Code to reproduce analyses shown in the Signac paper

public public 1yr ago 0 bookmarks

Signac paper

Code to reproduce analyses shown in Stuart et al. 2021, Nature Methods

To run the workflow, first create a new conda environment containing the dependencies:

mamba env create -f environment.yaml

The entire workflow can be run by executing:

snakemake --cores 8

For information about the Signac package, see the Signac repository

Code Snippets

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
library(Signac)
library(Seurat)
library(ggplot2)
library(patchwork)
library(dplyr)
library(tidyr)
library(BSgenome.Hsapiens.UCSC.hg38)

pbmc <- readRDS("objects/pbmc.rds")
lnk <- readRDS("objects/pbmc_links.rds")

DefaultAssay(pbmc) <- "ATAC"
Links(pbmc) <- lnk

# ----- QC plots -----

nucleosome_plot <- FragmentHistogram(pbmc, group.by = "orig.ident") +
  ggtitle("Nucleosome signal")

tss_plot <- TSSPlot(pbmc, assay = "cellranger", group.by = "orig.ident")

saveRDS(object = nucleosome_plot, file = "figures/nucleosome_signal.rds")
saveRDS(object = tss_plot, file = "figures/tss_enrichment.rds")

# ----- Dim plots ----- 

rna_dimplot <- DimPlot(pbmc, reduction = "umap.rna", label = TRUE, repel = TRUE)
atac_dimplot <- DimPlot(pbmc, reduction = "umap.atac", label = TRUE, repel = TRUE)

saveRDS(object = rna_dimplot, file = "figures/pbmc_rna_dimplot.rds")
saveRDS(object = atac_dimplot, file = "figures/pbmc_atac_dimplot.rds")

# ----- Markers -----

markers <- FindMarkers(
  object = pbmc,
  ident.1 = "CD8 TEM",
  ident.2 = "CD8 Naive",
  test.use = "LR",
  latent.vars = "nCount_ATAC",
  only.pos = TRUE
)

top.markers <- markers[markers$p_val_adj < 0.01 & markers$avg_log2FC > 0.4, ]

motifs <- FindMotifs(
  object = pbmc,
  features = rownames(top.markers),
  features.match = c("GC.percent", "count", "sequence.length")
)

# EOMES, TBX21, TBX2 equally enriched in effector T cell peaks
# look at RNA data to see which is expressed
# compare with chromvar deviations

DefaultAssay(pbmc) <- "RNA"
tf_use <- c("EOMES", "TBX21", "TBX2")

tf_expression <- VlnPlot(
  object = pbmc,
  features = tf_use,
  idents = c("CD8 TEM", "CD8 Naive"),
  pt.size = 0
) & ylim(c(0, 2.5)) & ylab("RNA expression") & ggtitle("") & xlab("")

DefaultAssay(pbmc) <- "chromvar"

tf_chromvar <- lapply(X = seq_along(tf_use), function(x) {
  VlnPlot(
    object = pbmc,
    features = motifs$motif[x],
    idents = c("CD8 TEM", "CD8 Naive"),
    pt.size = 0
  ) + ggtitle(tf_use[x]) + NoLegend() + ylab("chromVAR deviation") +
    xlab("") + theme(axis.text.x = element_blank())
})

tf_chromvar <- wrap_plots(tf_chromvar, ncol = 3)

DefaultAssay(pbmc) <- "ATAC"

pbmc <- Footprint(
  object = pbmc,
  motif.name = c("EOMES", "TBX21"),
  genome = BSgenome.Hsapiens.UCSC.hg38
)

fp <- PlotFootprint(
  object = pbmc,
  features = c("EOMES", "TBX21"),
  idents = c("CD8 TEM", "CD8 Naive")
) & NoLegend() & plot_layout(ncol = 1)

mp <- MotifPlot(pbmc, head(motifs$motif, 3))

saveRDS(object = mp, file = "figures/motifplot.rds")
saveRDS(object = tf_chromvar, file = "figures/chromvar_vln.rds")
saveRDS(object = tf_expression, file = "figures/tf_rna_vln.rds")
saveRDS(object = fp, file = "figures/footprint.rds")

# ----- Coverage plot -----

covplot <- CoveragePlot(
  object = pbmc,
  idents = c("CD4 Naive", "CD4 TCM", "CD8 Naive",
             "CD8 TEM", "MAIT", "NK", "Treg"),
  region = "CD8A",
  features = "CD8A",
  expression.assay = "RNA",
  extend.upstream = 2000,
  extend.downstream = 2000,
  links = FALSE
)

saveRDS(object = covplot, file = "figures/coverage_plot.rds")

