MPRA GWAS Builder: snakemake workflow

public public 1yr ago 0 bookmarks

Authors

  • Robin Meyers (@robinmeyers)

Usage

Simple

Step 1: Install workflow

If you simply want to use this workflow, download and extract the latest release . If you intend to modify and further extend this workflow or want to work under version control, fork this repository as outlined in Advanced . The latter way is recommended.

In any case, if you use this workflow in a paper, don't forget to give credits to the authors by citing the URL of this repository and, if available, its DOI (see above).

Step 2: Configure workflow

Install and activate the conda environment

conda env create -n mpra-gwas-builder -f envs/conda.yaml
conda activate mpra-gwas-builder

Configure the workflow according to your needs via editing the file config.yaml .

Request an API token for LDlink and paste it into a file named .Renviron in this directory

LDLINK_TOKEN=YourTokenHere123

Step 3: Execute workflow

Test your configuration by performing a dry-run via

snakemake -n

Execute the workflow locally via

snakemake --cores $N

See the Snakemake documentation for further details.

Advanced

The following recipe provides established best practices for running and extending this workflow in a reproducible way.

  1. Fork the repo to a personal or lab account.

  2. Clone the fork to the desired working directory for the concrete project/run on your machine.

  3. Create a new branch (the project-branch) within the clone and switch to it. The branch will contain any project-specific modifications (e.g. to configuration, but also to code).

  4. Modify the config, and any necessary sheets (and probably the workflow) as needed.

  5. Commit any changes and push the project-branch to your fork on github.

  6. Run the analysis.

  7. Optional: Merge back any valuable and generalizable changes to the upstream repo via a pull request . This would be greatly appreciated .

  8. Optional: Push results (plots/tables) to the remote branch on your fork.

  9. Optional: Create a self-contained workflow archive for publication along with the paper (snakemake --archive).

  10. Optional: Delete the local clone/workdir to free space.

Code Snippets

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
save.image("logs/build_library.RData")

log <- file(snakemake@log[[1]], open="wt")
sink(log, type = "message")
sink(log, type = "output")


library(BSgenome.Hsapiens.NCBI.GRCh38)
library(Biostrings)
library(plyranges)
library(magrittr)
library(tidyverse)

source("lib/helpers.R")

set.seed(snakemake@config$seed)

n_sub_libraries <- snakemake@config$sub_libraries

max_oligo_length <- snakemake@config$oligo$max_len

re_seqs <- DNAStringSet(unlist(snakemake@config$restriction_enzymes))

primer_5p <- snakemake@config$oligo$primer_5p
primer_3p <- snakemake@config$oligo$primer_3p

cloning_site_1 <- re_seqs[snakemake@config$cloning_site$enzyme1]
cloning_site_2 <- re_seqs[snakemake@config$cloning_site$enzyme2]

stuffer_bp <- snakemake@config$cloning_site$stuffer_bp
stuffer_gc <- snakemake@config$cloning_site$stuffer_GC

cloning_site_length <- str_length(cloning_site_1) + stuffer_bp + str_length(cloning_site_2)

barcodes_per_frag <- snakemake@config$bc_per_frag

bc_length <- snakemake@config$oligo$bc_len

max_indel_size <- snakemake@config$oligo$max_indel

random_control_n <- snakemake@config$random_controls
random_control_w_mut_n <- snakemake@config$random_controls_with_mutation

wiggle_room <- max_indel_size + 1

final_frag_len <- max_oligo_length - str_length(primer_5p) - cloning_site_length - str_length(primer_3p) - bc_length - wiggle_room

window_flank <- floor((final_frag_len - 1) / 2)

snps <- read_tsv(snakemake@input$filtered_snps)

snps_cleaned <- snps %>%
    filter(!is.na(ref), !is.na(alt),
           abs(str_count(ref, "[ACGT]") - str_count(alt, "[ACGT]")) <= max_indel_size) %>%
    # mutate(alt = str_extract(alt, "^[ACGT-]+"), # only use first alternate allele if multiple listed
    mutate(alt = str_split(alt, ",")) %>%
    unnest(alt) %>%
    mutate(is_indel = str_count(ref, "[ACGT]") != str_count(alt, "[ACGT]"),  # annotate indels
           is_indel_fixed_base = is_indel & !str_detect(ref, "-") & !str_detect(alt, "-"), # annotate indels with the preceding fixed base
           ref = ifelse(is_indel_fixed_base, str_sub(ref, 2), str_replace(ref, "-", "")), # remove fixed first base or the "-" annotation for indels
           alt = ifelse(is_indel_fixed_base, str_sub(alt, 2), str_replace(alt, "-", ""))) %>%
    mutate(pos = ifelse(is_indel, as.numeric(pos) + 1, as.numeric(pos))) %>%
    distinct(snp, chr, pos, ref, alt, .keep_all = T) %>%
    group_by(snp, chr, pos, ref) %>%
    mutate(alt_n = as.integer(table(alt)[alt])) %>%
    slice_max(alt_n, n = 1, with_ties = F) %>%
    ungroup() %>%
    select(-alt_n) %>%
    arrange(chr, pos, snp) %>%
    mutate(fragment = row_number()) # account for removing fixed base


snps_gr <- snps_cleaned %>%
    transmute(seqnames = chr, start = pos, end = pos + str_length(ref) - 1,
              fragment, chr, pos, snp, ref, alt, is_indel, is_indel_fixed_base, source) %>%
    as_granges() %>%
    mutate()


snps_windows_gr <- resize(snps_gr, width = 2 * window_flank + 1, fix = "center")

## Get a window of sequence around SNP

snp_fragments_raw <- getSeq(BSgenome.Hsapiens.NCBI.GRCh38, `seqlevelsStyle<-`(snps_windows_gr, "NCBI"))


snps_frags <- snps_cleaned %>%
    select(fragment, chr, pos, snp, ref, alt, is_indel, is_indel_fixed_base, source) %>%
    mutate(seq = as.character(snp_fragments_raw),
           window_start = start(snps_windows_gr),
           window_end = end(snps_windows_gr))



# remove 10bp from each flank
ignore_edge_bps <- 10
overlapping_snps_gr <- resize(snps_windows_gr, width = width(snps_windows_gr) - 2*ignore_edge_bps,
                              fix = "center") %>%
    select(fragment) %>%
    join_overlap_left(select(snps_gr, -fragment))



# interim_data <- "./outs/LDhap"
# dir.create(interim_data)
# haplo_results_file <- "./outs/haplo_results.rds"


# if (!file.exists(haplo_results_file)) {

#     haplotypes_df <- overlapping_snps_gr %>%
#         as_tibble() %>%
#         filter(!is.na(snp), str_detect(snp, "rs\\d+")) %>%
#         # filter(!is.na(rsID_ldlink), str_detect(rsID_ldlink, "rs\\d+")) %>%
#         group_by(fragment) %>%
#         filter(dplyr::n() > 1) %>%
#         nest() %>%
#         mutate(out_file = file.path(interim_data, paste0("fragment_", fragment, ".txt")),
#                query = map(data, ~ pull(., snp)))
#                # query = map(data, ~ ifelse(str_detect(.x$rsID_ldlink, "rs\\d+"), .x$rsID_ldlink, paste(.x$chr, .x$pos, sep = ":"))))

#     haplo_results <- haplotypes_df %>%
#         mutate(LDhap_data = map2(query, out_file, query_ldhap))


#     write_rds(haplo_results, haplo_results_file)
# } else {
#     haplo_results <- read_rds(haplo_results_file)
# }


# tidy_LDhap_result <- function(x) {
#     haplotype_allele_df <- x %>% mutate(haplotype = row_number()) %>%
#         dplyr::rename(count = Count, frequency = Frequency) %>%
#         gather("snp", "allele", -haplotype, -count, -frequency) %>%
#         group_by(snp, allele) %>%
#         mutate(allele_count = sum(count)) %>%
#         group_by(snp) %>%
#         mutate(allele_freq = allele_count / sum(allele_count[!duplicated(allele)]))
#     return(haplotype_allele_df)
# }


