget', args=['350px','400px'])
view3.camera='orthographic'
view3
ipywidgets.HBox([view1, view2, view3])
79
80
81
82
83
84
85
86
87
88
# Check & Fix Protein Structure
# Import module
from biobb_model.model.fix_side_chain import fix_side_chain

# Create prop dict and inputs/outputs
fixed_pdb = pdbCode+'_fixed.pdb'

# Create and launch bb
fix_side_chain(input_pdb_path=proteinFile,
             output_pdb_path=fixed_pdb)
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
# Create Protein system topology
# Import module
from biobb_gromacs.gromacs.pdb2gmx import pdb2gmx

# Create inputs/outputs
output_pdb2gmx_gro = pdbCode+'_pdb2gmx.gro'
output_pdb2gmx_top_zip = pdbCode+'_pdb2gmx_top.zip'
prop = {
    'force_field' : 'amber99sb-ildn',
    'water_type': 'spce'
}

# Create and launch bb
pdb2gmx(input_pdb_path=fixed_pdb,
        output_gro_path=output_pdb2gmx_gro,
        output_top_zip_path=output_pdb2gmx_top_zip,
        properties=prop)
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# Create Ligand system topology, STEP 1
# Reduce_add_hydrogens: add Hydrogen atoms to a small molecule (using Reduce tool from Ambertools package)
# Import module
from biobb_chemistry.ambertools.reduce_add_hydrogens import reduce_add_hydrogens

# Create prop dict and inputs/outputs
output_reduce_h = ligandCode+'.reduce.H.pdb' 
prop = {
    'nuclear' : 'true'
}

# Create and launch bb
reduce_add_hydrogens(input_path=ligandFile,
                   output_path=output_reduce_h,
                   properties=prop)
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Create Ligand system topology, STEP 2
# Babel_minimize: Structure energy minimization of a small molecule after being modified adding hydrogen atoms
# Import module
from biobb_chemistry.babelm.babel_minimize import babel_minimize

# Create prop dict and inputs/outputs
output_babel_min = ligandCode+'.H.min.mol2'                              
prop = {
    'method' : 'sd',
    'criteria' : '1e-10',
    'force_field' : 'GAFF'
}


# Create and launch bb
babel_minimize(input_path=output_reduce_h,
              output_path=output_babel_min,
              properties=prop)
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Show different structures generated (for comparison)

view1 = nglview.show_structure_file(ligandFile)
view1.add_representation(repr_type='ball+stick')
view1._remote_call('setSize', target='Widget', args=['350px','400px'])
view1.camera='orthographic'
view1
view2 = nglview.show_structure_file(output_reduce_h)
view2.add_representation(repr_type='ball+stick')
view2._remote_call('setSize', target='Widget', args=['350px','400px'])
view2.camera='orthographic'
view2
view3 = nglview.show_structure_file(output_babel_min)
view3.add_representation(repr_type='ball+stick')
view3._remote_call('setSize', target='Widget', args=['350px','400px'])
view3.camera='orthographic'
view3
ipywidgets.HBox([view1, view2, view3])
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
# Create Ligand system topology, STEP 3
# Acpype_params_gmx: Generation of topologies for GROMACS with ACPype
# Import module
from biobb_chemistry.acpype.acpype_params_gmx import acpype_params_gmx

# Create prop dict and inputs/outputs
output_acpype_gro = ligandCode+'params.gro'
output_acpype_itp = ligandCode+'params.itp'
output_acpype_top = ligandCode+'params.top'
output_acpype = ligandCode+'params'
prop = {
    'basename' : output_acpype,
    'charge' : mol_charge
}

# Create and launch bb
acpype_params_gmx(input_path=output_babel_min, 
                output_path_gro=output_acpype_gro,
                output_path_itp=output_acpype_itp,
                output_path_top=output_acpype_top,
                properties=prop)
196
197
198
199
200
201
202
203
204
205
206
207
208
# MakeNdx: Creating index file with a new group (small molecule heavy atoms)
from biobb_gromacs.gromacs.make_ndx import make_ndx