# ----- Link analysis -----

# ratio of positive to negative links
sum(lnk$score < 0) / length(lnk) * 100

# total over 100 kb
sum(width(lnk) > 100000) / length(lnk)

# number of links per gene (regulatory complexity)
# compare cell-type-specific vs houskeeping genes

# for each gene, find the number of linked peaks
link.df <- as.data.frame(lnk)

links_per_gene <- link.df %>% 
  mutate(pos_link = score > 0) %>% 
  group_by(gene) %>% 
  summarise(positive_links = sum(pos_link), negative_links = sum(!pos_link))

mean(links_per_gene$positive_links + links_per_gene$negative_links)
# 6.373724

sd(links_per_gene$positive_links + links_per_gene$negative_links)
# 7.110643

# total links per gene
link_per_gene_plot <- links_per_gene %>%
  group_by(positive_links, negative_links) %>%
  summarise(count = n()) %>% 
  ggplot(data = ., aes(x = positive_links, y = negative_links, fill = log10(count+1))) +
  geom_tile() +
  theme_bw() +
  scale_fill_viridis_c() +
  ylab("Total negative links") +
  xlab("Total positive links") +
  ggtitle("Number of linked peaks per gene")

# number of linked genes per peak
genes_per_link <- link.df %>% 
  mutate(pos_link = score > 0) %>% 
  group_by(peak) %>% 
  summarise(positive_links = sum(pos_link), negative_links = sum(!pos_link))

mean(genes_per_link$positive_links + genes_per_link$negative_links)
# 1.578854

sd(genes_per_link$positive_links + genes_per_link$negative_links)
# 1.259847

# total links per gene
gene_per_link_plot <- genes_per_link %>%
  group_by(positive_links, negative_links) %>%
  summarise(count = n()) %>% 
  ggplot(data = ., aes(x = positive_links, y = negative_links, fill = log10(count+1))) +
  geom_tile() +
  theme_bw() +
  scale_x_continuous(breaks = 0:10) +
  scale_y_continuous(breaks = 0:10) +
  scale_fill_viridis_c() +
  ylab("Total negative links") +
  xlab("Total positive links") +
  ggtitle("Number of linked genes per peak")

# distance from peak to tss
p1 <- ggplot(data = link.df[link.df$score > 0, ], aes(x = width)) +
  geom_histogram(bins = 100) +
  theme_classic() +
  xlab("") +
  ylab("Count") +
  ggtitle("Positive gene associations")

p2 <- ggplot(data = link.df[link.df$score < 0, ], aes(x = width)) +
  geom_histogram(bins = 100) +
  theme_classic() +
  xlab("Distance to gene TSS (bp)") +
  ylab("Count") +
  ggtitle("Negative gene associations")

p3 <- ggplot(data = link.df, mapping = aes(x = pvalue)) +
  geom_histogram(bins = 100) +
  theme_classic() +
  xlab("p-value") +
  ylab("Count") +
  ggtitle("p-value distribution")

saveRDS(object = p1, file = "figures/distance_positive.rds")
saveRDS(object = p2, file = "figures/distance_negative.rds")
saveRDS(object = p3, file = "figures/link_pvals.rds")
saveRDS(object = gene_per_link_plot, file = "figures/genes_per_link_plot.rds")
saveRDS(object = link_per_gene_plot, file = "figures/link_per_gene_plot.rds")

# ----- Link plots ----- 

linked_1 <- CoveragePlot(
  object = pbmc,
  region = "MS4A1",
  features = "MS4A1",
  idents = c("B naive", "B intermediate", "B memory", "CD14 Mono", "CD16 Mono", "CD8 TEM", "CD8 Naive"),
  extend.upstream = 500,
  extend.downstream = 10000
)

linked_2 <- CoveragePlot(
  object = pbmc,
  region = "LYZ",
  features = "LYZ",
  idents = c("B naive", "B intermediate", "B memory", "CD14 Mono", "CD16 Mono", "CD8 TEM", "CD8 Naive"),
  extend.upstream = 5000,
  extend.downstream = 5000
)

saveRDS(object = linked_1, file = "figures/linked_covplot1.rds")
saveRDS(object = linked_2, file = "figures/linked_covplot2.rds")

# ----- Peak calling comparison ----- 

DefaultAssay(pbmc) <- "cellranger"

# call MACS2 peaks on pseudobulk
pks <- CallPeaks(
  object = pbmc,
  macs2.path = "/home/stuartt/miniconda3/envs/signac/bin/macs2",
  additional.args = "--max-gap 50"
)