# haplo_results_tidy <- haplo_results %>%
#     mutate(LDhap_data_tidy = map(LDhap_data, tidy_LDhap_result)) %>%
#     select(fragment, LDhap_data_tidy) %>%
#     unnest(LDhap_data_tidy) %>%
#     group_by(fragment) %>%
#     filter(n_distinct(snp) > 1) %>%
#     ungroup()


# haplo_fragments <-
#     haplo_results_tidy %>%
#     mutate(allele = str_replace(allele, "-", "")) %>%
#     left_join(select(snps_cleaned, snp, chr, pos, ref, alt, is_indel)) %>%
#     left_join(select(snps_frags, fragment, seq, window_start, window_end)) %>%
#     filter(allele == ref | allele == alt) %>%
#     mutate(seq_sub = str_sub(seq, pos - window_start + 1, pos - window_start + str_length(ref))) %>%
#     group_by(fragment, haplotype, frequency, count, seq) %>% nest() %>%
#     mutate(haplotype_seq = map2_chr(seq, data, ~ mutate_fragments(.x, .y$pos-.y$window_start+1, .y$ref, .y$allele))) %>%
#     ungroup()

# haplo_fragments_check <- haplo_fragments %>% unnest(data) %>% ungroup() %>%
#     group_by(fragment, haplotype) %>%
#     summarise(full_seq_diff = str_length(haplotype_seq[1]) - str_length(seq[1]),
#               var_seq_diff = sum(str_length(allele) - str_length(ref)))

# # This should only return haplotype fragments where SNP positions are overlapping
# haplo_fragments_check %>% filter(full_seq_diff != var_seq_diff)






snps_frags_allele <- snps_frags %>% mutate(allele = map2(ref, alt, ~ c(.x, .y))) %>% unnest(allele) %>%
    mutate(var_seq = pmap_chr(.,
                              function(seq, pos, window_start, ref, allele, ...) {
                                  mutate_fragments(seq, pos - window_start + 1, ref, allele)
                              })) %>%
    mutate(variant = ifelse(allele == ref, "ref", "alt"))



flank_width <- max(width(re_seqs)) - 1 # for checking RE sites


combined_fragments <- bind_rows(
    snps_frags_allele %>%
        mutate(haplotype = NA) %>%
        select(fragment, variant, haplotype, seq, var_seq, snp, chr, pos, allele, ref, alt, is_indel, window_start, window_end) %>%
        group_by(fragment, variant, haplotype, seq, var_seq) %>% nest() %>% ungroup #,
    # haplo_fragments %>%
    #     filter(haplotype_seq %!in% snps_frags_allele$var_seq,
    #            frequency >= 0.01) %>%
    #     unnest(data) %>%
    #     select(fragment, haplotype, seq, var_seq = haplotype_seq, snp, chr, pos, allele, ref, alt, is_indel, window_start, window_end) %>%
    #     group_by(fragment, haplotype, seq, var_seq) %>% nest() %>% ungroup
) %>%
    mutate(var_seq_flanks  = paste0(str_sub(primer_5p, -flank_width),
                                    var_seq,
                                    str_sub(cloning_site_1, 1, flank_width)))



# Randomly mutate restriction sites in ref/alt pairs
# If haplotype created unique restriction site, toss it


## Search from R.E. sites
re_matches <- combined_fragments %>%
    ungroup %>%
    mutate(re_matches = map(var_seq_flanks, function(x) {
        map_dfr(names(re_seqs), function(re_name) {
            vmatchPattern(re_seqs[[re_name]], x)[[1]] %>%
                as.data.frame() %>% mutate(RE = re_name)
        })
    }))



# re_matches %>% ungroup %>%
#     select(fragment, variant, haplotype, var_seq, re_matches) %>%
#     unnest(re_matches, keep_empty = T) %>%
#     group_by(fragment) %>%
#     filter(any(!is.na(RE))) %>%
#     filter(any(is.na(RE))) %>% View




combined_fragments_corrected <- re_matches %>% # filter(Fragment == 340) %>%
    group_by(fragment) %>%
    group_modify(~ mutate_restriction_sites(.x, .y$fragment))

tmp <- combined_fragments_corrected %>% filter(!fail) %>%
    mutate(var_seq_corrected_flanks  = paste0(str_sub(primer_5p, - flank_width),
                                              var_seq_corrected,
                                              str_sub(cloning_site_1, 1, flank_width))) %>%
    ungroup %>%
    mutate(re_matches = map(var_seq_corrected_flanks, function(x) {
        map_dfr(names(re_seqs), function(re_name) {
            vmatchPattern(re_seqs[[re_name]], x)[[1]] %>%
                as.data.frame() %>% mutate(RE = re_name)
        })
    }))


fragments_final <- combined_fragments_corrected %>% ungroup() %>%
    filter(!fail) %>%
    select(fragment_initial = fragment, variant, haplotype_initial = haplotype, seq, var_seq, var_seq_corrected, data) %>%
    mutate(fragment = dense_rank(fragment_initial)) %>%
    group_by(fragment) %>%
    mutate(haplotype = dense_rank(haplotype_initial)) %>%
    ungroup() %>%
    mutate(frag_id = ifelse(!is.na(variant),
                            paste0('fragment-', str_pad(fragment, width = 4, pad = 0), "_", "allele-", variant),
                            paste0('fragment-', str_pad(fragment, width = 4, pad = 0), "_", "haplotype-", haplotype)))


random_controls <- fragments_final %>% filter(!is.na(variant)) %>%
    distinct(seq) %>%
    # sample_n(random_control_n*2, replace = random_control_n*2 > nrow(.)) %>%
    mutate(fragment_initial = row_number(),
           GC = str_count(seq, "[GC]")/str_length(seq),
           shuffle_seq = map_chr(seq, ~ str_split(., "") %>% unlist %>% sample() %>% str_c(collapse = "")),
           shuffle_GC = str_count(shuffle_seq, "[GC]")/str_length(shuffle_seq),
           pos = floor((str_length(shuffle_seq) + 1)/2),
           ref = str_sub(shuffle_seq, pos, pos),
           alt = ref) %>%
    mutate(variant = map2("ref", "alt", ~ c(.x, .y))) %>% unnest(variant) %>%
    mutate(allele = ifelse(variant == "ref", ref, alt)) %>%
    mutate(var_seq = shuffle_seq) %>%
    mutate(var_seq_flanks  = paste0(str_sub(primer_5p, - flank_width),
                                    var_seq,
                                    str_sub(cloning_site_1, 1, flank_width))) %>%
    ungroup %>%
    mutate(re_matches = map_lgl(var_seq_flanks, function(x) {
        map_dfr(names(re_seqs), function(re_name) {
            vmatchPattern(re_seqs[[re_name]], x)[[1]] %>%
                as.data.frame() %>% mutate(RE = re_name)
        }) %>% nrow %>% is_greater_than(0)
    })) %>% group_by(seq) %>%
    filter(!any(re_matches)) %>%
    ungroup()


