Imputation workflow for low coverage whole genome sequencing data

public public 1yr ago Version: v0.2.0 0 bookmarks

This workflow is for imputation using low coverage whole genome sequencing data with QUILT . Also, it can perform benchmarking for both QUILT and GLIMPSE given different scenarios.

Dependencies

  • QUILT (QUILT_prepare_reference.R, QUILT.R)

  • GLIMPSE v2.0 (GLIMPSE2_split_reference, GLIMPSE2_phase, GLIMPSE2_ligate)

  • GLIMPSE v1.1.1 (GLIMPSE_chunk, GLIMPSE_phase, GLIMPSE_ligate)

  • samtools

  • bcftools

Usage

The usage of this workflow is described in the Snakemake Workflow Catalog .

If you use this workflow in a paper, don't forget to give credits to the authors by citing the URL of this (original) https://github.com/Zilong-Li/lcWGS-imputation-workflow and its DOI (see above).

Code Snippets

30
31
32
33
34
35
36
37
38
39
40
41
shell:
    """
    (
    if [ -s {params.af} ];then perl -lane 'print join(":",@F[0..3])."\\t$F[4]"' {params.af} > {output.tmp}; \
    else \
        bcftools +fill-tags {input.sites[0]} -- -t AF |  bcftools query -f '{params.ql1}' > {output.tmp}; \
    fi
    awk '{params.awk}' <(bcftools query -f '{params.ql0}' {input.sites[0]}) {output.tmp} >{output.af}
    bcftools view -s {params.samples} {params.truth} | bcftools query -f '{params.ql2}' | sed -E 's/\/|\|/\\t/g' > {output.tmp2}
    awk '{params.awk2}' <(bcftools query -f '{params.ql0}' {input.sites[0]}) {output.tmp2} >{output.gt}
    ) &> {log}
    """
63
64
65
66
shell:
    """
    bcftools query -f '{params.ql2}' -s {params.samples} {input} | sed -E 's/\/|\|/\\t/g' > {output}
    """
87
88
89
90
shell:
    """
    bcftools query -f '{params.ql2}' -s {params.samples} {input} | sed -E 's/\/|\|/\\t/g' > {output}
    """
111
112
113
114
shell:
    """
    bcftools query -f '{params.ql2}' -s {params.samples} {input} | sed -E 's/\/|\|/\\t/g' > {output}
    """
143
144
script:
    "../scripts/accuracy_single.R"
171
172
script:
    "../scripts/accuracy_single.R"
199
200
script:
    "../scripts/accuracy_single.R"
230
231
script:
    "../scripts/accuracy_quilt.R"
252
253
254
255
shell:
    """
    bcftools query -f '{params.ql2}' -s {params.samples} {input} | sed -E 's/\/|\|/\\t/g' > {output}
    """
276
277
278
279
shell:
    """
    bcftools query -f '{params.ql2}' -s {params.samples} {input} | sed -E 's/\/|\|/\\t/g' > {output}
    """
306
307
script:
    "../scripts/accuracy_single.R"
330
331
script:
    "../scripts/accuracy_single.R"
367
368
script:
    "../scripts/accuracy_panelsize.R"
404
405
script:
    "../scripts/accuracy_depth.R"
15
16
17
18
19
20
21
22
23
24
25
shell:
    """
    (
    if [ {wildcards.depth} == 0 ];then \
        samtools view -o {output} {params.bam} {wildcards.chrom} && samtools index {output} \
    ;else\
        FRAC=$(echo "scale=4 ; {wildcards.depth} / {params.depth}" | bc -l) && \
        samtools view -s $FRAC -o {output} {params.bam} {wildcards.chrom} && samtools index {output} \
    ; fi
    ) &> {log}
    """
39
40
shell:
    """ echo {input} | tr ' ' '\\n' > {output} """
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
shell:
    """
    (
    if [ -s {params.gmap} ];then \
        {params.time} -v GLIMPSE2_split_reference \
        --keep-monomorphic-ref-sites \
        --reference {input.refvcf} \
        --map '{params.gmap}' \
        --input-region {params.irg} \
        --output-region {params.org} \
        --output {output} \
        --threads 4 && \
        mv {output}_*.bin {output} \
    ; else \
        {params.time} -v GLIMPSE2_split_reference \
        --keep-monomorphic-ref-sites \
        --reference {input.refvcf} \
        --input-region {params.irg} \
        --output-region {params.org} \
        --output {output} \
        --threads 4 && \
        mv {output}_*.bin {output} \
    ; fi \
    ) &> {log}
    """
78
79
80
81
82
83
84
85
86
87
88
89
90
91
shell:
    """
    (
        {params.time} -v GLIMPSE2_phase \
        --bam-list {input.bams} \
        --reference {input.refbin} \
        --burnin {params.burnin} \
        --main {params.main} \
        --pbwt-depth {params.pbwtL} \
        --pbwt-modulo {params.pbwtS} \
        --ne {params.ne} \
        --output {output} \
    ) &> {log}
    """
135
136
137
138
139
140
141
142
shell:
    """
    echo {input} | tr ' ' '\\n' > {output.lst}
    GLIMPSE2_ligate --input {output.lst} --output {output.tmp} --threads 2 && \
    awk 'NR>1 {{ print $1 }}' {params.sample} > {output.sample} && \
    bcftools reheader -s {output.sample} -o {output.vcf} {output.tmp} && \
    bcftools index -f {output.vcf}
    """
173
174
175
176
177
178
179
shell:
    """
    (
    {params.time} -v bcftools mpileup -q {params.bq} -Q {params.mq} -f {params.fasta} -I -E -A -a 'FORMAT/DP' -r {wildcards.chrom} -T {input.sites[0]} -b {input.bams} -Ou | \
        bcftools call -Aim -C alleles -T {input.tsv[0]} -Ob -o {output.vcf} && bcftools index -f {output.vcf} \
    ) &> {log}
    """
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
shell:
    """
    (
    if [ -s {params.gmap} ];then \
        {params.time} -v GLIMPSE_phase \
        --input {input.glvcf} \
        --reference {input.refvcf} \
        --map '{params.gmap}' \
        --input-region {params.irg} \
        --output-region {params.org} \
        --burnin {params.burnin} \
        --main {params.main} \
        --pbwt-depth {params.pbwtL} \
        --pbwt-modulo {params.pbwtS} \
        --ne {params.ne} \
        --output {output} && \
        bcftools index -f {output} \
    ; else \
        {params.time} -v GLIMPSE_phase \
        --input {input.glvcf} \
        --reference {input.refvcf} \
        --input-region {params.irg} \
        --output-region {params.org} \
        --burnin {params.burnin} \
        --main {params.main} \