# example where cellranger incorrectly merges peaks
cp <- CoveragePlot(
  object = pbmc,
  region = "CD8A",
  ranges = pks,
  ranges.title = "MACS2",
  extend.upstream = 2000,
  extend.downstream = 2000,
  links = FALSE
)
saveRDS(object = cp, file = "figures/cellranger_peakcalling.rds")

DefaultAssay(pbmc) <- "ATAC"

# example where celltype specific peaks missed (need to also run MACS2 on bulk and compare)
# find markers for a rare population

mrk_cd56 <- FindMarkers(
  object = pbmc,
  ident.1 = "NK_CD56bright",
  ident.2 = "NK",
  latent.vars = "nCount_ATAC",
  test.use = "LR",
  only.pos = TRUE
)

all.markers <- FindAllMarkers(
  object = pbmc,
  test.use = "LR",
  latent.vars = "nCount_ATAC",
  only.pos = TRUE
)

all.markers$isunique <- Biobase::isUnique(all.markers$gene)
all.unique.markers <- all.markers[all.markers$isunique, ]

n_celltype <- table(Idents(pbmc))
fraction_recovered <- vector(mode = 'numeric', length = length(n_celltype))
for (i in seq_along(n_celltype)) {
  celltype <- names(n_celltype)[[i]]
  markers.use <- all.unique.markers[all.unique.markers$cluster == celltype, ]
  markers.ranges <- StringToGRanges(markers.use$gene)
  frac_recovered <- sum(countOverlaps(query = markers.ranges, subject = pks) > 0) / length(markers.ranges)
  fraction_recovered[[i]] <- frac_recovered
}

df <- data.frame(n_cells = n_celltype, fraction_recovered = fraction_recovered)

missed_peak_count <- ggplot(df, aes(n_celltype, fraction_recovered)) +
  geom_point() +
  theme_classic() +
  ylab("Fraction of cell-type-specific peaks identified") +
  xlab("Number of cells")

missed <- CoveragePlot(
  object = pbmc,
  region = "chr19-3805000-3806000",
  ranges.title = "Bulk",
  ranges = pks,
  extend.upstream = 5000,
  extend.downstream = 5000,
  links = FALSE
)

saveRDS(object = missed_peak_count, file = "figures/missed_peak_count.rds")
saveRDS(object = missed, file = "figures/macs2_pseudobulk.rds")

# get average number of macs2 peaks overlapped by cellranger peak
olap <- findOverlaps(query = pks, subject = pbmc[["cellranger"]])

sum(table(subjectHits(olap)) > 1) # 13751
sum(table(queryHits(olap)) > 1)   # 2

# call peaks per DNA accessibility cluster
cluster_peaks <- CallPeaks(
  object = pbmc,
  group.by = "cellranger_snn_res.0.8",
  additional.args = "--max-gap 50",
  macs2.path = "/home/stuartt/miniconda3/envs/signac/bin/macs2"
)

# check overlap with cell-type specific peaks
olap <- findOverlaps(query = pbmc[["ATAC"]], subject = cluster_peaks)
sum(table(subjectHits(olap)) >= 1)  / length(granges(pbmc[["ATAC"]])) # 0.9270874

sum(table(subjectHits(olap)) > 1) # 1059
sum(table(queryHits(olap)) > 1)   # 2497
length(cluster_peaks) # 152473
nrow(pbmc[["ATAC"]])  # 155611

olap <- findOverlaps(query = pbmc[["ATAC"]], subject = pks)
sum(table(subjectHits(olap)) >= 1)  / length(granges(pbmc[["ATAC"]])) # 0.7859085

sum(table(subjectHits(olap)) > 1) # 3529
sum(table(queryHits(olap)) > 1)   # 1310
length(pks) # 134195
nrow(pbmc[["ATAC"]])  # 155611

# DimPlot showing ATAC clusters
cluster_dimplot <- DimPlot(pbmc, group.by = "cellranger_snn_res.0.8", label = TRUE, repel = TRUE, reduction = "umap.atac") +
  ggtitle("scATAC-seq cell clusters") + theme(legend.position = "none") +
  xlab("UMAP 1") + ylab("UMAP 2")

ggsave(filename = "figures/atac_cluster_dimplot.png", plot = cluster_dimplot, height = 8, width = 8, dpi = 400)
saveRDS(cluster_dimplot, "figures/atac_cluster_dimplot.rds")

## ------- Multimodal label transfer ----------

pbmc.atac <- readRDS("objects/multimodal_label_transfer.rds")