random_controls_w_mut <- fragments_final %>% filter(!is.na(variant)) %>%
    distinct(seq) %>%
    # sample_n(random_control_w_mut_n*2, replace = random_control_w_mut_n*2 > nrow(.)) %>%
    mutate(fragment_initial = row_number(),
           GC = str_count(seq, "[GC]")/str_length(seq),
           shuffle_seq = map_chr(seq, ~ str_split(., "") %>% unlist %>% sample() %>% str_c(collapse = "")),
           shuffle_GC = str_count(shuffle_seq, "[GC]")/str_length(shuffle_seq),
           pos = floor((str_length(shuffle_seq) + 1)/2),
           ref = str_sub(shuffle_seq, pos, pos),
           alt = map2_chr(shuffle_seq, ref, ~ str_split(.x, "") %>% unlist %>% str_subset(.y, negate = T) %>% sample(1))) %>%
    mutate(variant = map2("ref", "alt", ~ c(.x, .y))) %>% unnest(variant) %>%
    mutate(allele = ifelse(variant == "ref", ref, alt)) %>%
    mutate(var_seq = pmap_chr(.,
                              function(shuffle_seq, pos, ref, allele, ...) {
                                  mutate_fragments(shuffle_seq, pos, ref, allele)
                              })) %>%
    mutate(var_seq_flanks  = paste0(str_sub(primer_5p, - flank_width),
                                    var_seq,
                                    str_sub(cloning_site_1, 1, flank_width))) %>%
    ungroup %>%
    mutate(re_matches = map_lgl(var_seq_flanks, function(x) {
        map_dfr(names(re_seqs), function(re_name) {
            vmatchPattern(re_seqs[[re_name]], x)[[1]] %>%
                as.data.frame() %>% mutate(RE = re_name)
        }) %>% nrow %>% is_greater_than(0)
    })) %>% group_by(seq) %>%
    filter(!any(re_matches)) %>%
    ungroup()


random_controls_sample <- random_controls %>%
    filter(fragment_initial %in% sample(unique(fragment_initial), random_control_n)) %>%
    mutate(fragment = dense_rank(fragment_initial)) %>%
    mutate(frag_id = paste0('randomfragment-', str_pad(fragment, width = 4, pad = 0), "_", "allele-", variant))

random_controls_w_mut_sample <- random_controls_w_mut %>%
    filter(fragment_initial %in% sample(unique(fragment_initial), random_control_w_mut_n)) %>%
    mutate(fragment = dense_rank(fragment_initial)) %>%
    mutate(frag_id = paste0('randomfragmentmut-', str_pad(fragment, width = 4, pad = 0), "_", "allele-", variant))

random_controls_allele  <- bind_rows(random_controls_sample, random_controls_w_mut_sample)

total_frags <- nrow(fragments_final) + nrow(random_controls_allele)

barcode_df <- read_tsv(snakemake@config$barcodes, col_names = F) %>%
    set_colnames("barcode") %>%
    mutate(barcode_w_flanks = paste0(str_sub(cloning_site_2, start = -flank_width),
                                     barcode,
                                     str_sub(primer_3p, start = 1, end = flank_width))) %>%
    bind_cols(map_dfc(as.list(re_seqs), vcountPattern, subject = .$barcode_w_flanks)) %>%
    mutate(match = purrr::reduce(select(., names(re_seqs)), `+`)) %>%
    filter(match == 0)


barcode_lib <- barcode_df %>%
    sample_n(total_frags * barcodes_per_frag) %>% pull(barcode) %>%
    split(rep(1:total_frags, each = 10)) %>%
    map(sort)




barcoded_library <-
    bind_rows(fragments_final %>% select(frag_id, frag_seq = var_seq_corrected),
              random_controls_allele %>% select(frag_id, frag_seq = var_seq)) %>%
    mutate(barcode = barcode_lib) %>%
    unnest(barcode) %>%
    group_by(frag_id) %>%
    mutate(barcode_id = row_number()) %>%
    ungroup

if (stuffer_bp > 0) {
    gc_bp <- round(stuffer_gc * stuffer_bp)
    at_bp <- stuffer_bp - gc_bp
    stuffer_df <- tibble(
        stuffer = map_chr(1:nrow(barcoded_library),
        ~ paste0(sample(c(sample(c("G", "C"), gc_bp, replace = T),
                            sample(c("A", "T"), at_bp, replace = T)), replace = F), collapse = ""))) %>%
        mutate(stuffer_w_flanks = paste0(str_sub(cloning_site_1, start = 2),
                                     stuffer,
                                     str_sub(cloning_site_2, end = -2)))  %>%
        bind_cols(map_dfc(as.list(re_seqs), vcountPattern, subject = .$stuffer_w_flanks)) %>%
        mutate(match = purrr::reduce(select(., names(re_seqs)), `+`))


    while(any(stuffer_df$match > 0)) {
        stuffer_df_match <- stuffer_df %>% filter(match > 0)

        stuffer_df_match <- tibble(
            stuffer = map_chr(1:nrow(stuffer_df_match),
                              ~ paste0(sample(c(sample(c("G", "C"), gc_bp, replace = T),
                                                sample(c("A", "T"), at_bp, replace = T)), replace = F), collapse = ""))) %>%
            mutate(stuffer_w_flanks = paste0(str_sub(cloning_site_1, start = 2),
                                             stuffer,
                                             str_sub(cloning_site_2, end = -2)))  %>%
            bind_cols(map_dfc(as.list(re_seqs), vcountPattern, subject = .$stuffer_w_flanks)) %>%
            mutate(match = purrr::reduce(select(., names(re_seqs)), `+`))

        stuffer_df <- bind_rows(stuffer_df %>% filter(match == 0),
                                stuffer_df_match)
    }

    stuffer_seqs <- stuffer_df$stuffer

} else {
    stuffer_seqs <- ""
}


final_library <- barcoded_library %>%
    mutate(stuffer = stuffer_seqs) %>%
    mutate(oligo_id = paste0(frag_id, "_barcode-", str_pad(barcode_id, width = 2, pad = 0)),
           oligo = paste0(primer_5p, frag_seq, cloning_site_1, stuffer, cloning_site_2, barcode, primer_3p))



if (n_sub_libraries > 1) {

    final_library <- final_library %>%
        mutate(frag_pair_id = str_extract(frag_id, "^fragment-\\d+"))

    sub_libraries <- final_library %>%
        filter(!is.na(frag_pair_id)) %>%
        distinct(frag_pair_id) %>%
        mutate(sub_library = sample(row_number() %% n_sub_libraries) + 1) %>%
        left_join(final_library %>% filter(!is.na(frag_pair_id)))

    random_controls_sub <- final_library %>%
        filter(str_detect(frag_id, "^randomfragment"))

    sub_libraries <- sub_libraries %>%
        group_by(sub_library) %>% group_nest() %>%
        mutate(data = map(data, ~ bind_rows(., random_controls_sub)))


    walk2(sub_libraries$data, sub_libraries$sub_library,
          ~ .x %>% select(oligo_id, oligo) %>%
              write_csv(str_replace(snakemake@output$oligos, "\\.csv",
                                    paste0("_sublib-", .y, ".csv"))))


    walk2(sub_libraries$data, sub_libraries$sub_library,
          ~ .x %>% select(oligo_id, barcode) %>%
              write_csv(str_replace(snakemake@output$barcode_ref, "\\.csv",
                                    paste0("_sublib-", .y, ".csv"))))

}

final_library %>% select(oligo_id, oligo) %>%
    write_csv(snakemake@output$oligo)

final_library %>% select(oligo_id, barcode) %>%
    write_csv(snakemake@output$barcode_ref)






variant_final <- fragments_final %>% filter(!is.na(variant)) %>% unnest(data) %>%
    select(fragment, variant, snp, chr, pos, allele, ref, alt,
           ref_fragment = seq, var_fragment = var_seq_corrected,
           frag_start = window_start, frag_end = window_end, frag_id)
write_csv(variant_final, snakemake@output$variant_ref)