# Create prop dict and inputs/outputs
output_ligand_ndx = ligandCode+'_index.ndx'
prop = {
    'selection': "0 & ! a H*"
}

# Create and launch bb
make_ndx(input_structure_path=output_acpype_gro,
        output_ndx_path=output_ligand_ndx,
        properties=prop)
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Genrestr: Generating the position restraints file
from biobb_gromacs.gromacs.genrestr import genrestr

# Create prop dict and inputs/outputs
output_restraints_top = ligandCode+'_posres.itp'
prop = {
    'force_constants': "1000 1000 1000",
    'restrained_group': "System"
}

# Create and launch bb
genrestr(input_structure_path=output_acpype_gro,
         input_ndx_path=output_ligand_ndx,
         output_itp_path=output_restraints_top,
         properties=prop)
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# biobb analysis module
from biobb_analysis.gromacs.gmx_trjconv_str import gmx_trjconv_str
from biobb_structure_utils.utils.cat_pdb import cat_pdb

# Convert gro (with hydrogens) to pdb (PROTEIN)
proteinFile_H = pdbCode+'_'+ligandCode+'_complex_H.pdb'
prop = {
    'selection' : 'System'
}

# Create and launch bb
gmx_trjconv_str(input_structure_path=output_pdb2gmx_gro,
              input_top_path=output_pdb2gmx_gro,
              output_str_path=proteinFile_H, 
              properties=prop)

# Convert gro (with hydrogens) to pdb (LIGAND)
ligandFile_H = ligandCode+'_complex_H.pdb'
prop = {
    'selection' : 'System'
}

# Create and launch bb
gmx_trjconv_str(input_structure_path=output_acpype_gro,
              input_top_path=output_acpype_gro,
              output_str_path=ligandFile_H, 
              properties=prop)


# Concatenating both PDB files: Protein + Ligand
complexFile_H = pdbCode+'_'+ligandCode+'_H.pdb'

# Create and launch bb
cat_pdb(input_structure1=proteinFile_H,
       input_structure2=ligandFile_H,
       output_structure_path=complexFile_H)
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# AppendLigand: Append a ligand to a GROMACS topology
# Import module
from biobb_gromacs.gromacs_extra.append_ligand import append_ligand

# Create prop dict and inputs/outputs
output_complex_top = pdbCode+'_'+ligandCode+'_complex.top.zip'

posresifdef = "POSRES_"+ligandCode.upper()
prop = {
    'posres_name': posresifdef
}

# Create and launch bb
append_ligand(input_top_zip_path=output_pdb2gmx_top_zip,
             input_posres_itp_path=output_restraints_top,
             input_itp_path=output_acpype_itp, 
             output_top_zip_path=output_complex_top,
             properties=prop)
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# Editconf: Create solvent box
# Import module
from biobb_gromacs.gromacs.editconf import editconf

# Create prop dict and inputs/outputs
output_editconf_gro = pdbCode+'_'+ligandCode+'_complex_editconf.gro'

prop = {
    'box_type': 'octahedron',
    'distance_to_molecule': 0.8
}

# Create and launch bb
editconf(input_gro_path=complexFile_H, 
         output_gro_path=output_editconf_gro,
         properties=prop)
309
310
311
312
313
314
315
316
317
318
319
320
# Solvate: Fill the box with water molecules
from biobb_gromacs.gromacs.solvate import solvate

# Create prop dict and inputs/outputs
output_solvate_gro = pdbCode+'_'+ligandCode+'_solvate.gro'
output_solvate_top_zip = pdbCode+'_'+ligandCode+'_solvate_top.zip'