# high-res prediction
pbmc.atac$predicted.id <- factor(pbmc.atac$predicted.id, levels = levels(pbmc.atac$gt))
pbmc.atac$annotation_correct <- pbmc.atac$predicted.id == pbmc.atac$gt
p1 <- DimPlot(pbmc.atac, group.by = "gt", label = TRUE, repel = TRUE, reduction = "umap.atac") + NoLegend() + ggtitle("Ground-truth annotation")
p2 <- DimPlot(pbmc.atac, group.by = "predicted.id", label = TRUE, repel = TRUE, reduction = "umap.atac") + NoLegend() + ggtitle("Predicted annotation")

predictions <- table(pbmc.atac$gt, pbmc.atac$predicted.id)
predictions <- predictions/rowSums(predictions)  # normalize for number of cells in each cell type
predictions <- as.data.frame(predictions)
p3 <- ggplot(predictions, aes(Var1, Var2, fill = Freq)) +
  geom_tile() +
  scale_fill_viridis_c() +
  xlab("Annotated cell type (RNA)") +
  ylab("Predicted cell type (ATAC)") + 
  labs(fill = "Fraction of cells") +
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))

incorrect <- length(which(pbmc.atac$gt != pbmc.atac$predicted.id))
1 - (incorrect / ncol(pbmc.atac)) # 0.870151

data <- FetchData(pbmc.atac, vars = c("prediction.score.max", "annotation_correct"))
p4 <- ggplot(data, aes(prediction.score.max, fill = annotation_correct, colour = annotation_correct)) + 
  geom_histogram() +
  facet_wrap(~annotation_correct) +
  xlab("Prediction Score") +
  theme_bw()

ggsave(filename = "figures/label_transfer_accuracy.pdf", plot = p3, height = 4.5, width = 6)
saveRDS(object = p3, file = "figures/label_transfer_accuracy.rds")
(p1 | p2 | p4) + ggsave("figures/multimodal_label_transfer.png", height = 8, width = 18)

# coarse prediction
incorrect <- length(which(pbmc.atac$coarse_celltype != pbmc.atac$coarse_predicted))
1 - (incorrect / ncol(pbmc.atac)) # 0.925473
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
declare -a ncell=("50000" "100000" "200000" "300000" "400000" "500000" "600000" "700000")
declare -a ncore=("1" "2" "4" "8")

[ -d data/biccn/benchmarks ] || mkdir data/biccn/benchmarks

# feature matrix
for i in "${ncell[@]}"; do
  # need to run cores separately since it doesn't seem to obey the set number of threads
  taskset --cpu-list 1 Rscript --vanilla code/downsampling_code/run_archr_peakmatrix.R \
      1 \
      archr_biccn/$i \
      data/biccn/unified_peaks.bed \
      3 \
      data/biccn/benchmarks/archr_featmat_runtime_${i}_1.txt \
      "mm10"

  taskset --cpu-list 1,2 Rscript --vanilla code/downsampling_code/run_archr_peakmatrix.R \
      2 \
      archr_biccn/$i \
      data/biccn/unified_peaks.bed \
      3 \
      data/biccn/benchmarks/archr_featmat_runtime_${i}_2.txt \
      "mm10"

  taskset --cpu-list 1,2,3,4 Rscript --vanilla code/downsampling_code/run_archr_peakmatrix.R \
      4 \
      archr_biccn/$i \
      data/biccn/unified_peaks.bed \
      3 \
      data/biccn/benchmarks/archr_featmat_runtime_${i}_4.txt \
      "mm10"

  taskset --cpu-list 1,2,3,4,5,6,7,8 Rscript --vanilla code/downsampling_code/run_archr_peakmatrix.R \
      8 \
      archr_biccn/$i \
      data/biccn/unified_peaks.bed \
      3 \
      data/biccn/benchmarks/archr_featmat_runtime_${i}_8.txt \
      "mm10"
done

for i in "${ncell[@]}"; do
  # need to run cores separately since it doesn't seem to obey the set number of threads
  taskset --cpu-list 1 Rscript --vanilla code/downsampling_code/run_archr_geneactivity.R \
      1 \
      archr_biccn/$i \
      3 \
      data/biccn/benchmarks/archr_geneactivity_runtime_${i}_1.txt \
      "mm10"

  taskset --cpu-list 1,2 Rscript --vanilla code/downsampling_code/run_archr_geneactivity.R \
      2 \
      archr_biccn/$i \
      3 \
      data/biccn/benchmarks/archr_geneactivity_runtime_${i}_2.txt \
      "mm10"

  taskset --cpu-list 1,2,3,4 Rscript --vanilla code/downsampling_code/run_archr_geneactivity.R \
      4 \
      archr_biccn/$i \
      3 \
      data/biccn/benchmarks/archr_geneactivity_runtime_${i}_4.txt \
      "mm10"

  taskset --cpu-list 1,2,3,4,5,6,7,8 Rscript --vanilla code/downsampling_code/run_archr_geneactivity.R \
      8 \
      archr_biccn/$i \
      3 \
      data/biccn/benchmarks/archr_geneactivity_runtime_${i}_8.txt \
      "mm10"
done