# haplotype_final <- fragments_final %>% filter(!is.na(haplotype)) %>% unnest(data) %>%
#     select(fragment, haplotype, snp, chr, pos, allele, ref, alt,
#            ref_fragment = seq, var_fragment = var_seq_corrected,
#            frag_start = window_start, frag_end = window_end, frag_id)
# write_csv(haplotype_final, "./data/raw/lib3_design/skin_disease_haplotype_ref.csv")

random_controls_final <-  random_controls_allele %>%
    select(fragment, variant, pos, allele, ref, alt, ref_fragment = shuffle_seq, var_fragment = var_seq, frag_id)
write_csv(random_controls_final, snakemake@output$random_ctrl_ref)
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
save.image("logs/clean_index_snps.RData")

log <- file(snakemake@log[[1]], open="wt")
sink(log, type = "message")
sink(log, type = "output")


library(SNPlocs.Hsapiens.dbSNP144.GRCh37)
library(SNPlocs.Hsapiens.dbSNP151.GRCh38)
library(XtraSNPlocs.Hsapiens.dbSNP141.GRCh38)
library(TxDb.Hsapiens.UCSC.hg38.knownGene)
library(magrittr)
library(tidyverse)

source("lib/helpers.R")


hg19_to_hg38_chain <- import.chain("assets/hg19ToHg38.over.chain")

# threads <- 4

# if (threads > 1) {
#     library(doMC)
#     registerDoMC(cores = threads)
#     do_parallel <- T
# } else {
#     do_parallel <- F
# }

index_snp_table <- read_tsv(snakemake@input$gwas,
                            col_types = cols(.default = col_character()), quote = "")
# index_snps <- read_tsv("./data/raw/lib3_design/skin_disease_index_snps.txt")

all(str_detect(index_snp_table$SNPS, "^rs\\d+$") |
        str_detect(index_snp_table$SNPS, "^chr[0-9XY]+:\\d+$"))


index_snps <- index_snp_table %>%
    select(disease = Disease, gwas_snp = SNPS, chr = CHR_ID, pos = CHR_POS,
           pubmed = PUBMEDID, sample = `INITIAL SAMPLE SIZE`) %>%
    mutate(coord_b38 = ifelse(is.na(chr), NA, paste0("chr", chr, ":", pos))) %>%
    mutate(coord_b38 = ifelse(is.na(coord_b38) & str_detect(gwas_snp, "chr.+:\\d+"), gwas_snp, coord_b38))


index_snps_gr <- index_snps %>%
    filter(!is.na(coord_b38)) %>%
    extract(coord_b38, c("chr", "pos"), "chr([0-9XY]+):([0-9]+)") %>%
    mutate(start = pos, end = pos) %>%
    makeGRangesFromDataFrame(keep.extra.columns = T)

snps_find_rsid_b37 <- snpsByOverlaps(SNPlocs.Hsapiens.dbSNP144.GRCh37, index_snps_gr)
snps_find_rsid_b38 <- snpsByOverlaps(SNPlocs.Hsapiens.dbSNP151.GRCh38, index_snps_gr)
snps_find_rsid_b38_xtra <- snpsByOverlaps(XtraSNPlocs.Hsapiens.dbSNP141.GRCh38,
                                          `seqlevelsStyle<-`(index_snps_gr, "dbSNP")) %>%
    `seqlevelsStyle<-`("NCBI")



snps_find_rsid_b37_tbl <-
   as.data.frame(snps_find_rsid_b37) %>%
    mutate(coord_b37 = paste0("chr", seqnames, ":", pos)) %>%
    select(rs_id_rescue_b37 = RefSNP_id, coord_b37)

snps_find_rsid_b38_tbl <-
    bind_rows(as.data.frame(snps_find_rsid_b38) %>%
                  mutate(coord_b38 = paste0("chr", seqnames, ":", pos)),
              as.data.frame(snps_find_rsid_b38_xtra) %>%
                  mutate(coord_b38 = paste0("chr", seqnames, ":", start))) %>%
    select(rs_id_rescue = RefSNP_id, coord_b38)
# snps_find_rsid_b38_tbl <- snps_find_rsid_b38 %>% as.data.frame() %>%
#     mutate(coord_b38 = paste0("chr", seqnames, ":", pos)) %>%
#     select(rs_id_rescue = RefSNP_id, coord_b38)

index_snps_cleaned <- left_join(index_snps, snps_find_rsid_b38_tbl) %>%
    mutate(index_snp = ifelse(str_detect(gwas_snp, "^rs\\d+"), gwas_snp,
                              ifelse(!is.na(rs_id_rescue), rs_id_rescue, NA))) %>%
    left_join(snps_find_rsid_b37_tbl, by = c("coord_b38" = "coord_b37")) %>%
    mutate(coord_b37 = ifelse(is.na(index_snp) & !is.na(rs_id_rescue_b37), coord_b38, NA),
           coord_b38 = ifelse(is.na(index_snp) & !is.na(rs_id_rescue_b37), NA, coord_b38),
           index_snp = ifelse(is.na(index_snp) & !is.na(rs_id_rescue_b37), rs_id_rescue_b37, index_snp)) %>%
    mutate(index_snp = ifelse(is.na(index_snp), gwas_snp, index_snp)) %>%
    select(disease, gwas_snp, index_snp, coord_b38, coord_b37, pubmed, sample)


write_csv(index_snps_cleaned, snakemake@output$index_snps)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
save.image("logs/filter_snps.RData")

log <- file(snakemake@log[[1]], open="wt")
sink(log, type = "message")
sink(log, type = "output")

library(tidyverse)

set.seed(snakemake@config$seed)

snps_epigenome <- read_tsv(snakemake@input$epigenome)

if (!is.null(snakemake@config$txdb_filters)) {
    txdb_filter_keys <- snakemake@config$txdb_filters
} else {
    txdb_filter_keys <- character()
}


if ("epigenome_csv" %in% names(snakemake@config) && file.exists(snakemake@config$epigenome_csv)) {

    epigenome_csv <- read_csv(snakemake@config$epigenome_csv)
    epigenome_filter_keys <- epigenome_csv %>%
    	filter(filter) %>% pull(name) %>%
        str_replace_all("[^A-Za-z0-9_]", "_")

} else {

    epigenome_keys <- names(snakemake@config$epigenome)
    epigenome_filter_keys <- epigenome_keys[map_lgl(snakemake@config$epigenome, ~ .$filter)] %>%
        str_replace_all("[^A-Za-z0-9_]", "_")
}



print(txdb_filter_keys)
print(epigenome_filter_keys)

ld_snps_filter <- snps_epigenome %>%
    filter(map_lgl(str_split(Epigenome, ";"), ~ any(. %in% epigenome_filter_keys))) %>%
    filter(map_lgl(str_split(txdb_annot, ";"), ~ ! any(. %in% txdb_filter_keys))) %>%
    arrange(chr, pos)

write_tsv(ld_snps_filter, snakemake@output$filtered_snps)
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
log <- file(snakemake@log[[1]], open="wt")
sink(log, type = "message")
sink(log, type = "output")

library(tidyverse)

set.seed(snakemake@config$seed)

disease_list <-  read_tsv(snakemake@config$disease_list)

gwas_catalog <- read_tsv(snakemake@config$gwas_catalog,
    col_types = cols(.default = col_character()), quote = "")

if (!is.null(snakemake@config$gwas_trait_key)) {
    gwas_trait_key <- snakemake@config$gwas_trait_key
} else {
    gwas_trait_key <- "DISEASE/TRAIT"
}

if (!is.null(snakemake@config$extra_gwas) && snakemake@config$extra_gwas != "") {
    extra_gwas <- read_tsv(snakemake@config$extra_gwas,
        col_types = cols(.default = col_character()), quote = "")
} else {
    extra_gwas <- tibble()
}