        --pbwt-depth {params.pbwtL} \
        --pbwt-modulo {params.pbwtS} \
        --ne {params.ne} \
        --output {output} && \
        bcftools index -f {output} \
    ; fi \
    ) &> {log}
    """
273
274
275
276
277
shell:
    """
    echo {input} | tr ' ' '\\n' > {output.lst}
    GLIMPSE_ligate --input {output.lst} --output {output.vcf} && bcftools index -f {output.vcf}
    """
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
shell:
    """
    (
    if [ -s {params.gmap} ];then \
    {params.time} -v QUILT_prepare_reference.R \
        --genetic_map_file='{params.gmap}' \
        --reference_vcf_file={input.vcf} \
        --chr={wildcards.chrom} \
        --regionStart={wildcards.start} \
        --regionEnd={wildcards.end} \
        --buffer={params.buffer} \
        --nGen={params.nGen} \
        --use_hapMatcherR={params.lowram} \
        --use_mspbwt=FALSE \
        --impute_rare_common={params.impute_rare_common} \
        --rare_af_threshold={params.rare_af_threshold} \
        --outputdir={params.outdir} \
    ; else \
    {params.time} -v QUILT_prepare_reference.R \
        --reference_vcf_file={input.vcf} \
        --chr={wildcards.chrom} \
        --regionStart={wildcards.start} \
        --regionEnd={wildcards.end} \
        --buffer={params.buffer} \
        --use_hapMatcherR={params.lowram} \
        --nGen={params.nGen} \
        --use_mspbwt=FALSE \
        --impute_rare_common={params.impute_rare_common} \
        --rare_af_threshold={params.rare_af_threshold} \
        --outputdir={params.outdir} \
    ; fi
    ) &> {log}
    """
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
shell:
    """
    (
    if [ -s {params.gmap} ];then \
    {params.time} -v QUILT_prepare_reference.R \
        --genetic_map_file='{params.gmap}' \
        --reference_vcf_file={input.vcf} \
        --chr={wildcards.chrom} \
        --regionStart={wildcards.start} \
        --regionEnd={wildcards.end} \
        --use_hapMatcherR={params.lowram} \
        --buffer={params.buffer} \
        --nGen={params.nGen} \
        --use_mspbwt=TRUE \
        --impute_rare_common={params.impute_rare_common} \
        --rare_af_threshold={params.rare_af_threshold} \
        --mspbwt_nindices={params.nindices} \
        --outputdir={params.outdir} \
    ; else \
    {params.time} -v QUILT_prepare_reference.R \
        --reference_vcf_file={input.vcf} \
        --chr={wildcards.chrom} \
        --regionStart={wildcards.start} \
        --regionEnd={wildcards.end} \
        --buffer={params.buffer} \
        --use_hapMatcherR={params.lowram} \
        --nGen={params.nGen} \
        --use_mspbwt=TRUE \
        --rare_af_threshold={params.rare_af_threshold} \
        --impute_rare_common={params.impute_rare_common} \
        --mspbwt_nindices={params.nindices} \
        --outputdir={params.outdir} \
    ; fi \
    ) &> {log}
    """
SnakeMake From line 106 of rules/quilt.smk
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
shell:
    """
    (
    if [ -s {params.gmap} ];then \
    {params.time} -v QUILT_prepare_reference.R \
        --genetic_map_file='{params.gmap}' \
        --reference_vcf_file={input.vcf} \
        --chr={wildcards.chrom} \
        --regionStart={wildcards.start} \
        --regionEnd={wildcards.end} \
        --buffer={params.buffer} \
        --use_hapMatcherR={params.lowram} \
        --impute_rare_common={params.impute_rare_common} \
        --rare_af_threshold={params.rare_af_threshold} \
        --nGen={params.nGen} \
        --use_zilong=TRUE \
        --use_mspbwt=FALSE \
        --mspbwt_nindices={params.nindices} \
        --mspbwtB={params.mspbwtB} \
        --outputdir={params.outdir} \
    ; else \
    {params.time} -v QUILT_prepare_reference.R \
        --reference_vcf_file={input.vcf} \
        --chr={wildcards.chrom} \
        --regionStart={wildcards.start} \
        --regionEnd={wildcards.end} \
        --buffer={params.buffer} \
        --use_hapMatcherR={params.lowram} \
        --impute_rare_common={params.impute_rare_common} \
        --rare_af_threshold={params.rare_af_threshold} \
        --nGen={params.nGen} \
        --use_zilong=TRUE \
        --use_mspbwt=FALSE \
        --mspbwt_nindices={params.nindices} \
        --mspbwtB={params.mspbwtB} \
        --outputdir={params.outdir} \
    ; fi \
    ) &> {log}
    """
SnakeMake From line 179 of rules/quilt.smk
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
shell:
    """
    {params.time} -v QUILT.R \
        --reference_vcf_file={input.vcf} \
        --prepared_reference_filename={input.rdata} \
        --bamlist={input.bams} \
        --chr={wildcards.chrom} \
        --regionStart={wildcards.start} \
        --regionEnd={wildcards.end} \
        --buffer={params.buffer} \
        --nGen={params.nGen} \
        --zilong=FALSE \
        --use_mspbwt=FALSE \
        --Ksubset={params.Ksubset} \
        --Knew={params.Ksubset} \
        --nGibbsSamples={params.nGibbsSamples} \
        --use_hapMatcherR={params.lowram} \
        --impute_rare_common={params.impute_rare_common} \
        --rare_af_threshold={params.rare_af_threshold} \
        --n_seek_its={params.n_seek_its} \
        --n_burn_in_seek_its={params.n_burnin_its} \
        --small_ref_panel_block_gibbs_iterations='{params.block_gibbs}' \
        --small_ref_panel_gibbs_iterations={params.gibbs_iters} \
        --output_filename={output} &> {log}
    """
SnakeMake From line 258 of rules/quilt.smk
314
315
316
317
318
319
320
321
shell:
    """
    ( \
       echo {input} | tr ' ' '\n' > {output.lst} && \
       bcftools concat --file-list {output.lst} --output-type b --threads 4 -o {output.vcf} && \
       bcftools index -f {output.vcf} \
    ) &> {log}
    """
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