# lsi
for i in "${ncell[@]}"; do
    taskset --cpu-list 1 Rscript --vanilla code/downsampling_code/run_archr_lsi.R \
    archr_biccn/$i \
    data/biccn/unified_peaks.bed \
    1 \
    data/biccn/benchmarks/archr_lsi_runtime_${i}.txt \
    "mm10"
done
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
declare -a ncell=("50000" "100000" "200000" "300000" "400000" "500000" "600000" "700000")
declare -a ncore=("1" "2" "4" "8")

[ -d data/biccn/benchmarks ] || mkdir data/biccn/benchmarks
[ -d data/biccn/downsampling ] || mkdir data/biccn/downsampling

# run each step with different numbers of cores, profile max memory usage

# feature matrix
for i in "${ncell[@]}"; do
  for j in "${ncore[@]}"; do
    /usr/bin/time -o data/biccn/benchmarks/featmat_mem_${i}_${j}.txt \
      -v Rscript --vanilla code/downsampling_code/run_featurematrix.R \
      $j \
      /scratch/tim/biccn/downsampling/$i.rds \
      data/biccn/unified_peaks.bed \
      3 \
      data/biccn/benchmarks/featmat_runtime_${i}_${j}.txt \
      data/biccn/downsampling/counts_${i}.rds
  done
done

# nucleosome signal
for i in "${ncell[@]}"; do
  /usr/bin/time -o data/biccn/benchmarks/nucleosome_mem_${i}.txt \
    -v Rscript --vanilla code/downsampling_code/run_nucleosome.R \
    data/biccn/downsampling/counts_${i}.rds \
    /scratch/tim/biccn/downsampling/$i.rds \
    data/biccn/annotations.rds \
    3 \
    data/biccn/benchmarks/nucleosome_runtime_${i}.txt \
    data/biccn/downsampling/nucleosome_${i}.rds
done


# tss enrichment
for i in "${ncell[@]}"; do
  for j in "${ncore[@]}"; do
    /usr/bin/time -o data/biccn/benchmarks/tss_mem_${i}_${j}.txt \
      -v Rscript --vanilla code/downsampling_code/run_tss.R \
      data/biccn/downsampling/nucleosome_${i}.rds \
      3 \
      data/biccn/benchmarks/tss_runtime_${i}_${j}.txt \
      data/biccn/downsampling/tss_${i}.rds \
      $j
  done
done

# gene activity matrix
for i in "${ncell[@]}"; do
  for j in "${ncore[@]}"; do
    /usr/bin/time -o data/biccn/benchmarks/ga_mem_${i}_${j}.txt \
      -v Rscript --vanilla code/downsampling_code/run_gene_activity.R \
      data/biccn/downsampling/tss_${i}.rds \
      $j \
      3 \
      data/biccn/benchmarks/ga_runtime_${i}_${j}.txt
  done
done

# tf-idf
for i in "${ncell[@]}"; do
  /usr/bin/time -o data/biccn/benchmarks/tfidf_mem_${i}.txt \
    -v Rscript --vanilla code/downsampling_code/run_tfidf.R \
    data/biccn/downsampling/tss_${i}.rds \
    3 \
    data/biccn/benchmarks/tfidf_runtime_${i}.txt \
    data/biccn/downsampling/tfidf_${i}.rds
done

# svd
for i in "${ncell[@]}"; do
  /usr/bin/time -o data/biccn/benchmarks/svd_mem_${i}.txt \
    -v Rscript --vanilla code/downsampling_code/run_svd.R \
    data/biccn/downsampling/tfidf_${i}.rds \
    3 \
    data/biccn/benchmarks/svd_runtime_${i}.txt \
    data/biccn/downsampling/svd_${i}.rds
done
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
downsamples <- c('50000', '100000', '200000', '300000', '400000', '500000', '600000', '700000')
cores <- c(1, 2, 4, 8)

results_df <- data.frame()

runtime <- read.table(file = "data/biccn/benchmarks/signac_object_creation.tsv", sep = "\t")
runtime_archr <- read.table(file = "data/biccn/benchmarks/archr_object_creation.tsv", sep = "\t")
runtime_archr <- runtime_archr[runtime_archr$V2 == "Arrow", ]
result <- data.frame(
  "Cells" = c(runtime$V4, runtime_archr$V4),
  "Cores" = 1,
  "Step" = "Create",
  "Runtime" = c(runtime$V1, runtime_archr$V1),
  "Method" = c(rep("Signac", nrow(runtime)), rep("ArchR", nrow(runtime_archr)))
)
results_df <- rbind(results_df, result)