gwas_index_snps <- gwas_catalog %>%
    filter(.data[[gwas_trait_key]] %in% disease_list$GWAS_term,
           as.numeric(`P-VALUE`) <= as.numeric(snakemake@config$gwas_pvalue_threshold)) %>%
    filter(str_detect(SNPS, "rs\\d+ x rs\\d+", negate = T)) %>%
    bind_rows(extra_gwas) %>%
    left_join(disease_list, by = set_names("GWAS_term", gwas_trait_key))


gwas_snps_rsID <- gwas_index_snps %>%
    filter(str_detect(SNPS, "^rs\\d+$"))

gwas_snps_no_rsID <- gwas_index_snps %>%
    filter(!str_detect(SNPS, "^rs\\d+$"))


if (nrow(gwas_snps_no_rsID) > 0) {


    gwas_snps_no_rsID_fix <- gwas_snps_no_rsID %>%
        mutate(SNPS_fix = SNPS) %>%
        mutate(SNPS_fix = ifelse(str_detect(SNPS_fix, "^chr[0-9XY]+[^0-9XY]+\\d+$"),
                                 str_match(SNPS_fix, "^(chr[0-9XY]+)[^0-9XY]+(\\d+)$") %>% {paste0(.[,2], ":", .[,3])}, SNPS_fix)) %>%
        mutate(SNPS_fix = ifelse(str_detect(SNPS_fix, "^[0-9XY]+-\\d+$"),
                                 str_match(SNPS_fix, "^([0-9XY]+)-(\\d+)$") %>% {paste0("chr", .[,2], ":", .[,3])}, SNPS_fix))

    ## Manually inspect - anything not in "chr:pos" format will be filtered
    # gwas_snps_no_rsID_fix %>% select(SNPS, SNPS_fix) %>% View

    gwas_snps_no_rsID_fix_done <- gwas_snps_no_rsID_fix %>%
        filter(str_detect(SNPS_fix, "^chr[0-9XY]+:\\d+$")) %>%
        mutate(SNPS = SNPS_fix) %>%
        select(-SNPS_fix)

    gwas_snps_final <- bind_rows(gwas_snps_rsID,
                                 gwas_snps_no_rsID_fix_done)
} else {
    gwas_snps_final <- gwas_snps_rsID
}


## Make sure all SNPS are in either rsID or chr:pos format
all(str_detect(gwas_snps_final$SNPS, "^rs\\d+$") |
        str_detect(gwas_snps_final$SNPS, "^chr[0-9XY]+:\\d+$"))


gwas_snps_final %>% write_tsv(snakemake@output$gwas)
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
readRenviron(".Renviron")

save.image("logs/get_snps_in_ld.RData")

log <- file(snakemake@log[[1]], open="wt")
sink(log, type = "message")
sink(log, type = "output")

if (! "haploR" %in% rownames(installed.packages())) {
    options(repos = list(CRAN="http://cran.rstudio.com/"))
    install.packages("haploR")
}

library(SNPlocs.Hsapiens.dbSNP144.GRCh37)
library(SNPlocs.Hsapiens.dbSNP151.GRCh38)
library(XtraSNPlocs.Hsapiens.dbSNP141.GRCh38)
library(TxDb.Hsapiens.UCSC.hg38.knownGene)
library(LDlinkR)
library(haploR)
library(VariantAnnotation)
library(magrittr)
library(tidyverse)

source("lib/helpers.R")

set.seed(snakemake@config$seed)

hg19_to_hg38_chain <- import.chain("assets/hg19ToHg38.over.chain")

# threads <- 4

# if (threads > 1) {
#     library(doMC)
#     registerDoMC(cores = threads)
#     do_parallel <- T
# } else {
#     do_parallel <- F
# }

index_snps_cleaned <- read_csv(snakemake@input$index_snps)
# index_snps <- read_tsv("./data/raw/lib3_design/skin_disease_index_snps.txt")

r2_threshold <- snakemake@config$r2_threshold
r2_threshold_pop_specific <- snakemake@config$r2_threshold_pop_spec


pops <- snakemake@config$pops
# pops <- c("EUR", "AFR", "AMR", "EAS", "SAS", "ALL")

if (!is.null(snakemake@config$gwas_pop_key)) {
    gwas_pop_key <- read_tsv(snakemake@config$gwas_pop_key)

    sample_types <- c("individuals?",
                      "cases?",
                      "controls?",
                      "men",
                      "women",
                      "boys?",
                      "girls?",
                      "adults?",
                      "adolescents?",
                      "children and adolescents",
                      "children",
                      "infants?",
                      "neonates?",
                      "mothers?",
                      "fathers?",
                      "parents?",
                      "males?",
                      "females?",
                      "users?",
                      "non-users?",
                      "families",
                      "trios?",
                      "responders?",
                      "non-responders?",
                      "attempters?",
                      "nonattempters?",
                      "alcohol drinkers?",
                      "drinkers?",
                      "non-drinkers?",
                      "smokers?",
                      "non-smokers?",
                      "donors?",
                      "twin pairs?",
                      "twins?",
                      "child sibling pairs?",
                      "fetuses",
                      "offspring",
                      "early adolescents?",
                      "remitters?",
                      "non-remitters?",
                      "athletes?",
                      "Individuals?",
                      "indivduals?",
                      "triads?",
                      "patients?",
                      "pairs?",
                      "case-parent trios?",
                      "recipients?",
                      "affected child",
                      "long sleepers?",
                      "short sleepers?",
                      "unaffected relatives?",
                      "carriers?",
                      "non-carriers?",
                      "cell lines?",
                      "indiviudals?",
                      "referents?",
                      "individuuals?",
                      "duos?",
                      "indivdiuals?",
                      "inidividuals?")

    number_regex <- "(?:(?<=(?:\\s|\\b))\\d+(?:\\,\\d+)*(?=\\s))"
    type_regex <- paste0("(?:", paste0(sample_types, collapse = "|"), ")")


    full_regex <- paste0(
        "(", number_regex, ")", # greedy match first number
        "\\s*((?:(?!.*", type_regex, ").*)|(?:.*?))\\s*", # Greedy match rest if no sample type in lookahead, or passive match
        "(", type_regex,  "?(?!.*", type_regex, "))") # Match last sample type by ensuring no sample type in lookahead

    # split_regex <- "(?<!\\d)(,[\\s\\,]*| and )(?=[\\sA-Aa-z]*[0-9]+[,0-9]*[0-9]+\\s)"
    split_regex <- paste0("((?:,+[,\\s]*\\s+)|(?:and ))(?=[\\sA-Aa-z]*", number_regex, ")")


    sample_terms <- index_snps_cleaned %>%
        distinct(pubmed, sample) %>%
        mutate(split_sample = str_split(sample, split_regex)) %>%
        unnest(split_sample)


    full_matches <- bind_cols(sample_terms,
                              str_match(sample_terms$split_sample, full_regex) %>%
                                  set_colnames(c("match", "number", "capture", "type")) %>%
                                  as_tibble())

    study_key_table <- full_matches %>%
        distinct(pubmed, sample, split_sample, capture) %>%
        rename(term = capture) %>%
        left_join(gwas_pop_key) %>%
        filter(!is.na(code))

    index_snps_pop_match <- index_snps_cleaned %>%
        left_join(study_key_table) %>%
        distinct() %>%
        group_by(disease, gwas_snp, index_snp, coord_b38, coord_b37, pubmed, sample) %>%
        summarise(pops = paste0(sort(unique(unlist(str_split(code, ",")))), collapse = ",")) %>%
        ungroup()


    write_tsv(index_snps_pop_match, "outs/gwas_study_index_snps_matched_populations.tsv")

    index_snps_pop_match %>%
        group_by(disease, pubmed, sample, pops) %>%
        summarise(n_snps = n_distinct(index_snp, na.rm = T)) %>%
        write_tsv("outs/gwas_study_matched_populations.tsv")


