deep mutational scanning of the porcine deltacoronavirus receptor-binding domain

public public 1yr ago 0 bookmarks

Analysis of deep mutational scanning of barcoded codon variants of yeast-displayed PD-CoV RBD

We measured binding of all single amino acid mutations in the PD-CoV RBD for binding to:

  1. galline APN (gAPN)

  2. porcine A

Code Snippets

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import argparse
import os
import subprocess


def main():

    parser = argparse.ArgumentParser(
                description='Run Jupyter notebook, create Markdown output')
    parser.add_argument('nb', help='Name of Jupyter notebook.')
    parser.add_argument('md_output', help='Name of created Markdown output.')
    args = parser.parse_args()

    nb = args.nb
    if not (os.path.isfile(nb) and os.path.splitext(nb)[-1] == '.ipynb'):
        raise IOError(f"not a valid Jupyter notebook: {nb}")

    md_output = args.md_output
    if os.path.splitext(md_output)[-1] not in {'.md', '.markdown'}:
        raise IOError(f"not a valid Markdown file: {md_output}")

    if os.path.isfile(md_output):
        os.remove(md_output)

    subprocess.check_call(['jupyter', 'nbconvert',
                           '--to', 'notebook',
                           '--execute',
                           '--inplace',
                           '--ExecutePreprocessor.timeout=-1',
                           nb,
                           ])

    subprocess.check_call(['jupyter', 'nbconvert',
                           '--output-dir', os.path.dirname(md_output),
                           '--output', os.path.basename(md_output),
                           '--to', 'markdown',
                           nb,
                           ])


if __name__ == '__main__':
    main()
Python From line 10 of scripts/run_nb.py
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
run:
    def path(f):
        """Get path relative to `summary_dir`."""
        return os.path.relpath(f, config['summary_dir'])
    with open(output.summary, 'w') as f:
        f.write(textwrap.dedent(f"""
        # Summary

        Analysis run by [Snakefile]({path(workflow.snakefile)})
        using [this config file]({path(workflow.configfiles[0])}).
        See the [README in the top directory]({path('README.md')})
        for details.

        Here is the DAG of the computational workflow:
        ![{path(input.dag)}]({path(input.dag)})

        Here is the Markdown output of each Jupyter notebook in the
        workflow:

        1. Process PacBio CCSs for [PDCoV libraries]({path(input.process_ccs_PDCoV)}). Creates barcode-variant lookup table, which can be found [here]({path(input.barcode_variant_table_PDCoV)}),.

        2. [Count variants by barcode]({path(input.count_variants)}).
           Creates a [variant counts file]({path(input.variant_counts_file)})
           giving counts of each barcoded variant in each condition.

        3. [Fit gAPN titration curves]({path(input.fit_gAPN_titrations)}) to calculate per-barcode K<sub>D</sub>, recorded in [this file]({path(input.gAPN_Kds_file)}).

        4. Analyze single-concentration sort-seq experients for [hAPN]({path(input.fit_hAPN_meanF)}) and [pAPN]({path(input.fit_pAPN_meanF)}) to calculate per-barcode binding MFI, recorded in these files for [hAPN]({path(input.hAPN_meanF_file)}) and [pAPN]({path(input.pAPN_meanF_file)}).

        5. [Derive final genotype-level phenotypes from replicate barcoded sequences]({path(input.collapse_scores)}).
           Generates final phenotypes, recorded in [this file]({path(input.mut_phenos_file)}).

        6. Make interactive data visualizations, available [here](https://jbloomlab.github.io/PD-CoV-RBD_DMS/)

        """
        ).strip())
SnakeMake From line 63 of main/Snakefile
106
107
shell:
    "snakemake --forceall --dag | dot -Tsvg > {output}"
138
139
140
141
142
143
shell:
    """
    R -e \"rmarkdown::render(input=\'{params.nb}\')\";
    mv {params.md} {output.md};
    mv {params.md_files} {output.md_files}
    """
SnakeMake From line 138 of main/Snakefile
159
160
161
162
163
164
shell:
    """
    R -e \"rmarkdown::render(input=\'{params.nb}\')\";
    mv {params.md} {output.md};
    mv {params.md_files} {output.md_files}
    """
SnakeMake From line 159 of main/Snakefile
180
181
182
183
184
185
shell:
    """
    R -e \"rmarkdown::render(input=\'{params.nb}\')\";
    mv {params.md} {output.md};
    mv {params.md_files} {output.md_files}
    """
SnakeMake From line 180 of main/Snakefile
201
202
203
204
205
206
shell:
    """
    R -e \"rmarkdown::render(input=\'{params.nb}\')\";
    mv {params.md} {output.md};
    mv {params.md_files} {output.md_files}
    """
SnakeMake From line 201 of main/Snakefile
218
219
shell:
    "python scripts/run_nb.py {params.nb} {output.nb_markdown}"
SnakeMake From line 218 of main/Snakefile
232
233
shell:
    "python scripts/run_nb.py {params.nb} {output.nb_markdown}"
SnakeMake From line 232 of main/Snakefile
247
248
run:
    os.symlink(input.ccs_fastq, output.ccs_fastq)
SnakeMake From line 247 of main/Snakefile
ShowHide 9 more snippets with no or duplicated tags.

Login to post a comment if you would like to share your experience with this workflow.

Do you know this workflow well? If so, you can request seller status , and start supporting this workflow.

Free

Created: 1yr ago
Updated: 1yr ago
Maitainers: public
URL: https://github.com/tstarrlab/PD-CoV-RBD_DMS
Name: pd-cov-rbd_dms
Version: 1
Badge:
workflow icon

Insert copied code into your website to add a link to this workflow.

Downloaded: 0
Copyright: Public Domain
License: None
Keywords:
  • Future updates

Related Workflows

cellranger-snakemake-gke
snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...