shell:
    """
    {params.time} -v QUILT.R \
        --reference_vcf_file={input.vcf} \
        --prepared_reference_filename={input.rdata} \
        --bamlist={input.bams} \
        --use_hapMatcherR={params.lowram} \
        --impute_rare_common={params.impute_rare_common} \
        --chr={wildcards.chrom} \
        --regionStart={wildcards.start} \
        --regionEnd={wildcards.end} \
        --buffer={params.buffer} \
        --nGen={params.nGen} \
        --zilong=FALSE \
        --use_mspbwt=TRUE \
        --Ksubset={params.Ksubset} \
        --Knew={params.Ksubset} \
        --nGibbsSamples={params.nGibbsSamples} \
        --n_seek_its={params.n_seek_its} \
        --n_burn_in_seek_its={params.n_burnin_its} \
        --rare_af_threshold={params.rare_af_threshold} \
        --small_ref_panel_block_gibbs_iterations='{params.block_gibbs}' \
        --small_ref_panel_gibbs_iterations={params.gibbs_iters} \
        --output_filename={output} &> {log}
    """
SnakeMake From line 362 of rules/quilt.smk
418
419
420
421
422
423
424
425
shell:
    """
    ( \
       echo {input} | tr ' ' '\n' > {output.lst} && \
       bcftools concat --file-list {output.lst} --output-type b --threads 4 -o {output.vcf} && \
       bcftools index -f {output.vcf} \
    ) &> {log}
    """
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
shell:
    """
    {params.time} -v QUILT.R \
        --reference_vcf_file={input.vcf} \
        --prepared_reference_filename={input.rdata} \
        --bamlist={input.bams} \
        --use_hapMatcherR={params.lowram} \
        --impute_rare_common={params.impute_rare_common} \
        --chr={wildcards.chrom} \
        --regionStart={wildcards.start} \
        --regionEnd={wildcards.end} \
        --buffer={params.buffer} \
        --nGen={params.nGen} \
        --mspbwtL={params.mspbwtL} \
        --mspbwtM={params.mspbwtM} \
        --zilong=TRUE \
        --use_mspbwt=FALSE \
        --Ksubset={params.Ksubset} \
        --Knew={params.Ksubset} \
        --nGibbsSamples={params.nGibbsSamples} \
        --n_seek_its={params.n_seek_its} \
        --n_burn_in_seek_its={params.n_burnin_its} \
        --rare_af_threshold={params.rare_af_threshold} \
        --small_ref_panel_block_gibbs_iterations='{params.block_gibbs}' \
        --small_ref_panel_gibbs_iterations={params.gibbs_iters} \
        --output_filename={output} &> {log}
    """
SnakeMake From line 468 of rules/quilt.smk
526
527
528
529
530
531
532
533
shell:
    """
    ( \
       echo {input} | tr ' ' '\n' > {output.lst} && \
       bcftools concat --file-list {output.lst} --output-type b --threads 4 -o {output.vcf} && \
       bcftools index -f {output.vcf} \
    ) &> {log}
    """
14
15
script:
    "../scripts/subset_samples.R"
36
37
38
39
40
41
42
43
44
shell:
    """
    ( \
        bcftools view -v snps -m2 -M2 --samples-file {input} --threads 4 {params.vcf}| bcftools norm - -d snps -Ob -o {output.vcf} --threads 4 && bcftools index -f {output.vcf} && \
        touch -m {output.vcf}.csi && \
        bcftools view -G {output.vcf} -Oz -o {output.sites} --threads 4 && tabix -f {output.sites} && \
        bcftools query -f'%CHROM\t%POS\t%REF,%ALT\n' {output.sites} | bgzip -c > {output.tsv} && tabix -s1 -b2 -e2 {output.tsv}
    )  &> {log}
    """
83
84
85
86
87
88
89
90
91
shell:
    """
    ( \
        bcftools view -v snps -m2 -M2 --samples-file {input} --threads 4 {params.vcf} {wildcards.chrom}:{params.start}-{params.end}| bcftools norm - -d snps -Ob -o {output.vcf} --threads 4 && bcftools index -f {output.vcf} && \
        touch -m {output.vcf}.csi && \
        bcftools view -G {output.vcf} -Oz -o {output.sites} --threads 4 && tabix -f {output.sites} && \
        bcftools query -f'%CHROM\t%POS\t%REF,%ALT\n' {output.sites} | bgzip -c > {output.tsv} && tabix -s1 -b2 -e2 {output.tsv}
    )  &> {log}
    """
120
121
122
123
124
125
126
127
shell:
    """
    ( \
        echo {input} | tr ' ' '\n' > {output.sites}.list && \
        bcftools concat -f {output.sites}.list -Da --threads 4 -Oz -o {output.sites} && tabix -f {output.sites} && \
        bcftools query -f'%CHROM\t%POS\t%REF,%ALT\n' {output.sites} | bgzip -c > {output.tsv} && tabix -s1 -b2 -e2 {output.tsv}
    ) & > {log}
    """
19
20
21
22
shell:
    """
    echo {input} | tr ' ' '\\n' | xargs grep -E 'Elaps|Maximum' | awk '{{print $NF}}' | sed 'N;s/\\n/ /' > {output}
    """
42
43
44
45
shell:
    """
    echo {input} | tr ' ' '\\n' | xargs grep -E 'Elaps|Maximum' | awk '{{print $NF}}' | sed 'N;s/\\n/ /' > {output}
    """
65
66
67
68
shell:
    """
    echo {input} | tr ' ' '\\n' | xargs grep -E 'Elaps|Maximum' | awk '{{print $NF}}' | sed 'N;s/\\n/ /' > {output}
    """
88
89
90
91
shell:
    """
    echo {input} | tr ' ' '\\n' | xargs grep -E 'Elaps|Maximum' | awk '{{print $NF}}' | sed 'N;s/\\n/ /' > {output}
    """
111
112
113
114
shell:
    """
    echo {input} | tr ' ' '\\n' | xargs grep -E 'Elaps|Maximum' | awk '{{print $NF}}' | sed 'N;s/\\n/ /' > {output}
    """
SnakeMake From line 111 of rules/speed.smk
137
138
script:
    "../scripts/speed_single.R"
SnakeMake From line 137 of rules/speed.smk
161
162
script:
    "../scripts/speed_single.R"
SnakeMake From line 161 of rules/speed.smk
185
186
script:
    "../scripts/speed_single.R"
SnakeMake From line 185 of rules/speed.smk
205
206
script:
    "../scripts/speed_single.R"
SnakeMake From line 205 of rules/speed.smk
225
226
script:
    "../scripts/speed_single.R"
SnakeMake From line 225 of rules/speed.smk
260
261
script:
    "../scripts/speed_panelsize.R"
SnakeMake From line 260 of rules/speed.smk
294
295
script:
    "../scripts/speed_depth.R"
SnakeMake From line 294 of rules/speed.smk
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
snakemake@source("common.R")