# Create and launch bb
solvate(input_solute_gro_path=output_editconf_gro,
        output_gro_path=output_solvate_gro,
        input_top_zip_path=output_complex_top,
        output_top_zip_path=output_solvate_top_zip)
324
325
326
327
328
329
330
331
332
#Show protein
view = nglview.show_structure_file(output_solvate_gro)
view.clear_representations()
view.add_representation(repr_type='cartoon', selection='protein', color='sstruc')
view.add_representation(repr_type='licorice', radius='.5', selection=ligandCode)
view.add_representation(repr_type='line', linewidth='1', selection='SOL', opacity='.3')
view._remote_call('setSize', target='Widget', args=['','600px'])
view.camera='orthographic'
view
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# Grompp: Creating portable binary run file for ion generation
from biobb_gromacs.gromacs.grompp import grompp

# Create prop dict and inputs/outputs
prop = {
    'mdp':{
        'nsteps':'5000'
    },
    'simulation_type':'minimization',
    'maxwarn': 1
}
output_gppion_tpr = pdbCode+'_'+ligandCode+'_complex_gppion.tpr'

# Create and launch bb
grompp(input_gro_path=output_solvate_gro,
       input_top_zip_path=output_solvate_top_zip, 
       output_tpr_path=output_gppion_tpr,
       properties=prop)
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
# Genion: Adding ions to reach a 0.05 molar concentration
from biobb_gromacs.gromacs.genion import genion

# Create prop dict and inputs/outputs
prop={
    'neutral':True,
    'concentration':0.05
}
output_genion_gro = pdbCode+'_'+ligandCode+'_genion.gro'
output_genion_top_zip = pdbCode+'_'+ligandCode+'_genion_top.zip'

# Create and launch bb
genion(input_tpr_path=output_gppion_tpr,
       output_gro_path=output_genion_gro, 
       input_top_zip_path=output_solvate_top_zip,
       output_top_zip_path=output_genion_top_zip, 
       properties=prop)
377
378
379
380
381
382
383
384
385
386
#Show protein
view = nglview.show_structure_file(output_genion_gro)
view.clear_representations()
view.add_representation(repr_type='cartoon', selection='protein', color='sstruc')
view.add_representation(repr_type='licorice', radius='.5', selection=ligandCode)
view.add_representation(repr_type='ball+stick', selection='NA')
view.add_representation(repr_type='ball+stick', selection='CL')
view._remote_call('setSize', target='Widget', args=['','600px'])
view.camera='orthographic'
view
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# Grompp: Creating portable binary run file for mdrun
from biobb_gromacs.gromacs.grompp import grompp

# Create prop dict and inputs/outputs
prop = {
    'mdp':{
        'nsteps':'5000',
        'emstep': 0.01,
        'emtol':'500'
    },
    'simulation_type':'minimization'
}
output_gppmin_tpr = pdbCode+'_'+ligandCode+'_gppmin.tpr'

# Create and launch bb
grompp(input_gro_path=output_genion_gro,
       input_top_zip_path=output_genion_top_zip,
       output_tpr_path=output_gppmin_tpr,
       properties=prop)
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# Mdrun: Running minimization
from biobb_gromacs.gromacs.mdrun import mdrun

# Create prop dict and inputs/outputs
output_min_trr = pdbCode+'_'+ligandCode+'_min.trr'
output_min_gro = pdbCode+'_'+ligandCode+'_min.gro'
output_min_edr = pdbCode+'_'+ligandCode+'_min.edr'
output_min_log = pdbCode+'_'+ligandCode+'_min.log'

# Create and launch bb
mdrun(input_tpr_path=output_gppmin_tpr,
      output_trr_path=output_min_trr, 
      output_gro_path=output_min_gro,
      output_edr_path=output_min_edr, 
      output_log_path=output_min_log)
430
431
432
433
434
435
436
437
438
439
440
441
442
# GMXEnergy: Getting system energy by time  
from biobb_analysis.gromacs.gmx_energy import gmx_energy