for (i in downsamples) {
  for (j in cores) {
    runtime <- readLines(con = paste0("data/biccn/benchmarks/featmat_runtime_", i, "_", j, ".txt"))
    rt_archr <- readLines(con = paste0("data/biccn/benchmarks/archr_featmat_runtime_", i, "_", j, ".txt"))
    runtime <- sapply(runtime, as.numeric, USE.NAMES = FALSE)
    rt_archr <- sapply(rt_archr, as.numeric, USE.NAMES = FALSE)
    result <- data.frame(
      "Cells" = i,
      "Cores" = j,
      "Step" = "FeatureMatrix",
      "Runtime" = c(runtime, rt_archr),
      "Method" = c(rep("Signac", length(runtime)), rep("ArchR", length(rt_archr)))
    )
    results_df <- rbind(results_df, result)
  }
}

for (i in downsamples) {
  runtime <- readLines(con = paste0("data/biccn/benchmarks/nucleosome_runtime_", i, ".txt"))
  runtime <- sapply(runtime, as.numeric, USE.NAMES = FALSE)
  result <- data.frame(
    "Cells" = i,
    "Cores" = 1,
    "Step" = "NucleosomeSignal",
    "Runtime" = runtime,
    "Method" = "Signac"
  )
  results_df <- rbind(results_df, result)
}

for (i in downsamples) {
  for (j in cores) {
    runtime <- readLines(con = paste0("data/biccn/benchmarks/ga_runtime_", i, "_", j, ".txt"))
    rt_archr <- readLines(con = paste0("data/biccn/benchmarks/archr_geneactivity_runtime_", i, "_", j, ".txt"))
    runtime <- sapply(runtime, as.numeric, USE.NAMES = FALSE)
    rt_archr <- sapply(rt_archr, as.numeric, USE.NAMES = FALSE)
    result <- data.frame(
      "Cells" = i,
      "Cores" = j,
      "Step" = "GeneActivity",
      "Runtime" = c(runtime, rt_archr),
      "Method" = c(rep("Signac", length(runtime)), rep("ArchR", length(rt_archr)))
    )
    results_df <- rbind(results_df, result)
  }
}

for (i in downsamples) {
  for (j in cores) {
    runtime <- readLines(con = paste0("data/biccn/benchmarks/tss_runtime_", i, "_", j, ".txt"))
    runtime <- sapply(runtime, as.numeric, USE.NAMES = FALSE)
    result <- data.frame(
      "Cells" = i,
      "Cores" = j,
      "Step" = "TSSEnrichment",
      "Runtime" = runtime,
      "Method" = "Signac"
    )
    results_df <- rbind(results_df, result)
  }
}

for (i in downsamples) {
  runtime <- readLines(con = paste0("data/biccn/benchmarks/tfidf_runtime_", i, ".txt"))
  runtime <- sapply(runtime, as.numeric, USE.NAMES = FALSE)
  result <- data.frame(
    "Cells" = i,
    "Cores" = 1,
    "Step" = "RunTFIDF",
    "Runtime" = runtime,
    "Method" = "Signac"
  )
  results_df <- rbind(results_df, result)
}

for (i in downsamples) {
  runtime <- readLines(con = paste0("data/biccn/benchmarks/svd_runtime_", i, ".txt"))
  runtime <- sapply(runtime, as.numeric, USE.NAMES = FALSE)
  result <- data.frame(
    "Cells" = i,
    "Cores" = 1,
    "Step" = "RunSVD",
    "Runtime" = runtime,
    "Method" = "Signac"
  )
  results_df <- rbind(results_df, result)
}

for (i in downsamples) {
  runtime <- readLines(con = paste0("data/biccn/benchmarks/archr_lsi_runtime_", i, ".txt"))
  runtime <- sapply(runtime, as.numeric, USE.NAMES = FALSE)
  result <- data.frame(
    "Cells" = i,
    "Cores" = 1,
    "Step" = "LSI",
    "Runtime" = runtime,
    "Method" = "ArchR"
  )
  results_df <- rbind(results_df, result)
}

for (i in downsamples) {
  runtime <- readLines(con = paste0("data/biccn/benchmarks/archr_est_lsi_runtime_", i, ".txt"))
  runtime <- sapply(runtime, as.numeric, USE.NAMES = FALSE)
  result <- data.frame(
    "Cells" = i,
    "Cores" = 1,
    "Step" = "estLSI",
    "Runtime" = runtime,
    "Method" = "ArchR"
  )
  results_df <- rbind(results_df, result)
}