groups <- as.numeric(snakemake@config[["downsample"]])

df.truth <- read.table(snakemake@input[["truth"]])
df.truth <- sapply(seq(1, dim(df.truth)[2] - 1, 2), function(i) {
  rowSums(df.truth[, (i + 1):(i + 2)])
}) # matrix: nsnps x nsamples
rownames(df.truth) <- read.table(snakemake@input[["truth"]])[,1]
af <- as.numeric(read.table(snakemake@input[["af"]])[, 2])
names(af) <- read.table(snakemake@input[["af"]])[, 1]

dl.quilt1 <- lapply(snakemake@input[["regular"]], parse.quilt.gts)
dl.quilt2 <- lapply(snakemake@input[["zilong"]], parse.quilt.gts)
dl.glimpse1 <- lapply(snakemake@input[["glimpse1"]], parse.quilt.gts)
dl.glimpse2 <- lapply(snakemake@input[["glimpse2"]], parse.quilt.gts)

bins <- sort(unique(c(
  c(0, 0.01 / 100, 0.02 / 100, 0.05 / 100),
  c(0, 0.01 / 10, 0.02 / 10, 0.05 / 10),
  c(0, 0.01 / 1, 0.02 / 1, 0.05 / 1),
  seq(0.1, 0.5, length.out = 5)
)))

accuracy_by_af <- lapply(seq(length(groups)), function(i) {
  d <- acc_r2_by_af(df.truth, dl.quilt2[[i]], dl.glimpse2[[i]], dl.quilt1[[i]], dl.glimpse1[[i]], af, bins)
  colnames(d) <- c("bin","QUILT2", "GLIMPSE2", "QUILT1", "GLIMPSE1")
  d
})
names(accuracy_by_af) <- paste0(as.character(groups), "x")

saveRDS(accuracy_by_af, snakemake@output[["rds"]])

## (rds <- readRDS("/maps/projects/alab/people/rlk420/quilt2/human/UKBB_GEL_CEU/bench-speed/results/summary/all.accuracy.panelsize0.chr20.rds"))

pdf(paste0(snakemake@output[["rds"]], ".pdf"), w = 12, h = 6)

a1 <- accuracy_by_af[[1]]
x <- a1$bin[!sapply(a1[, 2], is.na)] # remove AF bin with NULL results
x <- log10(as.numeric(x))
labels <- 100 * bins[-1]
labels <- labels[!sapply(a1[, 2], is.na)]
ymin <- min(sapply(accuracy_by_af, function(d) {
  m <- as.matrix(apply(d[, -1], 2, unlist))
  min(m, na.rm = T)
}))


par(mfrow = c(1, 2))
plot(1, col = "transparent", axes = F, xlim = c(min(x), max(x)), ylim = c(0.9 * ymin, 1.0), ylab = "Aggregated R2 within each AF bin", xlab = "Allele Frequency")
nd <- length(groups)

for (i in 1:nd) {
  d <- accuracy_by_af[[i]]
  # https://stackoverflow.com/questions/33004238/r-removing-null-elements-from-a-list
  y <- rmna(d$QUILT2)
  lines(x, y, type = "l", lwd = i / nd * 2.5, pch = 1, col = mycols["QUILT2"])
  y <- rmna(d$GLIMPSE2)
  lines(x, y, type = "l", lwd = i / nd * 2.5, pch = 1, col = mycols["GLIMPSE2"])
  y <- rmna(d$QUILT1)
  lines(x, y, type = "l", lwd = i / nd * 2.5, pch = 1, col = mycols["QUILT1"])
  y <- rmna(d$GLIMPSE1)
  lines(x, y, type = "l", lwd = i / nd * 2.5, pch = 1, col = mycols["GLIMPSE1"])
}
axis(side = 1, at = x, labels = labels)
axis(side = 2, at = seq(0, 1, 0.2))
legend("bottomright", legend = paste0(groups, "x"), lwd = (1:nd) * 2.5 / nd, bty = "n")

plot(1, col = "transparent", axes = F, xlim = c(min(x), max(x)), ylim = c(0.90, 1.0), ylab = "Aggregated R2 within each AF bin", xlab = "Allele Frequency")
for (i in 1:nd) {
  d <- accuracy_by_af[[i]]
  y <- rmna(d$QUILT2)
  lines(x, y, type = "l", lwd = i / nd * 2.5, pch = 1, col = mycols["QUILT2"])
  y <- rmna(d$GLIMPSE2)
  lines(x, y, type = "l", lwd = i / nd * 2.5, pch = 1, col = mycols["GLIMPSE2"])
  y <- rmna(d$QUILT1)
  lines(x, y, type = "l", lwd = i / nd * 2.5, pch = 1, col = mycols["QUILT1"])
  y <- rmna(d$GLIMPSE1)
  lines(x, y, type = "l", lwd = i / nd * 2.5, pch = 1, col = mycols["GLIMPSE1"])
}
axis(side = 1, at = x, labels = labels)
axis(side = 2)
legend("bottomleft", legend = c("QUILT2", "GLIMPSE2", "QUILT1", "GLIMPSE1"), col = mycols, pch = 1, lwd = 1.5, cex = 1.0, xjust = 0, yjust = 1, bty = "n")