# Create prop dict and inputs/outputs
output_min_ene_xvg = pdbCode+'_'+ligandCode+'_min_ene.xvg'
prop = {
    'terms':  ["Potential"]
}

# Create and launch bb
gmx_energy(input_energy_path=output_min_edr, 
          output_xvg_path=output_min_ene_xvg, 
          properties=prop)
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
import plotly
import plotly.graph_objs as go

#Read data from file and filter energy values higher than 1000 Kj/mol^-1
with open(output_min_ene_xvg,'r') as energy_file:
    x,y = map(
        list,
        zip(*[
            (float(line.split()[0]),float(line.split()[1]))
            for line in energy_file 
            if not line.startswith(("#","@")) 
            if float(line.split()[1]) < 1000 
        ])
    )

plotly.offline.init_notebook_mode(connected=True)

fig = ({
    "data": [go.Scatter(x=x, y=y)],
    "layout": go.Layout(title="Energy Minimization",
                        xaxis=dict(title = "Energy Minimization Step"),
                        yaxis=dict(title = "Potential Energy KJ/mol-1")
                       )
})

plotly.offline.iplot(fig)
475
476
477
478
479
480
481
482
483
484
485
486
487
# MakeNdx: Creating index file with a new group (protein-ligand complex)
from biobb_gromacs.gromacs.make_ndx import make_ndx

# Create prop dict and inputs/outputs
output_complex_ndx = pdbCode+'_'+ligandCode+'_index.ndx'
prop = {
    'selection': "\"Protein\"|\"Other\"" 
}

# Create and launch bb
make_ndx(input_structure_path=output_min_gro,
        output_ndx_path=output_complex_ndx,
        properties=prop)
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
# Grompp: Creating portable binary run file for NVT System Equilibration
from biobb_gromacs.gromacs.grompp import grompp

# Create prop dict and inputs/outputs
output_gppnvt_tpr = pdbCode+'_'+ligandCode+'gppnvt.tpr'
prop = {
    'mdp':{
        'nsteps':'5000',
        'tc-grps': 'Protein_Other Water_and_ions',
        'Define': '-DPOSRES -D' + posresifdef
    },
    'simulation_type':'nvt'
}

# Create and launch bb
grompp(input_gro_path=output_min_gro,
       input_top_zip_path=output_genion_top_zip,
       input_ndx_path=output_complex_ndx,
       output_tpr_path=output_gppnvt_tpr,
       properties=prop)
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
# Mdrun: Running NVT System Equilibration 
from biobb_gromacs.gromacs.mdrun import mdrun

# Create prop dict and inputs/outputs
output_nvt_trr = pdbCode+'_'+ligandCode+'_nvt.trr'
output_nvt_gro = pdbCode+'_'+ligandCode+'_nvt.gro'
output_nvt_edr = pdbCode+'_'+ligandCode+'_nvt.edr'
output_nvt_log = pdbCode+'_'+ligandCode+'_nvt.log'
output_nvt_cpt = pdbCode+'_'+ligandCode+'_nvt.cpt'

# Create and launch bb
mdrun(input_tpr_path=output_gppnvt_tpr,
      output_trr_path=output_nvt_trr,
      output_gro_path=output_nvt_gro,
      output_edr_path=output_nvt_edr,
      output_log_path=output_nvt_log,
      output_cpt_path=output_nvt_cpt)
534
535
536
537
538
539
540
541
542
543
544
545
546
# GMXEnergy: Getting system temperature by time during NVT Equilibration  
from biobb_analysis.gromacs.gmx_energy import gmx_energy

# Create prop dict and inputs/outputs
output_nvt_temp_xvg = pdbCode+'_'+ligandCode+'_nvt_temp.xvg'
prop = {
    'terms':  ["Temperature"]
}

# Create and launch bb
gmx_energy(input_energy_path=output_nvt_edr, 
          output_xvg_path=output_nvt_temp_xvg, 
          properties=prop)
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
import plotly
import plotly.graph_objs as go