# add LSI
tfidf <- results_df[results_df$Step == "RunTFIDF", ]
runsvd <- results_df[results_df$Step == "RunSVD", ]
lsi <- runsvd
lsi$Runtime <- runsvd$Runtime + tfidf$Runtime
lsi$Step <- "LSI"
results_df <- rbind(results_df, lsi)

results_df$Cells <- as.numeric(results_df$Cells)
results_df$Cores <- as.factor(results_df$Cores)

write.table(x = results_df, file = "data/biccn/timings.tsv")
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
library(Seurat)
library(Signac)
library(ggplot2)
library(mclust)


pbmc <- readRDS("objects/pbmc.rds")

# sweep clustering parameters
k.param <- seq(5, 50, 5)
dims.param <- seq(10, 50, 5)
celltypes <- pbmc$celltype

cluster.results <- data.frame()
for (i in seq_along(k.param)) {
  for (j in seq_along(dims.param)) {
    pbmc <- FindNeighbors(pbmc, reduction = "lsi", dims = 2:dims.param[[j]], k.param = k.param[[i]])
    pbmc <- FindClusters(pbmc, algorithm = 3, graph.name = "ATAC_snn")
    ari <- adjustedRandIndex(x = celltypes, y = pbmc$seurat_clusters)
    cluster.results <- rbind(cluster.results, data.frame(dims = dims.param[[j]],
                                       k = k.param[[i]],
                                       ari = ari))
  }
}

p <- ggplot(cluster.results, aes(dims, k, fill = ari)) +
  geom_tile() +
  scale_fill_viridis_c() +
  ylab("Number of nearest neighbors (k)") +
  xlab("LSI dimensions (2:n)") + 
  labs(fill = "Adjusted Rand Index") +
  theme_classic()

ggsave(filename = "figures/cluster_param_sweep.png", plot = p, height = 4, width = 7)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
library(ArchR)
library(GenomicRanges)

# load metadata
metadata <- read.table("data/biccn/Supplementary Table 2 - Metatable of nuclei.tsv", sep="\t", skip=1)
rownames(metadata) <- metadata$V1
colnames(metadata) <- c("cell", "sample", "barcode", "logUM", "TSSe", "class", "MajorType", "SubType", "na")
cells <- metadata$cell

frags <- "data/biccn/fragments.bed.gz"
peaks <- read.table(file = "data/biccn/unified_peaks.bed", sep = "\t", header = TRUE)
peaks <- makeGRangesFromDataFrame(peaks)
# remove chrM
peaks <- peaks[seqnames(peaks) != "chrM"]
message("Using ", length(peaks), " peaks")

addArchRThreads(threads = 8)
addArchRGenome("mm10")

start.time <- Sys.time()
ArrowFiles <- createArrowFiles(
  inputFiles = frags,
  sampleNames = "BICCN",
  validBarcodes = cells,
  force = TRUE,
  minFrags = 1,
  addGeneScoreMat = FALSE,
  addTileMat = FALSE
)

proj <- ArchRProject(
  ArrowFiles = ArrowFiles,
  copyArrows = TRUE,
  showLogo = FALSE
)

proj <- addPeakSet(ArchRProj = proj, peakSet = peaks, force = TRUE)
proj <- addPeakMatrix(ArchRProj = proj, force = TRUE)
proj <- addIterativeLSI(ArchRProj = proj, useMatrix = "PeakMatrix", force = TRUE)
proj <- addClusters(input = proj, force = TRUE, dimsToUse = 2:100)
proj <- addUMAP(ArchRProj = proj, force = TRUE, dimsToUse = 2:100)

elapsed <- as.numeric(Sys.time() - start.time, units = "secs")
writeLines(text = as.character(elapsed), con = "data/biccn/archr_total_runtime.txt")
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
library(Signac)
library(Seurat)
library(GenomicRanges)
library(future)

plan("multicore", workers = 8)
options(future.globals.maxSize = +Inf)

annot <- readRDS("data/biccn/annotations.rds")
# load metadata
metadata <- read.table("data/biccn/Supplementary Table 2 - Metatable of nuclei.tsv", sep="\t", skip=1)
rownames(metadata) <- metadata$V1
colnames(metadata) <- c("cell", "sample", "barcode", "logUM", "TSSe", "class", "MajorType", "SubType", "na")
cells <- metadata$cell

frags <- "data/biccn/fragments.bed.gz"
peaks <- read.table(file = "data/biccn/unified_peaks.bed", sep = "\t", header = TRUE)
peaks <- makeGRangesFromDataFrame(peaks)

start.time <- Sys.time()
fragments <- CreateFragmentObject(
  path = frags,
  cells = cells
)