## chunkfile <- "/maps/projects/alab/people/rlk420/quilt2/human/HRC_CEU/quilt-rare-common/results/refpanels/chr20.glimpse.chunks"
chunkfile <- snakemake@params[["chunks"]]
chunk.names <- read.table(chunkfile)[,4]
chunk <- lapply(strsplit(gsub(".*:","",chunk.names),"-"), as.integer)
pos <- as.integer(sapply(strsplit(names(af),":"),"[[",2))
chunk_af <- lapply(chunk, function(c) {
  af[which(pos > c[1] & pos < c[2])]
})
names(chunk_af) <- chunk.names

accuracy_by_af_chunk <- lapply(chunk_af, function(af) {
  all <- lapply(seq(length(groups)), function(i) {
    d <- acc_r2_by_af(df.truth, dl.quilt2[[i]], dl.glimpse2[[i]], dl.quilt1[[i]], dl.glimpse1[[i]], af, bins)
    colnames(d) <- c("bin","QUILT2", "GLIMPSE2", "QUILT1", "GLIMPSE1")
    d
  })
  names(all) <- paste0(as.character(groups), "x")
  all
})

for(c in 1:length(chunk.names)) {
  if(c %% 2 == 1) par(mfrow = c(1, 2))
  title <- paste(names(chunk_af)[c], "#", length(chunk_af[[c]]))
  acc_chunk <- accuracy_by_af_chunk[[c]]
  plot(1, col = "transparent", axes = F, xlim = c(min(x), max(x)), ylim = c(0, 1.0), ylab = "Aggregated R2 within each AF bin", xlab = "Allele Frequency",main = title)
  for (i in 1:nd) {
    d <- acc_chunk[[i]]
    y <- rmna(d$QUILT2)
    lines(x, y, type = "l", lwd = i / nd * 2.5, pch = 1, col = mycols["QUILT2"])
    y <- rmna(d$GLIMPSE2)
    lines(x, y, type = "l", lwd = i / nd * 2.5, pch = 1, col = mycols["GLIMPSE2"])
    y <- rmna(d$QUILT1)
    lines(x, y, type = "l", lwd = i / nd * 2.5, pch = 1, col = mycols["QUILT1"])
    y <- rmna(d$GLIMPSE1)
    lines(x, y, type = "l", lwd = i / nd * 2.5, pch = 1, col = mycols["GLIMPSE1"])
  }
  axis(side = 1, at = x, labels = labels)
  axis(side = 2, at = seq(0, 1, 0.2))
  legend("bottomright", legend = paste0(groups, "x"), lwd = (1:nd) * 2.5 / nd, bty = "n")
}

dev.off()
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
snakemake@source("common.R")


refsize0 <- as.integer(system(paste("bcftools query -l", snakemake@params$vcf, "|", "wc", "-l"), intern = TRUE))
groups <- as.numeric(snakemake@config[["refsize"]])
groups[groups == 0] <- refsize0
groups <- groups * 2
nd <- length(groups)

df.truth <- read.table(snakemake@input[["truth"]])
df.truth <- sapply(seq(1, dim(df.truth)[2] - 1, 2), function(i) {
  rowSums(df.truth[, (i + 1):(i + 2)])
}) # matrix: nsnps x nsamples
rownames(df.truth) <- read.table(snakemake@input[["truth"]])[,1]
af <- as.numeric(read.table(snakemake@input[["af"]])[, 2])
names(af) <- read.table(snakemake@input[["af"]])[, 1]

dl.quilt1 <- lapply(snakemake@input[["regular"]], parse.quilt.gts)
dl.quilt2 <- lapply(snakemake@input[["zilong"]], parse.quilt.gts)
dl.glimpse1 <- lapply(snakemake@input[["glimpse1"]], parse.quilt.gts)
dl.glimpse2 <- lapply(snakemake@input[["glimpse2"]], parse.quilt.gts)

bins <- sort(unique(c(
  c(0, 0.01 / 100, 0.02 / 100, 0.05 / 100),
  c(0, 0.01 / 10, 0.02 / 10, 0.05 / 10),
  c(0, 0.01 / 1, 0.02 / 1, 0.05 / 1),
  seq(0.1, 0.5, length.out = 5)
)))

accuracy_by_af <- lapply(seq(length(groups)), function(i) {
  d <- acc_r2_by_af(df.truth, dl.quilt2[[i]], dl.glimpse2[[i]], dl.quilt1[[i]], dl.glimpse1[[i]], af, bins)
  colnames(d) <- c("bin","QUILT2", "GLIMPSE2", "QUILT1", "GLIMPSE1")
  d
})

names(accuracy_by_af) <- paste0("refsize", as.character(groups))
saveRDS(accuracy_by_af, snakemake@output[["rds"]])

wong <- c("#e69f00", "#d55e00", "#56b4e9", "#cc79a7", "#009e73", "#0072b2", "#f0e442")
mycols <- wong

pdf(paste0(snakemake@output[["rds"]], ".pdf"), w = 6, h = 12)
a1 <- accuracy_by_af[[1]]
x <- a1$bin[!sapply(a1[, 2], is.na)]
x <- log10(as.numeric(x))
labels <- 100 * bins[-1]
labels <- labels[!sapply(a1[, 2], is.na)]
ymin <- min(sapply(accuracy_by_af, function(d) {
  m <- as.matrix(apply(d[, -1], 2, unlist))
  min(m, na.rm = T)
}))

par(mfrow = c(2, 1))
plot(1, col = "transparent", axes = F, xlim = c(min(x), max(x)), ylim = c(0.90, 1.0), ylab = "Aggregated R2 within each AF bin", xlab = "Allele Frequency")
for (i in 1:nd) {
  d <- accuracy_by_af[[i]]
  y <- rmna(d$QUILT2)
  lines(x, y, type = "l", lty = nd - i + 1, pch = 1, col = mycols[1])
  y <- rmna(d$GLIMPSE2)
  lines(x, y, type = "l", lty = nd - i + 1, pch = 1, col = mycols[2])
  y <- rmna(d$QUILT1)
  lines(x, y, type = "l", lty = nd - i + 1, pch = 1, col = mycols[3])
  y <- rmna(d$GLIMPSE1)
  lines(x, y, type = "l", lty = nd - i + 1, pch = 1, col = mycols[4])
}
axis(side = 1, at = x, labels = labels)
axis(side = 2)
legend("bottomleft", legend = c("QUILT2", "GLIMPSE2", "QUILT1", "GLIMPSE1"), col = mycols, pch = 1, lwd = 1.5, cex = 1.0, xjust = 0, yjust = 1, bty = "n")

plot(1, col = "transparent", axes = F, xlim = c(min(x), max(x)), ylim = c(0.9 * ymin, 1.0), ylab = "Aggregated R2 within each AF bin", xlab = "Allele Frequency")
nd <- length(groups)
for (i in 1:nd) {
  d <- accuracy_by_af[[i]]
  y <- rmna(d$QUILT2)
  lines(x, y, type = "l", lty = nd - i + 1, pch = 1, col = mycols[1])
  y <- rmna(d$GLIMPSE2)
  lines(x, y, type = "l", lty = nd - i + 1, pch = 1, col = mycols[2])
  y <- rmna(d$QUILT1)
  lines(x, y, type = "l", lty = nd - i + 1, pch = 1, col = mycols[3])
  y <- rmna(d$GLIMPSE1)
  lines(x, y, type = "l", lty = nd - i + 1, pch = 1, col = mycols[4])
}
axis(side = 1, at = x, labels = labels)
axis(side = 2, at = seq(0, 1, 0.2))
legend("bottomright", legend = paste0("N=", groups), lty = nd:1, bty = "n")