# Read temperature data from file 
with open(output_nvt_temp_xvg,'r') as temperature_file:
    x,y = map(
        list,
        zip(*[
            (float(line.split()[0]),float(line.split()[1]))
            for line in temperature_file 
            if not line.startswith(("#","@")) 
        ])
    )

plotly.offline.init_notebook_mode(connected=True)

fig = ({
    "data": [go.Scatter(x=x, y=y)],
    "layout": go.Layout(title="Temperature during NVT Equilibration",
                        xaxis=dict(title = "Time (ps)"),
                        yaxis=dict(title = "Temperature (K)")
                       )
})

plotly.offline.iplot(fig)
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
# Grompp: Creating portable binary run file for (NPT) System Equilibration
from biobb_gromacs.gromacs.grompp import grompp

# Create prop dict and inputs/outputs
output_gppnpt_tpr = pdbCode+'_'+ligandCode+'_gppnpt.tpr'
prop = {
    'mdp':{
        'type': 'npt',
        'nsteps':'5000',
        'tc-grps': 'Protein_Other Water_and_ions',
        'Define': '-DPOSRES -D' + posresifdef
    },
    'simulation_type':'npt'
}

# Create and launch bb
grompp(input_gro_path=output_nvt_gro,
       input_top_zip_path=output_genion_top_zip,
       input_ndx_path=output_complex_ndx,
       output_tpr_path=output_gppnpt_tpr,
       input_cpt_path=output_nvt_cpt,
       properties=prop)
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
# Mdrun: Running NPT System Equilibration
from biobb_gromacs.gromacs.mdrun import mdrun

# Create prop dict and inputs/outputs
output_npt_trr = pdbCode+'_'+ligandCode+'_npt.trr'
output_npt_gro = pdbCode+'_'+ligandCode+'_npt.gro'
output_npt_edr = pdbCode+'_'+ligandCode+'_npt.edr'
output_npt_log = pdbCode+'_'+ligandCode+'_npt.log'
output_npt_cpt = pdbCode+'_'+ligandCode+'_npt.cpt'

# Create and launch bb
mdrun(input_tpr_path=output_gppnpt_tpr,
      output_trr_path=output_npt_trr,
      output_gro_path=output_npt_gro,
      output_edr_path=output_npt_edr,
      output_log_path=output_npt_log,
      output_cpt_path=output_npt_cpt)
623
624
625
626
627
628
629
630
631
632
633
634
635
# GMXEnergy: Getting system pressure and density by time during NPT Equilibration  
from biobb_analysis.gromacs.gmx_energy import gmx_energy

# Create prop dict and inputs/outputs
output_npt_pd_xvg = pdbCode+'_'+ligandCode+'_npt_PD.xvg'
prop = {
    'terms':  ["Pressure","Density"]
}

# Create and launch bb
gmx_energy(input_energy_path=output_npt_edr, 
          output_xvg_path=output_npt_pd_xvg, 
          properties=prop)
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
import plotly
from plotly import subplots
import plotly.graph_objs as go

# Read pressure and density data from file 
with open(output_npt_pd_xvg,'r') as pd_file:
    x,y,z = map(
        list,
        zip(*[
            (float(line.split()[0]),float(line.split()[1]),float(line.split()[2]))
            for line in pd_file 
            if not line.startswith(("#","@")) 
        ])
    )

plotly.offline.init_notebook_mode(connected=True)

trace1 = go.Scatter(
    x=x,y=y
)
trace2 = go.Scatter(
    x=x,y=z
)

fig = subplots.make_subplots(rows=1, cols=2, print_grid=False)

fig.append_trace(trace1, 1, 1)
fig.append_trace(trace2, 1, 2)

fig['layout']['xaxis1'].update(title='Time (ps)')
fig['layout']['xaxis2'].update(title='Time (ps)')
fig['layout']['yaxis1'].update(title='Pressure (bar)')
fig['layout']['yaxis2'].update(title='Density (Kg*m^-3)')

fig['layout'].update(title='Pressure and Density during NPT Equilibration')
fig['layout'].update(showlegend=False)

plotly.offline.iplot(fig)
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
# Grompp: Creating portable binary run file for mdrun
from biobb_gromacs.gromacs.grompp import grompp