} else {
    index_snps_pop_match <- tibble(disease = character(),
                                   pubmed = character(),
                                   sample = character(),
                                   index_snp = character(),
                                   pops = character())
}

max_pops <- snakemake@config$max_pops


index_snps_pop_match_filtered <- index_snps_pop_match %>%
    filter(!is.na(pops) & pops != "") %>%
    filter(map_lgl(str_split(pops, ","), ~ length(.) <= max_pops))


index_snps_pop_all <- crossing(index_snp = unique(index_snps_cleaned$index_snp),
                               pop = pops) %>%
    bind_rows(index_snps_pop_match_filtered %>%
                  mutate(pop = str_split(pops, ",")) %>%
                  unnest(pop) %>%
                  distinct(index_snp, pop))


snps_to_query <- index_snps_pop_all %>%
    filter(str_detect(index_snp, "rs\\d+"),
           !is.na(pop) & pop != "") %>%
    mutate(r2_threshold = ifelse(is.null(r2_threshold_pop_specific) | pop == "ALL",
                                 r2_threshold, r2_threshold_pop_specific))

out_dir <- "outs/SNPS_LDlink"

dir.create(out_dir, showWarnings = F, recursive = T)

ldlink_results <- snps_to_query %>%
    mutate(ldlink_results = pmap(list(index_snp, pop, r2_threshold),
        ~ query_ldlink(snp = ..1, pop = ..2, r2 = ..3, out_dir = out_dir, retry_errors = snakemake@config$retry_errors)))

ldlink_results_table <- ldlink_results %>%
    unnest(ldlink_results) %>%
    filter(R2 >= r2_threshold)

write_tsv(ldlink_results_table, "outs/ldlink_full_results.txt")

haploreg_pops <- c("AFR" = "AFR",
                   "AMR" = "AMR",
                   "EAS" = "ASN",
                   "EUR" = "EUR",
                   "SAS" = "ASN")

out_dir_haploreg <- "outs/SNPS_HaploReg"
dir.create(out_dir_haploreg, showWarnings = F, recursive = T)

haploreg_results <- snps_to_query %>%
    filter(pop %in% names(haploreg_pops)) %>%
    mutate(pop = haploreg_pops[pop]) %>%
    group_by(pop, r2_threshold) %>%
    summarise(index_snps = list(sort(index_snp))) %>%
    mutate(haploreg_results = pmap(list(index_snps, pop, r2_threshold),
        ~ query_haploreg(snps = ..1, pop = ..2, r2 = ..3,
                        force = T, out_dir = out_dir_haploreg))) %>%
    ungroup()

if (nrow(haploreg_results) > 0) {
    haploreg_results_table <- haploreg_results %>%
        select(pop, r2_threshold, haploreg_results) %>%
        unnest(haploreg_results) %>%
        select(index_snp = query_snp_rsid, everything()) %>%
        filter(r2 >= r2_threshold)
} else {
    haploreg_results_table <- tibble(
        index_snp = character(),
        pop = character(),
        chr = character(),
        pos_hg38 = character(),
        r2 = double(),
        D = double(),
        is_query_snp = double(),
        rsID = character(),
        ref = character(),
        alt = character()
    )
}

write_tsv(haploreg_results_table, "outs/haploreg_full_results.txt")



# Harmonize rsIDs and genomic coordinates for all LD SNPs from both sources

# ldlink_results_table <- read_tsv("./data/raw/lib3_design/ldlink_full_results.txt")
# haploreg_results_table <- read_tsv("./data/raw/lib3_design/haploreg_full_results.txt")

## LDlink data is in hg19 coordinates
ldlink_snps <- ldlink_results_table %>%
    extract(Alleles, c("ref", "alt"), "([ACGT-]+)\\/([ACGT-]+)", remove = F) %>%
    filter(!is.na(ref), !is.na(alt))

ldlink_snps_b38 <- ldlink_snps %>%
    extract(Coord, c("chr", "start"), "(chr[0-9XY]+):(\\d+)", remove = F) %>%
    mutate(end = start) %>%
    select(seqnames = chr, start, end, snp = RS_Number, index_snp, coord_b37 = Coord, ref, alt) %>%
    makeGRangesFromDataFrame(keep.extra.columns = T) %>%
    liftOver(hg19_to_hg38_chain) %>% unlist %>%
    as_tibble() %>%
    mutate(coord_b38 = paste0(seqnames, ":", start),
           snp = ifelse(is.na(snp) | !str_detect(snp, "^rs\\d+"), coord_b38, snp)) %>%
    select(snp, coord_b38, ref, alt, index_snp, coord_b37) %>%
    distinct()



## HaploReg data is in hg38 coordinates, but not all snps returned have genome coordinates

haploreg_snps <- haploreg_results_table %>%
    mutate(coord_b38 = ifelse(is.na(chr), NA, paste0("chr", chr, ":", pos_hg38))) %>%
    select(snp = rsID, coord_b38, ref, alt, index_snp)

haploreg_snps_no_coord <- haploreg_snps %>%
    filter(is.na(coord_b38)) %>% pull(snp) %>% unique()

## Try to rescue location data from SNPlocs packages and GTEx variant info

haploreg_snps_find_locs_b38 <- snpsById(SNPlocs.Hsapiens.dbSNP151.GRCh38, haploreg_snps_no_coord, ifnotfound = "drop") %>%
    GRanges() %>% as_tibble() %>%
    mutate(chr = str_replace(as.character(seqnames), "^(chr|ch)", "")) %>%    select(chr, pos_b38 = start, snp = RefSNP_id)
haploreg_snps_find_locs_b38_xtra <- snpsById(XtraSNPlocs.Hsapiens.dbSNP141.GRCh38, haploreg_snps_no_coord, ifnotfound = "drop") %>%
    GRanges() %>% as_tibble() %>%
    mutate(chr = str_replace(as.character(seqnames), "^(chr|ch)", "")) %>%
    select(chr, pos_b38 = start, snp = RefSNP_id)


if (!is.null(snakemake@config$gtex_table)) {
    gtex_var_map <- read_tsv(snakemake@config$gtex_table,
                             col_types = "c-----cc") %>%
        dplyr::rename(rs_id = "rs_id_dbSNP151_GRCh38p7")

    haploreg_snps_find_locs_gtex <- gtex_var_map %>% filter(rs_id %in% haploreg_snps_no_coord) %>%
        extract(variant_id, c("chr", "pos_b38"), "^chr([0-9XY]+)_(\\d+)") %>%
        mutate(pos_b38 = as.numeric(pos_b38)) %>%
        select(chr, pos_b38, snp = rs_id)
} else {
    haploreg_snps_find_locs_gtex <- tibble()
}


haploreg_snps_find_locs_combined <- bind_rows(
    haploreg_snps_find_locs_b38,
    haploreg_snps_find_locs_b38_xtra,
    haploreg_snps_find_locs_gtex
) %>% distinct %>%
    mutate(coord_b38_rescue = paste0("chr", chr, ":", pos_b38)) %>%
    select(snp, coord_b38_rescue)


haploreg_snps_b38 <- haploreg_snps %>%
    left_join(haploreg_snps_find_locs_combined) %>%
    mutate(coord_b38 = as.character(ifelse(is.na(coord_b38), coord_b38_rescue, coord_b38))) %>%
    select(-coord_b38_rescue) %>%
    distinct()



## Combine LD SNPs


ld_snps_b38 <- bind_rows(
    ldlink_snps_b38 %>% mutate(source = "LDlink"),
    haploreg_snps_b38 %>% mutate(source = "HaploReg")
)