dev.off()
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
snakemake@source("common.R")

acc_r2_all <- function(d0, d1, d2, d3) {
  id <- intersect(intersect(intersect(rownames(d0), rownames(d1)), rownames(d2)), rownames(d3))
  y1 <- cor(as.vector(d0[id,]), as.vector(d1[id,]), use = "pairwise.complete")**2
  y2 <- cor(as.vector(d0[id,]), as.vector(d2[id,]), use = "pairwise.complete")**2
  y3 <- cor(as.vector(d0[id,]), as.vector(d3[id,]), use = "pairwise.complete")**2
  c(y1, y2, y3)
}

local_r2_by_af <- function(d0, d1, d2, d3, af, bins) {
  id <- intersect(intersect(intersect(rownames(d0), rownames(d1)), rownames(d2)), rownames(d3))
  id <- intersect(id, names(af))
  res1 <- r2_by_freq(breaks = bins, af, truthG = d0, testDS = d1, which_snps = id)
  res2 <- r2_by_freq(breaks = bins, af, truthG = d0, testDS = d2, which_snps = id)
  res3 <- r2_by_freq(breaks = bins, af, truthG = d0, testDS = d3, which_snps = id)
  as.data.frame(cbind(bin = bins[-1], regular = res1[, "simple"], mspbwt = res2[, "simple"], zilong = res3[, "simple"]))
}

groups <- as.numeric(snakemake@config[["downsample"]])

df.truth <- read.table(snakemake@input[["truth"]])
df.truth <- sapply(seq(1, dim(df.truth)[2] - 1, 2), function(i) {
  rowSums(df.truth[, (i + 1):(i + 2)])
}) # matrix: nsnps x nsamples
rownames(df.truth) <- read.table(snakemake@input[["truth"]])[,1]
af <- as.numeric(read.table(snakemake@input[["af"]])[, 2])
names(af) <- read.table(snakemake@input[["af"]])[, 1]

groups <- as.numeric(snakemake@config[["downsample"]])

dl.regular <- lapply(snakemake@input[["regular"]], parse.quilt.gts)
dl.mspbwt <- lapply(snakemake@input[["mspbwt"]], parse.quilt.gts)
dl.zilong <- lapply(snakemake@input[["zilong"]], parse.quilt.gts)

bins <- sort(unique(c(
  c(0, 0.01 / 100, 0.02 / 100, 0.05 / 100),
  c(0, 0.01 / 10, 0.02 / 10, 0.05 / 10),
  c(0, 0.01 / 1, 0.02 / 1, 0.05 / 1),
  seq(0.1, 0.5, length.out = 5)
)))

accuracy <- matrix(sapply(1:length(groups), function(i) {
  acc_r2_all(df.truth, dl.regular[[i]], dl.mspbwt[[i]], dl.zilong[[i]])
}), ncol = length(groups))


accuracy_by_af <- lapply(1:length(groups), function(i) {
  d <- local_r2_by_af(df.truth, dl.regular[[i]], dl.mspbwt[[i]], dl.zilong[[i]], af, bins)
  colnames(d) <- c("bin", "regular", "mspbwt", "zilong" )
  d
})
names(accuracy_by_af) <- paste0(as.character(groups), "x")
saveRDS(accuracy_by_af, snakemake@output[["rds"]])

## accuracy_by_af <- readRDS("/maps/projects/alab/people/rlk420/quilt2/human/HRC_CEU/quilt-rare-common/results/summary/quilt.accuracy.panelsize0.chr20.rds" )

wong <- c("#e69f00", "#d55e00", "#56b4e9", "#cc79a7", "#009e73", "#0072b2", "#f0e442")

pdf(paste0(snakemake@output[["rds"]], ".pdf"), w = 12, h = 6)

par(mfrow = c(1, 2))

plot(groups, accuracy[1, ], type = "b", lwd = 1.0, pch = 1, col = wong[1], ylab = "Aggregated R2 for the chromosome", xlab = "Samples sequencing depth", ylim = c(0.9 * min(accuracy), 1.0))
lines(groups, accuracy[2, ], type = "b", lwd = 1.0, pch = 1, col = wong[2])
lines(groups, accuracy[3, ], type = "b", lwd = 1.0, pch = 1, col = wong[3])
legend("bottomright", legend = c("QUILT-regular", "QUILT-mspbwt", "QUILT-zilong"), col = mycols, pch = 1, lwd = 1.5, cex = 1.1, xjust = 0, yjust = 1, bty = "n")

a1 <- accuracy_by_af[[1]]
x <- a1$bin[!sapply(a1[, 2], is.na)] # remove AF bin with NULL results
x <- log10(as.numeric(x))
labels <- 100 * bins[-1]
labels <- labels[!sapply(a1[, 2], is.na)]
ymin <- min(sapply(accuracy_by_af, function(d) {
  m <- as.matrix(apply(d[, -1], 2, unlist))
  min(m, na.rm = T)
}))

plot(1, col = "transparent", axes = F, xlim = c(min(x), max(x)), ylim = c(0, 1.0), ylab = "Aggregated R2 within each MAF bin", xlab = "Minor Allele Frequency")

nd <- length(groups)
for (i in 1:nd) {
  d <- accuracy_by_af[[i]]
  y <- rmna(d$regular)
  lines(x, y, type = "l", lty = nd - i + 1, pch = 1, col = wong[1])
  y <- rmna(d$mspbwt)
  lines(x, y, type = "l", lty = nd - i + 1, pch = 1, col = wong[2])
  y <- rmna(d$zilong)
  lines(x, y, type = "l", lty = nd - i + 1, pch = 1, col = wong[3])
}
axis(side = 1, at = x, labels = labels)
axis(side = 2)

legend("bottomright", legend = paste0(groups, "x"), lwd = (1:nd) * 2.5 / nd, bty = "n")

dev.off()
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
snakemake@source("common.R")

acc_r2_all <- function(d0, d1) {
  id <- intersect(rownames(d0), rownames(d1))
  y1 <- cor(as.vector(d0[id,]), as.vector(d1[id,]), use = "pairwise.complete")**2
}

acc_r2_by_af <- function(d0, d1, af, bins) {
  id <- intersect(rownames(d0), rownames(d1))
  res <- r2_by_freq(breaks = bins, af[id], truthG = d0[id,], testDS = d1[id,])
  as.data.frame(cbind(bin = bins[-1], single = res[, "simple"], orphan = res[, "simple"]))
}

groups <- as.numeric(snakemake@config[["downsample"]])

df.truth <- read.table(snakemake@input[["truth"]])
df.truth <- sapply(seq(1, dim(df.truth)[2] - 1, 2), function(i) {
  rowSums(df.truth[, (i + 1):(i + 2)])
}) # matrix: nsnps x nsamples
rownames(df.truth) <- read.table(snakemake@input[["truth"]])[,1]
af <- as.numeric(read.table(snakemake@input[["af"]])[, 2])
names(af) <- read.table(snakemake@input[["af"]])[, 1]

