deep mutational scanning of the porcine deltacoronavirus receptor-binding domain
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
Analysis of deep mutational scanning of barcoded codon variants of yeast-displayed PD-CoV RBD
We measured binding of all single amino acid mutations in the PD-CoV RBD for binding to:
-
galline APN (gAPN)
-
porcine A
Code Snippets
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | import argparse import os import subprocess def main(): parser = argparse.ArgumentParser( description='Run Jupyter notebook, create Markdown output') parser.add_argument('nb', help='Name of Jupyter notebook.') parser.add_argument('md_output', help='Name of created Markdown output.') args = parser.parse_args() nb = args.nb if not (os.path.isfile(nb) and os.path.splitext(nb)[-1] == '.ipynb'): raise IOError(f"not a valid Jupyter notebook: {nb}") md_output = args.md_output if os.path.splitext(md_output)[-1] not in {'.md', '.markdown'}: raise IOError(f"not a valid Markdown file: {md_output}") if os.path.isfile(md_output): os.remove(md_output) subprocess.check_call(['jupyter', 'nbconvert', '--to', 'notebook', '--execute', '--inplace', '--ExecutePreprocessor.timeout=-1', nb, ]) subprocess.check_call(['jupyter', 'nbconvert', '--output-dir', os.path.dirname(md_output), '--output', os.path.basename(md_output), '--to', 'markdown', nb, ]) if __name__ == '__main__': main() |
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | run: def path(f): """Get path relative to `summary_dir`.""" return os.path.relpath(f, config['summary_dir']) with open(output.summary, 'w') as f: f.write(textwrap.dedent(f""" # Summary Analysis run by [Snakefile]({path(workflow.snakefile)}) using [this config file]({path(workflow.configfiles[0])}). See the [README in the top directory]({path('README.md')}) for details. Here is the DAG of the computational workflow: }) Here is the Markdown output of each Jupyter notebook in the workflow: 1. Process PacBio CCSs for [PDCoV libraries]({path(input.process_ccs_PDCoV)}). Creates barcode-variant lookup table, which can be found [here]({path(input.barcode_variant_table_PDCoV)}),. 2. [Count variants by barcode]({path(input.count_variants)}). Creates a [variant counts file]({path(input.variant_counts_file)}) giving counts of each barcoded variant in each condition. 3. [Fit gAPN titration curves]({path(input.fit_gAPN_titrations)}) to calculate per-barcode K<sub>D</sub>, recorded in [this file]({path(input.gAPN_Kds_file)}). 4. Analyze single-concentration sort-seq experients for [hAPN]({path(input.fit_hAPN_meanF)}) and [pAPN]({path(input.fit_pAPN_meanF)}) to calculate per-barcode binding MFI, recorded in these files for [hAPN]({path(input.hAPN_meanF_file)}) and [pAPN]({path(input.pAPN_meanF_file)}). 5. [Derive final genotype-level phenotypes from replicate barcoded sequences]({path(input.collapse_scores)}). Generates final phenotypes, recorded in [this file]({path(input.mut_phenos_file)}). 6. Make interactive data visualizations, available [here](https://jbloomlab.github.io/PD-CoV-RBD_DMS/) """ ).strip()) |
106 107 | shell: "snakemake --forceall --dag | dot -Tsvg > {output}" |
138 139 140 141 142 143 | shell: """ R -e \"rmarkdown::render(input=\'{params.nb}\')\"; mv {params.md} {output.md}; mv {params.md_files} {output.md_files} """ |
159 160 161 162 163 164 | shell: """ R -e \"rmarkdown::render(input=\'{params.nb}\')\"; mv {params.md} {output.md}; mv {params.md_files} {output.md_files} """ |
180 181 182 183 184 185 | shell: """ R -e \"rmarkdown::render(input=\'{params.nb}\')\"; mv {params.md} {output.md}; mv {params.md_files} {output.md_files} """ |
201 202 203 204 205 206 | shell: """ R -e \"rmarkdown::render(input=\'{params.nb}\')\"; mv {params.md} {output.md}; mv {params.md_files} {output.md_files} """ |
218 219 | shell: "python scripts/run_nb.py {params.nb} {output.nb_markdown}" |
232 233 | shell: "python scripts/run_nb.py {params.nb} {output.nb_markdown}" |
247 248 | run: os.symlink(input.ccs_fastq, output.ccs_fastq) |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...