An analysis pipeline for Nanostring nCounter expression data.
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
Introduction
nf-core/nanostring is a bioinformatics pipeline that can be used to analyze NanoString data. The performed analysis steps include quality control and data normalization.
The pipeline is built using Nextflow , a workflow tool to run tasks across multiple compute infrastructures in a very portable manner. It uses Docker/Singularity containers making installation trivial and results highly reproducible. The Nextflow DSL2 implementation of this pipeline uses one container per process which makes it much easier to maintain and update software dependencies. Where possible, these processes have been submitted to and installed from nf-core/modules in order to make them available to all nf-core pipelines, and to everyone within the Nextflow community!
On release, automated continuous integration tests run the pipeline on a full-sized dataset on the AWS cloud infrastructure. This ensures that the pipeline runs on AWS, has sensible resource allocation defaults set to run on real-world datasets, and permits the persistent storage of results to benchmark between pipeline releases and other analysis sources.The results obtained from the full-sized test can be viewed on the nf-core website .
Pipeline summary
-
Quality control with NACHO (
NACHO
) -
Perform normalization with NACHO
-
Create count tables with provided metadata
-
Present QC for NanoString data (
MultiQC
)
Usage
Note If you are new to Nextflow and nf-core, please refer to this page on how to set-up Nextflow. Make sure to test your setup with
-profile test
before running the workflow on actual data.
First, prepare a samplesheet with your input data that looks as follows:
samplesheet.csv
:
RCC_FILE,RCC_FILE_NAME,SAMPLE_ID
/path/to/sample1.RCC,sample1.RCC,sample1
/path/to/sample2.RCC,sample2.RCC,sample2
Each row represents a RCC file with counts.
Now, you can run the pipeline using:
nextflow run nf-core/nanostring \
-profile <docker/singularity/.../institute> \
--input samplesheet.csv \
--outdir <OUTDIR>
Warning: Please provide pipeline parameters via the CLI or Nextflow
-params-file
option. Custom config files including those provided by the-c
Nextflow option can be used to provide any configuration except for parameters ; see docs .
For more details and further functionality, please refer to the usage documentation and the parameter documentation .
Pipeline output
To see the results of an example test run with a full size dataset refer to the results tab on the nf-core website pipeline page. For more details about the output files and reports, please refer to the output documentation .
Credits
nf-core/nanostring was originally written by Peltzer, Alexander & Mohr, Christopher. Extensive support was provided from other co-authors on the scientific or technical input required for the pipeline:
-
Stadermann, Kai
-
Zwick, Matthias
-
Leparc, Germán
-
Schmid, Ramona
Contributions and Support
If you would like to contribute to this pipeline, please see the contributing guidelines .
For further information or help, don't hesitate to get in touch on the
Slack
#nanostring
channel
(you can join with
this invite
).
Citations
If you use nf-core/nanostring for your analysis, please cite it using the following doi: 10.5281/zenodo.8028303
An extensive list of references for the tools used by the pipeline can be found in the
CITATIONS.md
file.
You can cite the
nf-core
publication as follows:
The nf-core framework for community-curated bioinformatics pipelines.
Philip Ewels, Alexander Peltzer, Sven Fillinger, Harshil Patel, Johannes Alneberg, Andreas Wilm, Maxime Ulysse Garcia, Paolo Di Tommaso & Sven Nahnsen.
Nat Biotechnol. 2020 Feb 13. doi: 10.1038/s41587-020-0439-x .