## SNPs with (1-af) > 0.0005 & (1-af) < 0.001 are all imputed hom ALT and truth hom ALT. but those are stupidly easy to impute and don’t tell you anything
## af <- ifelse(af>0.5, 1-af, af)

dl.single <- lapply(snakemake@input[["single"]], parse.quilt.gts)

bins <- sort(unique(c(
  c(0, 0.01 / 100, 0.02 / 100, 0.05 / 100),
  c(0, 0.01 / 10, 0.02 / 10, 0.05 / 10),
  c(0, 0.01 / 1, 0.02 / 1, 0.05 / 1),
  seq(0.1, 0.5, length.out = 5)
)))

accuracy <- matrix(sapply(1:length(groups), function(i) {
  acc_r2_all(df.truth, dl.single[[i]])
}), ncol = length(groups))

accuracy_by_af <- lapply(1:length(groups), function(i) {
  acc_r2_by_af(df.truth, dl.single[[i]], af, bins)
})
saveRDS(accuracy_by_af, snakemake@output[["rds"]])

wong <- c("#e69f00", "#d55e00", "#56b4e9", "#cc79a7", "#009e73", "#0072b2", "#f0e442")
mycols <- wong[1:4]

pdf(snakemake@output[["pdf"]], w = 12, h = 6)
par(mfrow = c(1, 2))
plot(groups, accuracy[1, ], type = "b", lwd = 1.0, pch = 1, col = mycols[1], ylab = "Aggregated R2 for the chromosome", xlab = "Samples sequencing depth", ylim = c(0.9 * min(accuracy), 1.0))
legend("bottomright", legend = c(snakemake@params[["N"]]), col = mycols, pch = 1, lwd = 1.5, cex = 1.1, xjust = 0, yjust = 1, bty = "n")

a1 <- accuracy_by_af[[1]]
x <- a1$bin[!sapply(a1[, 2], is.na)] # remove AF bin with NA results
x <- log10(as.numeric(x))
labels <- 100 * bins[-1]
labels <- labels[!sapply(a1[, 2], is.na)]
ymin <- min(sapply(accuracy_by_af, function(d) {
  m <- as.matrix(apply(d[, -1], 2, unlist))
  min(m, na.rm = T)
}))

plot(1, col = "transparent", axes = F, xlim = c(min(x), max(x)), ylim = c(0, 1.0), ylab = "Aggregated R2 within each MAF bin", xlab = "Minor Allele Frequency")
nd <- length(groups)
for (i in 1:nd) {
  d <- accuracy_by_af[[i]]
  y <- rmna(d$single)
  lines(x, y, type = "l", lty = nd - i + 1, pch = 1, col = mycols[1])
}
axis(side = 1, at = x, labels = labels)
axis(side = 2)
legend("bottomright", legend = paste0(groups, "x"), lty = nd:1, bty = "n")

dev.off()
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
gettimes <- function(ss) {
  sapply(strsplit(ss, ":"), function(s) {
    s <- as.numeric(s)
    n <- length(s)
    sum(sapply(1:n, function(i) {
      s[i] * 60^(n - i)
    }))
  })
}

gnutime <- function(dl) {
  sapply(dl, function(d) {
    sum(gettimes(d[, 1]))
  })
}

gunram <- function(dl) {
  sapply(dl, function(d) {
    max(d[, 2]) / 1024 # MB units
  })
}

groups <- as.numeric(snakemake@config[["downsample"]])
nd <- length(groups)

dl.regular <- lapply(snakemake@input[["regular"]], read.table)
dl.zilong <- lapply(snakemake@input[["zilong"]], read.table)
dl.glimpse1 <- lapply(snakemake@input[["glimpse1"]], read.table)
dl.glimpse2 <- lapply(snakemake@input[["glimpse2"]], read.table)
rds <- list(QUILT2 = dl.zilong, GLIMPSE2 = dl.glimpse2, QUILT1 = dl.regular, GLIMPSE1 = dl.glimpse1)
rds <- lapply(rds,function(l) {names(l) <- paste0("depth=",groups,"x"); l} )

saveRDS(rds, snakemake@output[["rds"]])
rds <- readRDS(snakemake@output[["rds"]])


times <- data.frame(QUILT2 = gnutime(rds$QUILT2), GLIMPSE2 = gnutime(rds$GLIMPSE2), QUILT1 = gnutime(rds$QUILT1), GLIMPSE1 = gnutime(rds$GLIMPSE1))
rownames(times) <- groups
rams <- data.frame(QUILT2 = gunram(rds$QUILT2), GLIMPSE2 = gunram(rds$GLIMPSE2), QUILT1 = gunram(rds$QUILT1), GLIMPSE1 = gunram(rds$GLIMPSE1))
rownames(rams) <- groups

mycols <- c("#e69f00", "#d55e00", "#56b4e9", "#cc79a7", "#009e73", "#0072b2", "#f0e442")
palette(mycols)

pdf(paste0(snakemake@output[["rds"]], ".pdf"), w = 12, h = 6)
par(mfrow = c(1, 2))
barplot(t(times) / 60, beside = T, col = 1:4, ylab = "Runtime in Minutes", xlab = "Sequencing depth")
legend("topleft", legend = colnames(times), fill =  1:4)
barplot(t(rams) / 1024, beside = T, col = 1:4, ylab = "Maximun RAM in GBs", xlab = "Sequencing depth")
dev.off()
R From line 1 of scripts/speed_depth.R
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
gettimes <- function(ss) {
  sapply(strsplit(ss, ":"), function(s) {
    s <- as.numeric(s)
    n <- length(s)
    sum(sapply(1:n, function(i) {
      s[i] * 60^(n - i)
    }))
  })
}

gnutime <- function(dl) {
  sapply(dl, function(d) {
    sum(gettimes(d[, 1]))
  })
}

gunram <- function(dl) {
  sapply(dl, function(d) {
    max(d[, 2]) / 1024 # MB units
  })
}