# Create prop dict and inputs/outputs
prop = {
    'mdp':{
        #'nsteps':'500000' # 1 ns (500,000 steps x 2fs per step)
        #'nsteps':'5000' # 10 ps (5,000 steps x 2fs per step)
        'nsteps':'25000' # 50 ps (25,000 steps x 2fs per step)
    },
    'simulation_type':'free'
}
output_gppmd_tpr = pdbCode+'_'+ligandCode + '_gppmd.tpr'

# Create and launch bb
grompp(input_gro_path=output_npt_gro,
       input_top_zip_path=output_genion_top_zip,
       output_tpr_path=output_gppmd_tpr,
       input_cpt_path=output_npt_cpt,
       properties=prop)
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
# Mdrun: Running free dynamics
from biobb_gromacs.gromacs.mdrun import mdrun

# Create prop dict and inputs/outputs
output_md_trr = pdbCode+'_'+ligandCode+'_md.trr'
output_md_gro = pdbCode+'_'+ligandCode+'_md.gro'
output_md_edr = pdbCode+'_'+ligandCode+'_md.edr'
output_md_log = pdbCode+'_'+ligandCode+'_md.log'
output_md_cpt = pdbCode+'_'+ligandCode+'_md.cpt'

# Create and launch bb
mdrun(input_tpr_path=output_gppmd_tpr,
      output_trr_path=output_md_trr,
      output_gro_path=output_md_gro,
      output_edr_path=output_md_edr,
      output_log_path=output_md_log,
      output_cpt_path=output_md_cpt)
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
# GMXRms: Computing Root Mean Square deviation to analyse structural stability 
#         RMSd against minimized and equilibrated snapshot (backbone atoms)   

from biobb_analysis.gromacs.gmx_rms import gmx_rms

# Create prop dict and inputs/outputs
output_rms_first = pdbCode+'_'+ligandCode+'_rms_first.xvg'
prop = {
    'selection':  'Backbone'
}

# Create and launch bb
gmx_rms(input_structure_path=output_gppmd_tpr,
         input_traj_path=output_md_trr,
         output_xvg_path=output_rms_first, 
          properties=prop)
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
# GMXRms: Computing Root Mean Square deviation to analyse structural stability 
#         RMSd against experimental structure (backbone atoms)   

from biobb_analysis.gromacs.gmx_rms import gmx_rms

# Create prop dict and inputs/outputs
output_rms_exp = pdbCode+'_'+ligandCode+'_rms_exp.xvg'
prop = {
    'selection':  'Backbone'
}

# Create and launch bb
gmx_rms(input_structure_path=output_gppmin_tpr,
         input_traj_path=output_md_trr,
         output_xvg_path=output_rms_exp, 
          properties=prop)
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
import plotly
import plotly.graph_objs as go

# Read RMS vs first snapshot data from file 
with open(output_rms_first,'r') as rms_first_file:
    x,y = map(
        list,
        zip(*[
            (float(line.split()[0]),float(line.split()[1]))
            for line in rms_first_file 
            if not line.startswith(("#","@")) 
        ])
    )