## Get TxDb annotations

ld_snps_b38_gr <- ld_snps_b38 %>%
    extract(coord_b38, c("seqnames", "start"), "(.+):(\\d+)") %>%
    filter(!is.na(seqnames), !is.na(start)) %>%
    mutate(end = start) %>%
    select(seqnames, start, end, snp) %>%
    makeGRangesFromDataFrame(keep.extra.columns = T)

ld_snps_txdb_loc <- locateVariants(ld_snps_b38_gr, TxDb.Hsapiens.UCSC.hg38.knownGene, AllVariants())

ld_snps_txdb_loc_df <- as_tibble(ld_snps_txdb_loc) %>%
    transmute(coord_b38 = paste0(seqnames, ":", start),
              txdb_annot = LOCATION) %>%
    distinct() %>%
    group_by(coord_b38) %>%
    summarise(txdb_annot = paste0(txdb_annot, collapse = ";"))

ld_snps_b38_annot <- left_join(ld_snps_b38,
                               ld_snps_txdb_loc_df, by = "coord_b38")


write_tsv(ld_snps_b38_annot, snakemake@output$ld_snps)
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
log <- file(snakemake@log[[1]], open="wt")
sink(log, type = "message")
sink(log, type = "output")

library(tidyverse)
library(cowplot)

disease_list <- read_csv(snakemake@config$disease_list)

gwas_snps_raw <- read_tsv(snakemake@input$gwas_snps)
index_snps_raw <- read_csv(snakemake@input$index_snps, col_types = 'ccccc')
ld_snps_raw <- read_tsv(snakemake@input$ld_snps)
epigenome_snps_raw <- read_tsv(snakemake@input$epigenome_snps)
filtered_snps_raw <- read_tsv(snakemake@input$filtered_snps)
final_snps_raw <- read_csv(snakemake@input$variant_ref)

fig_dir <- "outs/figures"
dir.create(fig_dir, recursive = T)


gwas_snps <- full_join(gwas_snps_raw, index_snps_raw, by = c("Disease" = "disease", "SNPS" = "gwas_snp"))

gwas_study_count <- gwas_snps %>% distinct(Disease, PUBMEDID) %>% count(Disease)
gwas_study_count %>%
    ggplot(aes(x = fct_rev(Disease), y = n)) +
    geom_col() +
    coord_flip() +
    labs(y = "GWAS Studies",
         title = paste(n_distinct(gwas_snps$PUBMEDID, na.rm = T), "GWAS Studies")) +
    theme_cowplot() +
    theme(axis.title.y = element_blank())
ggsave(file.path(fig_dir, "gwas_studies.pdf"))

gwas_snp_count <- gwas_snps %>% distinct(Disease, index_snp) %>%
    group_by(Disease) %>%
    summarise(n = n_distinct(index_snp, na.rm = T))
gwas_snp_count %>%
    ggplot(aes(x = fct_rev(Disease), y = n)) +
    geom_col() +
    coord_flip() +
    labs(y = "GWAS SNPs",
         title = paste(n_distinct(gwas_snps$SNPS, na.rm = T), "GWAS Index SNPs")) +
    theme_cowplot() +
    theme(axis.title.y = element_blank())
ggsave(file.path(fig_dir, "index_snps_per_disease.pdf"))

linked_snps <- gwas_snps %>%
    select(Disease, index_snp) %>%
    full_join(ld_snps_raw, by = "index_snp")

linked_snp_count <- linked_snps %>% distinct(Disease, snp) %>%
    group_by(Disease) %>%
    summarise(n = n_distinct(snp, na.rm = T))
linked_snp_count %>%
    ggplot(aes(x = fct_rev(Disease), y = n)) +
    geom_col() +
    coord_flip() +
    labs(y = "Linked SNPs",
         title = paste(n_distinct(linked_snps$snp, na.rm = T), "SNPs in LD (R2 > 0.8) with Index SNPs")) +
    theme_cowplot() +
    theme(axis.title.y = element_blank())
ggsave(file.path(fig_dir, "linked_snps_per_disease.pdf"))



linked_snps %>%
    distinct(index_snp, snp) %>%
    group_by(index_snp) %>%
    summarise(n = n_distinct(snp, na.rm = T)) %>%
    ggplot(aes(x = n)) +
    geom_histogram() +
    scale_x_continuous(trans = scales::pseudo_log_trans(base = 10),
                       breaks = c(0, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000)) +
    labs(x = "Number of linked SNPs",
         y = "Index SNPs",
         title = "Distribution of linked SNPs per index SNP") +
    theme_cowplot()
ggsave(file.path(fig_dir, "linked_snps_per_index_snp.pdf"))



filtered_snps <- gwas_snps %>%
    select(Disease, index_snp) %>%
    full_join(filtered_snps_raw, by = "index_snp")

filtered_snp_count <- filtered_snps %>% distinct(Disease, snp) %>%
    group_by(Disease) %>%
    summarise(n = n_distinct(snp, na.rm = T))
filtered_snp_count %>%
    ggplot(aes(x = fct_rev(Disease), y = n)) +
    geom_col() +
    coord_flip() +
    labs(y = "Filtered SNPs",
         title = paste(n_distinct(filtered_snps$snp, na.rm = T), "SNPs post filtering")) +
    theme_cowplot() +
    theme(axis.title.y = element_blank())
ggsave(file.path(fig_dir, "filtered_snps_per_disease.pdf"))


filtered_snps %>% distinct(index_snp, snp) %>%
    group_by(index_snp) %>%
    summarise(n = n_distinct(snp, na.rm = T)) %>%
    ggplot(aes(x = n)) +
    geom_histogram() +
    scale_x_continuous(trans = scales::pseudo_log_trans(base = 10),
                       breaks = c(0, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000)) +
    labs(x = "Number of filtered SNPs",
         y = "Index SNPs",
         title = "Distribution of filtered SNPs per index SNP") +
    theme_cowplot()
ggsave(file.path(fig_dir, "filtered_snps_per_index_snp.pdf"))


epigenome_snps <- epigenome_snps_raw %>%
    select(snp, Epigenome) %>%
    mutate(Epigenome = str_split(Epigenome, ";")) %>%
    unnest(Epigenome) %>%
    filter(!is.na(Epigenome)) %>%
    distinct()

epigenome_snps %>%
    ggplot(aes(x = fct_rev(Epigenome))) +
    geom_bar() +
    coord_flip() +
    labs(x = "Peak set", y = "Filtered SNPs") +
    theme_cowplot()
ggsave(file.path(fig_dir, "filtered_snps_per_peakset.pdf"))


peak_stats <- read_csv(snakemake@input$peak_stats)
epigenome_stats <- epigenome_snps %>%
    count(Epigenome) %>%
    left_join(peak_stats, by = c("Epigenome" = "peakset")) %>%
    mutate(snps_per_peak = n / peak_num,
           snps_per_mb = n / peak_width * 1e6)

epigenome_stats %>%
    ggplot(aes(x = fct_rev(Epigenome), y = snps_per_mb)) +
    geom_col() +
    coord_flip() +
    labs(x = "Peak set", y = "SNPs per Mb") +
    theme_cowplot()
ggsave(file.path(fig_dir, "filtered_snps_per_peakset_mb.pdf"))

final_snps <- filtered_snps %>%
    select(Disease, index_snp, snp) %>%
    full_join(final_snps_raw)

final_snp_count <- final_snps %>% distinct(Disease, fragment) %>%
    group_by(Disease) %>%
    summarise(n = n_distinct(fragment, na.rm = T))


final_snp_count %>%
    ggplot(aes(x = fct_rev(Disease), y = n)) +
    geom_col() +
    coord_flip() +
    labs(y = "Final SNPs",
         title = paste(n_distinct(final_snps$fragment, na.rm = T), "SNPs in final library")) +
    theme_cowplot() +
    theme(axis.title.y = element_blank())
ggsave(file.path(fig_dir, "final_snps_per_disease.pdf"))


