Snakemake Pipeline for Automating the Use of the Bioinformatics Tool RVHaplo
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
Ce pipeline réalisé en Snakemake permet d'automatiser l'utilisation de l'outil bioinformatique RVHaplo (https://github.com/dhcai21/RVHaplo.git
Code Snippets
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | from Bio import Phylo, AlignIO from Bio.Phylo.TreeConstruction import DistanceCalculator, DistanceTreeConstructor # Read the alignment file alignment = AlignIO.read(snakemake.input[0], "fasta") print(alignment) # Calculare the distance matrix calculator = DistanceCalculator('identity') distance_Matrix = calculator.get_distance(alignment) print(distance_Matrix) # Create a DistanceTreeConstructor object constructor = DistanceTreeConstructor() # Construct the phlyogenetic tree using NJ algorithm NJ_tree = constructor.nj(distance_Matrix) # Draw the phlyogenetic tree using terminal Phylo.draw_ascii(NJ_tree) # Write tree in new file Phylo.write(NJ_tree, snakemake.output[0], "newick") |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 | file_sam="" file_ref="" ### optional arguments file_path='./result' prefix="rvhaplo" mq=0 thread=8 error_rate=0.1 signi_level=0.05 cond_pro=0.65 fre_snv=0.8 num_read_1=10 num_read_2=5 gap=15 smallest_snv=20 only_snv=0 ovlap_read=5 weight_read=0.85 mcl_inflation=2 lar_cluster=50 ovlap_cluster=10 depth=5 weight_cluster=0.8 abundance=0.005 s_pos=1 e_pos=10000000000 function help_info() { echo "Usage: $0 -i alignment.sam -r ref_genome.fasta [options]" echo "" echo "RVHaplo: Reconstructing viral haplotypes using long reads" echo "" echo "Author: Dehan CAI" echo "Date: May 2022" echo "Version 2: Support mutli-thread processing; Use a C package of MCL; Cost less memory " echo "" echo " -i | --input: alignment file (sam)" echo " -r | --refernece: reference genome (fasta)" echo "" echo " Options:" echo " -o | --out: Path where to output the results. (default:./result)" echo " -p | --prefix STR: Prefix of output file. (default: rvhaplo)" echo " -t | --thread INT: Number of CPU cores for multiprocessing. (default:8)" echo " -e | --error_rate FLOAT: Sequencing error rate. (default: 0.1)" echo " -mq | --map_qual INT: Smallest mapping quality for reads . (default:0)" echo " -s | --signi_level FLOAT: Significance level for binomial tests. (default: 0.05)" echo " -c | --cond_pro FLOAT: A threshold of the maximum conditional probability for SNV sites. (default: 0.65)" echo " -f | --fre_snv FLOAT: The most dominant base' frequency at a to-be-verified site should >= fre_snv. (default: 0.80)" echo " -n1 | --num_read_1 INT: Minimum # of reads for calculating the conditional probability given one conditional site. (default:10)" echo " -n2 | --num_read_2 INT: Minimum # of reads for calculating the conditional probability given more than one conditional sites. (default: 5)" echo " -g | --gap INT: Minimum length of gap between SNV sites for calculating the conditional probability. (default:15)" echo " -ss | --smallest_snv INT: Minimum # of SNV sites for haplotype construction. (default:20)" echo " -os | --only_snv (0 or 1) : Only output the SNV sites without running the haplotype reconstruction part. (default: 0)" echo " -or | --overlap_read INT: Minimum length of overlap for creating edges between two read in the read graph. (default: 5)" echo " -wr | --weight_read FLOAT: Minimum weights of edges in the read graph. (default:0.8)" echo " -m | --mcl_inflaction FLOAT: Inflaction of MCL algorithm. (default:2)" echo " -l | --lar_cluster INT: A threshold for seperating clusters into two groups based on sizes of clusters. (default:50)" echo " -oc | --overlap_cluster INT: A parameter related to the minimum overlap between consensus sequences. (default:10) " echo " -d | --depth INT: Depth limitation for consensus sequences generated from clusters. (default:5) " echo " -wc | --weight_cluster FLOAT: Minimum weights between clusters in the hierarchical clustering. (default: 0.8)" echo " -sp | --start_pos INT: Starting position for generating consensus sequences (default: 1)" echo " -ep | --end_pos INT: Ending position for generating consensus sequences. (default: 1e10)" echo " -a | --abundance FLOAT: A threshold for filtering low-abundance haplotypes. (default: 0.005)" echo " -h | --help : Print help message." echo "" echo " For further details of above arguments, please refer to https://github.com/dhcai21/RVHaplo " echo "" exit 1 } if [[ "$1" == "" ]];then help_info exit 1 fi while [[ "$1" != "" ]]; do case "$1" in -h | --help ) ## print help message help_info exit 1 ;; -i | --input ) ### input sam file case "$2" in "" ) echo "Error: no sam file as input" exit 1 ;; *) file_sam="$2" if [[ "${file_sam:0:1}" == "-" ]] then echo "Error: no sam file as input" exit 1 fi shift 2 ;; esac ;; -r | --ref_genome) ### input reference genome case "$2" in "") echo "Error: no fasta file as input" exit 1 ;; *) file_ref="$2" if [[ ""${file_ref:0:1}"" == "-" ]] then echo "Error: no fasta file as input" exit 1 fi shift 2 ;; esac ;; -o | --out ) ### output path case "$2" in "" ) echo "Error: no output path" exit 1 ;; *) file_path="$2" if [[ "${file_sam:0:1}" == "-" ]] then echo "Error: no output path" exit 1 fi shift 2 ;; esac ;; -p | --prefix ) ### prefix case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) prefix="$2" shift 2 ;; esac ;; -mq | --map_qual ) ### mapping quality case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) mq="$2" shift 2 ;; esac ;; -t | --thread ) ### threads case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) thread="$2" shift 2 ;; esac ;; -e | --error_rate ) ### error_rate case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) error_rate="$2" shift 2 ;; esac ;; -s | --signi_level ) ### significance_level case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) signi_level="$2" shift 2 ;; esac ;; -c | --cond_pro ) ### conditional_probability case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) cond_pro="$2" shift 2 ;; esac ;; -f | --fre_snv ) ### determine the set of to-be-verified SNV sites case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) fre_snv="$2" shift 2 ;; esac ;; -n1 | --num_read_1 ) ### number of reads for p(ai|aj) case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) num_read_1="$2" shift 2 ;; esac ;; -n2 | --num_read_2 ) ### number of reads for p(ai|aj1,aj2,...,ajp) case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) num_read_2="$2" shift 2 ;; esac ;; -g | --gap ) ### Minimum distance between SNV sites case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) gap="$2" shift 2 ;; esac ;; -ss | --smallest_snv ) ### Minimum number of SNV sites for haplotype reconstruction case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) smallest_snv="$2" shift 2 ;; esac ;; -os | --only_snv ) ### Only output the SNV sites without running the haplotype reconstruction part. case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) only_snv="$2" shift 2 ;; esac ;; -or | --ovlap_read ) ### overlap_read case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) ovlap_read="$2" shift 2 ;; esac ;; -wr | --weight_read ) ### weight_read case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) weight_read="$2" shift 2 ;; esac ;; -m | --mcl_inflaction ) ### inflaction of MCL case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) mcl_inflaction="$2" shift 2 ;; esac ;; -oc | --ovlap_cluster ) ### overlap_cluster case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) ovlap_cluster="$2" shift 2 ;; esac ;; -wc | --weight_cluster ) ### weight_cluster case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) weight_cluster="$2" shift 2 ;; esac ;; -d | --depth ) ### depth limitation case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) depth="$2" shift 2 ;; esac ;; -l | --lar_cluster ) ### large cluster size case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) lar_cluster="$2" shift 2 ;; esac ;; -sp | --start_pos ) ### start_pos case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) s_pos="$2" shift 2 ;; esac ;; -ep | --end_pos ) ### end_pos case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) e_pos="$2" shift 2 ;; esac ;; -a | --abundance ) ### smallest abundance case "$2" in "" ) echo "Error: no input for $1" exit 1 ;; *) abundance="$2" shift 2 ;; esac ;; *) echo "Error: unknow parameter $1" exit 1 esac done if [[ "$file_sam" == "" ]];then echo "Error: no sam file input" exit 1 fi if [[ "$file_ref" == "" ]];then echo "Error: no reference genome input" exit 1 fi if [[ ${file_path:0-1:1} == "/" ]];then path_len=`expr ${#file_path}-1` file_prefix=$file_path$prefix file_path=${file_path:0:path_len} else file_prefix=$file_path"/"$prefix fi ########## count nucleotide occurrence ########## echo "count nucleotide occurrence" if [[ "$file_path" != "." ]];then rm -rf $file_path mkdir $file_path fi rm -rf $file_path"/alignment" mkdir $file_path"/alignment" file_len=`expr ${#file_sam}-4` unique_sam=$file_path"/alignment/"$prefix".sam" samtools view -h -F 0x900 -q $mq $file_sam > $unique_sam file_bam=$file_path"/alignment/"$prefix".bam" samtools view -b -S $unique_sam > $file_bam rm $unique_sam file_bam_sorted=$file_path"/alignment/"$prefix"_sorted.bam" samtools sort $file_bam -o $file_bam_sorted samtools index $file_bam_sorted file_acgt=$file_prefix"_acgt.txt" python ./src/count_frequency.py $file_bam_sorted $file_acgt ########## two binomial tests ########## echo "SNV detection" file_snv=$file_prefix"_snv.txt" python ./src/two_binomial.py $error_rate $signi_level $file_acgt $file_snv $thread $s_pos $e_pos ## judge number of detected SNV sites size="$(wc -l <"$file_snv")" size="${size:0-1:1}" if [[ $size != "0" ]];then exit 1 fi ## maximum conditional probability and construct reads graph python ./src/mcp_read_graph.py $file_bam_sorted $file_snv $cond_pro $smallest_snv $num_read_1 $num_read_2 $gap \ $weight_read $ovlap_read $file_prefix $fre_snv $thread $only_snv ## judge number of detected SNV sites size="$(wc -l <"$file_snv")" size="${size:0-1:1}" if [[ $size != "0" ]];then exit 1 fi if [[ $only_snv != 0 ]];then exit 1 fi # MCL clustering echo "MCL clustering" mcxload -abc $file_prefix"_reads_graph.txt" --stream-mirror --write-binary -o $file_prefix"_reads_graph.mci" -write-tab $file_prefix"_reads_graph.tab" rm $file_prefix"_reads_graph.txt" mcl $file_prefix"_reads_graph.mci" -te $thread -I $mcl_inflation -l 1 -L 100 -o $file_prefix"_mcl_result.icl" rm $file_prefix"_reads_graph.mci" mcxdump -icl $file_prefix"_mcl_result.icl" -o $file_prefix"_reads_cluster.txt" -tabr $file_prefix"_reads_graph.tab" rm $file_prefix"_mcl_result.icl" rm $file_prefix"_reads_graph.tab" ## hierarchical clustering echo "hierarchical clustering" python ./src/hierarchical_cluster.py $file_prefix"_matrix.pickle" $lar_cluster $depth \ $ovlap_cluster $weight_cluster $abundance $file_prefix ## reconstruct haplotypes rm -rf $file_path"/clusters" mkdir $file_path"/clusters" echo "haplotypes reconstruction" python ./src/out_haplotypes.py $file_prefix"_clusters.pickle" $file_bam_sorted $file_path $file_acgt $file_ref \ $file_prefix"_consensus.fasta" $s_pos $e_pos echo "haplotypes polishment (medaka)" python ./src/extract_reads.py $file_path $prefix python ./src/run_medaka.py $file_path $prefix rm $file_prefix"_matrix.pickle" rm $file_prefix"_reads_cluster.txt" rm $file_prefix"_clusters.pickle" rm -rf $file_path/medaka/fastx echo "complete reconstructing haplotypes" exit 1 |
81 82 | shell: "pycoQC --summary_file {input} --html_outfile {output}" |
91 92 | shell: "seqtk seq -a {input.fastq} > {output.conv_fasta}" |
103 104 | shell: "seqkit seq -g -m {params.filter} {input} > {output}" |
113 114 | shell: "bwa index {input}" |
127 128 | shell: "bwa mem -t {threads} {input.reference} {input.fasta} > {output}" |
143 144 145 | shell: "./rvhaplo.sh -i {input.sam} -r {input.reference} -o {params.outdir}_sup{filter_reads} -t {threads} || true" if filter_reads != 0 else "./rvhaplo.sh -i {input.sam} -r {input.reference} -o {params.outdir}_allreads -t {threads} || true" |
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | run: with open(input.all_refs_file) as file: refs = file.read() with open(input.all_CP_refs) as file: refs_CP = file.read() haplo_files = input.haplotypes with open(haplo_files) as file: haplo1 = file.read() haplo2 = file.read() haplo1 += refs haplo2 += refs_CP merge_file_1 = output.haplo_refs with open(merge_file_1, "w") as file: file.write(haplo1) merge_file_2 = output.haplo_refs_CP with open(merge_file_2, "w") as file: file.write(haplo2) |
190 191 192 193 194 | shell: """ muscle3.8.31_i86linux64 -in {input.haplo_refs} -out {output.aln} muscle3.8.31_i86linux64 -in {input.haplo_refs_CP} -out {output.aln_CP} """ |
203 204 | script: "python_script/tree.py" |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/RainbowBishop/Pipeline_RVHaplo
Name:
pipeline_rvhaplo
Version:
2
Downloaded:
0
Copyright:
Public Domain
License:
None
- Future updates
Related Workflows

ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...

Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...

snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...

ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics

RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...

This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...