# Read RMS vs experimental structure data from file 
with open(output_rms_exp,'r') as rms_exp_file:
    x2,y2 = map(
        list,
        zip(*[
            (float(line.split()[0]),float(line.split()[1]))
            for line in rms_exp_file
            if not line.startswith(("#","@")) 
        ])
    )

trace1 = go.Scatter(
    x = x,
    y = y,
    name = 'RMSd vs first'
)

trace2 = go.Scatter(
    x = x,
    y = y2,
    name = 'RMSd vs exp'
)

data = [trace1, trace2]

plotly.offline.init_notebook_mode(connected=True)

fig = ({
    "data": data,
    "layout": go.Layout(title="RMSd during free MD Simulation",
                        xaxis=dict(title = "Time (ps)"),
                        yaxis=dict(title = "RMSd (nm)")
                       )
})

plotly.offline.iplot(fig)
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
# GMXRgyr: Computing Radius of Gyration to measure the protein compactness during the free MD simulation 

from biobb_analysis.gromacs.gmx_rgyr import gmx_rgyr

# Create prop dict and inputs/outputs
output_rgyr = pdbCode+'_'+ligandCode+'_rgyr.xvg'
prop = {
    'selection':  'Backbone'
}

# Create and launch bb
gmx_rgyr(input_structure_path=output_gppmin_tpr,
         input_traj_path=output_md_trr,
         output_xvg_path=output_rgyr, 
          properties=prop)
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
import plotly
import plotly.graph_objs as go

# Read Rgyr data from file 
with open(output_rgyr,'r') as rgyr_file:
    x,y = map(
        list,
        zip(*[
            (float(line.split()[0]),float(line.split()[1]))
            for line in rgyr_file 
            if not line.startswith(("#","@")) 
        ])
    )

plotly.offline.init_notebook_mode(connected=True)

fig = ({
    "data": [go.Scatter(x=x, y=y)],
    "layout": go.Layout(title="Radius of Gyration",
                        xaxis=dict(title = "Time (ps)"),
                        yaxis=dict(title = "Rgyr (nm)")
                       )
})

plotly.offline.iplot(fig)
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
# GMXImage: "Imaging" the resulting trajectory
#           Removing water molecules and ions from the resulting structure
from biobb_analysis.gromacs.gmx_image import gmx_image

# Create prop dict and inputs/outputs
output_imaged_traj = pdbCode+'_imaged_traj.trr'
prop = {
    'center_selection':  'Protein_Other',
    'output_selection': 'Protein_Other',
    'pbc' : 'mol',
    'center' : True
}

# Create and launch bb
gmx_image(input_traj_path=output_md_trr,
         input_top_path=output_gppmd_tpr,
         input_index_path=output_complex_ndx,
         output_traj_path=output_imaged_traj, 
          properties=prop)
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
# GMXTrjConvStr: Converting and/or manipulating a structure
#                Removing water molecules and ions from the resulting structure
#                The "dry" structure will be used as a topology to visualize 
#                the "imaged dry" trajectory generated in the previous step.
from biobb_analysis.gromacs.gmx_trjconv_str import gmx_trjconv_str

# Create prop dict and inputs/outputs
output_dry_gro = pdbCode+'_md_dry.gro'
prop = {
    'selection':  'Protein_Other'
}

# Create and launch bb
gmx_trjconv_str(input_structure_path=output_md_gro,
                input_top_path=output_gppmd_tpr,
                input_index_path=output_complex_ndx,
                output_str_path=output_dry_gro, 
                properties=prop)
903
904
905
# Show trajectory
view = nglview.show_simpletraj(nglview.SimpletrajTrajectory(output_imaged_traj, output_dry_gro), gui=True)
view
ShowHide 30 more snippets with no or duplicated tags.

Login to post a comment if you would like to share your experience with this workflow.

Do you know this workflow well? If so, you can request seller status , and start supporting this workflow.

Free

Created: 1yr ago
Updated: 1yr ago
Maitainers: public
URL: https://github.com/bioexcel/biobb_wf_protein-complex_md_setup
Name: jupyter-notebook-protein-ligand-complex-md-setup-t
Version: Version 5
Badge:
workflow icon

Insert copied code into your website to add a link to this workflow.

Downloaded: 0
Copyright: Public Domain
License: Boost Software License 1.0
  • Future updates

Related Workflows

cellranger-snakemake-gke
snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...