final_snps %>%
    distinct(index_snp, fragment) %>%
    group_by(index_snp) %>%
    summarise(n = n_distinct(fragment, na.rm = T)) %>%
    ggplot(aes(x = n)) +
    geom_histogram() +
    scale_x_continuous(trans = scales::pseudo_log_trans(base = 10),
                       breaks = c(0, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000)) +
    labs(x = "Number of linked SNPs",
         y = "Index SNPs",
         title = "Distribution of linked SNPs per index SNP in final library") +
    theme_cowplot()
ggsave(file.path(fig_dir, "final_snps_per_index_snp.pdf"))


stats_table <- gwas_snp_count %>% rename(GWAS_SNPs = n) %>%
    left_join(linked_snp_count %>% rename(Linked_SNPs = n)) %>%
    left_join(filtered_snp_count %>% rename(Filtered_SNPs = n)) %>%
    left_join(final_snp_count %>% rename(Final_SNPs = n))


stats_table_unique <- tibble(Disease = "Unique") %>%
    mutate(GWAS_SNPs = n_distinct(gwas_snps$index_snp, na.rm=T),
           Linked_SNPs = n_distinct(linked_snps$snp, na.rm=T),
           Filtered_SNPs = n_distinct(filtered_snps$snp, na.rm=T),
           Final_SNPs = n_distinct(final_snps$fragment, na.rm=T))

bind_rows(stats_table, stats_table_unique) %>%
    write_csv(snakemake@output$stats)
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
save.image("logs/intersect_epigenome.RData")


log <- file(snakemake@log[[1]], open="wt")
sink(log, type = "message")
sink(log, type = "output")

## Load packages
# library(SNPlocs.Hsapiens.dbSNP144.GRCh37)
# library(SNPlocs.Hsapiens.dbSNP151.GRCh38)
# library(BSgenome.Hsapiens.UCSC.hg19)
# library(TxDb.Hsapiens.UCSC.hg19.knownGene)
# library(VariantAnnotation)
# library(rtracklayer)
# library(plyranges)


## Set up project
# library(ProjectTemplate)
# load.project()

# str(snakemake@config$epigenome)

library(rtracklayer)
library(plyranges)
library(tidyverse)

set.seed(snakemake@config$seed)

## Load data
# ldlink_full_results <- read_tsv("./data/raw/lib3_design/ldlink_full_results.txt")
# haploreg_full_results <- read_tsv("./data/raw/lib3_design/haploreg_full_results.txt")

ld_snps <- read_tsv(snakemake@input$ld_snps)

hg19_to_hg38_chain <- import.chain("assets/hg19ToHg38.over.chain")

if ("epigenome_csv" %in% names(snakemake@config) && file.exists(snakemake@config$epigenome_csv)) {

    epigenome_csv <- read_csv(snakemake@config$epigenome_csv)
    epigenome_keys <- epigenome_csv$name
    epigenome_bed <- map2(epigenome_csv$bedfile, epigenome_csv$genome, function(bedfile, genome) {
        bed <- read_narrowpeaks(bedfile)
        if (genome == "hg19") {
            bed <- liftOver(bed, hg19_to_hg38_chain) %>% unlist
        }
        return(bed)
        })

} else {

    epigenome_keys <- names(snakemake@config$epigenome)
    epigenome_bed <- map(snakemake@config$epigenome, function(epigenome) {
        bed <- read_narrowpeaks(epigenome$bedfile)
        if (epigenome$genome == "hg19") {
            bed <- liftOver(bed, hg19_to_hg38_chain) %>% unlist
        }
        return(bed)
        })
}

epigenome_df <- tibble(key = epigenome_keys,
                       bed = epigenome_bed) %>%
    mutate(key = str_replace_all(key, "[^A-Za-z0-9_]", "_")) %>%
    group_by(key) %>%
    summarise(bed = list(reduce(bed, union_ranges)))

epigenome_keys <- epigenome_df$key
epigenome_bed <- epigenome_df$bed %>% set_names(epigenome_df$key)

ld_snps_gr <- ld_snps %>%
    filter(!is.na(coord_b38)) %>%
    extract(coord_b38, c("chr", "pos"), "(chr[0-9XY]+):(\\d+)", remove = F) %>%
    mutate(start = pos, end = pos) %>%
    select(-pos) %>%
    makeGRangesFromDataFrame(keep.extra.columns = T)

epigenome_ranges <- map(epigenome_bed,
    ~ as_tibble(.) %>%
    mutate(range = paste0(seqnames, ":", start, "-", end)) %>%
    pull(range))

mcols(ld_snps_gr) <- cbind(mcols(ld_snps_gr),
    map2_dfc(epigenome_ranges, epigenome_bed, ~ .x[findOverlaps(ld_snps_gr, .y, maxgap = 0, select = "first")]))


if (!is.null(snakemake@config$eqtls)) {
    eqtls <-
        map_dfr(snakemake@config$eqtls,
            ~ read_tsv(.$file), .id = "tissue")

    eqtls <- eqtls %>%
        extract(variant_id, c("chr", "pos"), "^(chr[0-9XY]+)_(\\d+)", remove = F) %>%
        mutate(pos = as.integer(pos))
} else {
    eqtls <- tibble(chr = character(), pos = integer(), variant_id = character())
}




ld_snps_epigenome <- ld_snps_gr %>%
    as_tibble(.name_repair = "minimal") %>%
    select(-end, -width, -strand) %>%
    dplyr::rename(chr = seqnames,
                  pos = start) %>%
    mutate(across(all_of(epigenome_keys), ~ ifelse(!is.na(.), cur_column(), NA), .names = "{.col}_dummy")) %>%
    unite(Epigenome, ends_with("_dummy"), sep = ";", na.rm = T) %>%
    left_join(eqtls %>% distinct(chr, pos, eQTL = variant_id))


write_tsv(ld_snps_epigenome, snakemake@output$epigenome)


peak_stats <- tibble(peakset = epigenome_keys, bed = epigenome_bed) %>%
    mutate(peak_num = map_int(epigenome_bed, length),
           peak_width = map_int(epigenome_bed, ~ sum(width(.)))) %>%
    select(-bed)

write_csv(peak_stats, snakemake@output$peak_stats)
1
2
readRenviron(".Renviron")
cat(Sys.getenv("LDLINK_TOKEN"), file = "outs/token")
R From line 1 of scripts/test_token.R
60
61
run:
    print("hello world! we did it!")
SnakeMake From line 60 of main/Snakefile
65
66
script:
    "scripts/test_token.R"
SnakeMake From line 65 of main/Snakefile
72
73
script:
    "scripts/GetSNPsFromGWAS.R"
SnakeMake From line 72 of main/Snakefile
81
script: "scripts/CleanIndexSNPs.R"
SnakeMake From line 81 of main/Snakefile
89
script: "scripts/GetSNPsInLD.R"
SnakeMake From line 89 of main/Snakefile
98
script: "scripts/SNPsEpigenomeIntersect.R"
SnakeMake From line 98 of main/Snakefile
106
script: "scripts/FilterSNPs.R"
SnakeMake From line 106 of main/Snakefile
117
script: "scripts/BuildMPRALib.R"
SnakeMake From line 117 of main/Snakefile
132
script: "scripts/LibDesignFiguresTables.R"
SnakeMake From line 132 of main/Snakefile
ShowHide 12 more snippets with no or duplicated tags.

Login to post a comment if you would like to share your experience with this workflow.

Do you know this workflow well? If so, you can request seller status , and start supporting this workflow.

Free

Created: 1yr ago
Updated: 1yr ago
Maitainers: public
URL: https://github.com/robinmeyers/mpra-gwas-builder
Name: mpra-gwas-builder
Version: 1
Badge:
workflow icon

Insert copied code into your website to add a link to this workflow.

Downloaded: 0
Copyright: Public Domain
License: None
  • Future updates

Related Workflows

cellranger-snakemake-gke
snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...