## saveRDS(snakemake,  snakemake@output[["rds"]])
## print(refsize0)
## q()

refsize0 <- as.integer(system(paste("bcftools query -l", snakemake@params$vcf, "|", "wc", "-l"), intern = TRUE))

groups <- as.numeric(snakemake@config[["refsize"]])
groups[groups == 0] <- refsize0
groups <- groups * 2
nd <- length(groups)

dl.regular <- lapply(snakemake@input[["regular"]], read.table)
dl.zilong <- lapply(snakemake@input[["zilong"]], read.table)
dl.glimpse1 <- lapply(snakemake@input[["glimpse1"]], read.table)
dl.glimpse2 <- lapply(snakemake@input[["glimpse2"]], read.table)
rds <- list(QUILT2 = dl.zilong, GLIMPSE2 = dl.glimpse2, QUILT1 = dl.regular, GLIMPSE1 = dl.glimpse1)
rds <- lapply(rds,function(l) {names(l) <- paste0("size=",groups); l} )

saveRDS(rds, snakemake@output[["rds"]])
rds <- readRDS(snakemake@output[["rds"]])


times <- cbind(gnutime(rds$QUILT2), gnutime(rds$GLIMPSE2), gnutime(rds$QUILT1), gnutime(rds$GLIMPSE1)) / 60
rams <- cbind(gunram(rds$QUILT2), gunram(rds$GLIMPSE2), gunram(rds$QUILT1), gunram(rds$GLIMPSE1)) / 1024


wong <- c("#e69f00", "#d55e00", "#56b4e9", "#cc79a7", "#009e73", "#0072b2", "#f0e442")
mycols <- wong


pdf(paste0(snakemake@output[["rds"]], ".pdf"), w = 12, h = 6)
par(mfrow = c(1, 2))
plot(groups, times[, 1], type = "b", lwd = 1.0, pch = 1, col = mycols[1], ylab = "Runtime in Minutes", xlab = "Reference panel size", ylim = c(min(times) * 0.9, max(times) * 1.1), log = 'y')
lines(groups, times[, 2], type = "b", lwd = 1.0, pch = 1, col = mycols[2])
lines(groups, times[, 3], type = "b", lwd = 1.0, pch = 1, col = mycols[3])
lines(groups, times[, 4], type = "b", lwd = 1.0, pch = 1, col = mycols[4])
legend("topleft", legend = names(rds), col = mycols, pch = 1, lwd = 1.5, cex = 1.1, xjust = 0, yjust = 1, bty = "n")

plot(groups, rams[, 1], type = "b", lwd = 1.0, pch = 1, col = mycols[1], ylab = "Maximum RAM in GBs", xlab = "Reference panel size", ylim = c(min(rams) * 0.9, max(rams) * 1.1))
lines(groups, rams[, 2], type = "b", lwd = 1.0, pch = 1, col = mycols[2])
lines(groups, rams[, 3], type = "b", lwd = 1.0, pch = 1, col = mycols[3])
lines(groups, rams[, 4], type = "b", lwd = 1.0, pch = 1, col = mycols[4])
dev.off()
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
gettimes <- function(ss) {
  sapply(strsplit(ss, ":"), function(s) {
    s <- as.numeric(s)
    n <- length(s)
    sum(sapply(1:n, function(i) {
      s[i] * 60^(n - i)
    }))
  })
}

gnutime <- function(dl) {
  sapply(dl, function(d) {
    sum(gettimes(d[, 1]))
  })
}

gunram <- function(dl) {
  sapply(dl, function(d) {
    max(d[, 2]) / 1024 # MB units
  })
}

groups <- as.numeric(snakemake@config[["downsample"]])
nd <- length(groups)

dl.regular <- lapply(snakemake@input, read.table)
times <- data.frame(gnutime(dl.regular))
rams <- data.frame(gunram(dl.regular))

saveRDS(list(time = times, ram = rams), snakemake@output[["rds"]])


wong <- c("#e69f00", "#d55e00", "#56b4e9", "#cc79a7", "#009e73", "#0072b2", "#f0e442")
mycols <- wong[1:3]


pdf(snakemake@output[["pdf"]], w = 12, h = 6)
par(mfrow = c(1, 2))
plot(groups, times[, 1], type = "b", lwd = 1.0, pch = 1, col = mycols[1], ylab = "Total Time in seconds for the chromosome", xlab = "Sequencing depth", ylim = c(min(times) * 0.9, max(times) * 1.1))
legend("topleft", legend = c(snakemake@params[["N"]]), col = mycols, pch = 1, lwd = 1.5, cex = 1.1, xjust = 0, yjust = 1, bty = "n")

plot(groups, rams[, 1], type = "b", lwd = 1.0, pch = 1, col = mycols[1], ylab = "Maximum RAM in MBs for the chromosome", xlab = "Sequencing depth", ylim = c(min(rams) * 0.9, max(rams) * 1.1))
dev.off()
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
ql <- paste("query", "-l", snakemake@params[["vcf"]])
size <- as.integer(snakemake@wildcards[["size"]])
allsamples <- as.character(system2("bcftools", ql, stdout = TRUE))
targesamples <- snakemake@params[["samples"]]
# remove target sample from the panel
allsamples <- allsamples[!allsamples %in% targesamples]
if (size == 0) {
  subsets <- allsamples
} else {
  # random sample N pairs haplotypes
  subsets <- allsamples[sort(sample(1:length(allsamples), size))]
}
cat(subsets, file = snakemake@output[[1]], sep = "\n")
ShowHide 52 more snippets with no or duplicated tags.

Login to post a comment if you would like to share your experience with this workflow.

Do you know this workflow well? If so, you can request seller status , and start supporting this workflow.

Free

Created: 1yr ago
Updated: 1yr ago
Maitainers: public
URL: https://github.com/Zilong-Li/lcWGS-imputation-workflow
Name: lcwgs-imputation-workflow
Version: v0.2.0
Badge:
workflow icon

Insert copied code into your website to add a link to this workflow.

Downloaded: 0
Copyright: Public Domain
License: MIT License
  • Future updates

Related Workflows

cellranger-snakemake-gke
snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...