Code Snippets
23 24 25 26 27 28 29 30 31 32 33 34 35 36 | """ compute_gene_scores.R $geneset_yaml $counts $args cat <<-END_VERSIONS > versions.yml "${task.process}": r-base: \$(echo \$(R --version 2>&1) | sed 's/^.*R version //; s/ .*\$//') r-tidyverse: \$(Rscript -e "library(tidyverse); cat(as.character(packageVersion('tidyverse')))") r-singscore: \$(Rscript -e "library(singscore); cat(as.character(packageVersion('singscore')))") r-GSVA: \$(Rscript -e "library(GSVA); cat(as.character(packageVersion('GSVA')))") r-yaml: \$(Rscript -e "library(yaml); cat(as.character(packageVersion('yaml')))") r-FactoMineR: \$(Rscript -e "library(FactoMineR); cat(as.character(packageVersion('FactoMineR')))") r-stringr: \$(Rscript -e "library(stringr); cat(as.character(packageVersion('stringr')))") END_VERSIONS """ |
24 25 26 27 28 29 30 31 32 33 34 | """ write_out_prepared_gex.R $counts $sample_sheet cat <<-END_VERSIONS > versions.yml "${task.process}": r-base: \$(echo \$(R --version 2>&1) | sed 's/^.*R version //; s/ .*\$//') r-nacho: \$(Rscript -e "library(NACHO); cat(as.character(packageVersion('NACHO')))") r-tidyverse: \$(Rscript -e "library(tidyverse); cat(as.character(packageVersion('tidyverse')))") r-fs: \$(Rscript -e "library(fs); cat(as.character(packageVersion('fs')))") END_VERSIONS """ |
23 24 25 26 27 28 29 30 31 32 33 | """ compute_gene_heatmap.R $annotated_counts $heatmap_genes_to_filter $args cat <<-END_VERSIONS > versions.yml "${task.process}": r-base: \$(echo \$(R --version 2>&1) | sed 's/^.*R version //; s/ .*\$//') r-nacho: \$(Rscript -e "library(NACHO); cat(as.character(packageVersion('NACHO')))") r-tidyverse: \$(Rscript -e "library(tidyverse); cat(as.character(packageVersion('tidyverse')))") r-fs: \$(Rscript -e "library(fs); cat(as.character(packageVersion('fs')))") END_VERSIONS """ |
24 25 26 27 28 29 30 31 32 33 34 | """ nacho_norm.R . $sample_sheet $args cat <<-END_VERSIONS > versions.yml "${task.process}": r-base: \$(echo \$(R --version 2>&1) | sed 's/^.*R version //; s/ .*\$//') r-nacho: \$(Rscript -e "library(NACHO); cat(as.character(packageVersion('NACHO')))") r-tidyverse: \$(Rscript -e "library(tidyverse); cat(as.character(packageVersion('tidyverse')))") r-fs: \$(Rscript -e "library(fs); cat(as.character(packageVersion('fs')))") END_VERSIONS """ |
25 26 27 28 29 30 31 32 33 34 35 | """ nacho_qc.R . $sample_sheet cat <<-END_VERSIONS > versions.yml "${task.process}": r-base: \$(echo \$(R --version 2>&1) | sed 's/^.*R version //; s/ .*\$//') r-nacho: \$(Rscript -e "library(NACHO); cat(as.character(packageVersion('NACHO')))") r-tidyverse: \$(Rscript -e "library(tidyverse); cat(as.character(packageVersion('tidyverse')))") r-fs: \$(Rscript -e "library(fs); cat(as.character(packageVersion('fs')))") END_VERSIONS """ |
21 22 23 24 25 26 27 28 29 30 | """ check_samplesheet.py \\ $samplesheet \\ samplesheet.valid.csv cat <<-END_VERSIONS > versions.yml "${task.process}": python: \$(python --version | sed 's/Python //g') END_VERSIONS """ |
28 29 30 31 32 33 34 35 36 37 38 39 40 | """ multiqc \\ --force \\ $args \\ $config \\ $extra_config \\ . cat <<-END_VERSIONS > versions.yml "${task.process}": multiqc: \$( multiqc --version | sed -e "s/multiqc, version //g" ) END_VERSIONS """ |
43 44 45 46 47 48 49 50 51 52 | """ touch multiqc_data touch multiqc_plots touch multiqc_report.html cat <<-END_VERSIONS > versions.yml "${task.process}": multiqc: \$( multiqc --version | sed -e "s/multiqc, version //g" ) END_VERSIONS """ |
Support
- Future updates