# quantify
counts <- FeatureMatrix(
  fragments = fragments,
  features = peaks,
  cells = cells
)

# create object
assay <- CreateChromatinAssay(counts = counts, fragments = fragments, annotation = annot)
obj <- CreateSeuratObject(counts = assay, assay = "ATAC")

gc()

# QC
obj <- NucleosomeSignal(obj)
obj <- TSSEnrichment(obj)

# LSI
obj <- FindTopFeatures(obj)
obj <- RunTFIDF(obj)
obj <- RunSVD(obj)

# clustering
obj <- FindNeighbors(obj, reduction = "lsi", dims = 2:100)
obj <- FindClusters(obj)

# UMAP
obj <- RunUMAP(obj, reduction = "lsi", dims = 2:100)

elapsed <- as.numeric(Sys.time() - start.time, units = "secs")
writeLines(text = as.character(elapsed), con = "data/biccn/signac_total_runtime.txt")
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
library(ArchR)
library(GenomicRanges)

cells <- readLines("data/pbmc_atac/cells.txt")
frags <- "data/pbmc_atac/fragments.bed.gz"
peaks <- read.table(file = "data/pbmc_atac/peaks.bed", sep = "\t", header = TRUE)
peaks <- makeGRangesFromDataFrame(peaks)

addArchRThreads(threads = 8)
addArchRGenome("hg19")

start.time <- Sys.time()
ArrowFiles <- createArrowFiles(
  inputFiles = frags,
  sampleNames = "PBMC",
  validBarcodes = cells,
  force = TRUE,
  minFrags = 1,
  addGeneScoreMat = FALSE,
  addTileMat = FALSE
)

proj <- ArchRProject(
  ArrowFiles = ArrowFiles,
  copyArrows = TRUE,
  showLogo = FALSE
)

proj <- addPeakSet(ArchRProj = proj, peakSet = peaks, force = TRUE)
proj <- addPeakMatrix(ArchRProj = proj, force = TRUE)
proj <- addIterativeLSI(ArchRProj = proj, useMatrix = "PeakMatrix", sampleCellsPre = NULL, force = TRUE)
proj <- addClusters(input = proj, force = TRUE)
proj <- addUMAP(ArchRProj = proj, force = TRUE)

elapsed <- as.numeric(Sys.time() - start.time, units = "secs")
writeLines(text = as.character(elapsed), con = "data/pbmc_atac/archr_total_runtime.txt")
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
library(Signac)
library(Seurat)
library(GenomicRanges)
library(future)

plan("multiprocess", workers = 8)
options(future.globals.maxSize = 50 * 1024 ^ 3)

annot <- readRDS("data/pbmc_atac/annotations.rds")
cells <- readLines("data/pbmc_atac/cells.txt")
frags <- "data/pbmc_atac/fragments.bed.gz"
peaks <- read.table(file = "data/pbmc_atac/peaks.bed", sep = "\t", header = TRUE)
peaks <- makeGRangesFromDataFrame(peaks)

start.time <- Sys.time()
fragments <- CreateFragmentObject(
  path = frags,
  cells = cells
)

# quantify
counts <- FeatureMatrix(
  fragments = fragments,
  features = peaks,
  cells = cells
)

# create object
assay <- CreateChromatinAssay(counts = counts, fragments = fragments, annotation = annot)
obj <- CreateSeuratObject(counts = assay, assay = "ATAC")

# QC
obj <- NucleosomeSignal(obj)
obj <- TSSEnrichment(obj)

# LSI
obj <- FindTopFeatures(obj)
obj <- RunTFIDF(obj)
obj <- RunSVD(obj)

# clustering
obj <- FindNeighbors(obj, reduction = "lsi", dims = 2:30)
obj <- FindClusters(obj)

# UMAP
obj <- RunUMAP(obj, reduction = "lsi", dims = 2:30)

elapsed <- as.numeric(Sys.time() - start.time, units = "secs")
writeLines(text = as.character(elapsed), con = "data/pbmc_atac/signac_total_runtime.txt")
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
library(ArchR)
library(Seurat)
library(Signac)
set.seed(1234)

# create object from each downsampled fragment file
options(scipen=999)
downsamples_biccn <- c(50000, 100000, 200000, 300000, 400000, 500000, 600000, 700000)
downsamples_pbmc <- seq(from = 1000, to = 26000, by = 2000)

addArchRThreads(threads = 1)
addArchRGenome("hg19")

for (i in downsamples_pbmc) {
  # load the signac fragment file to get list of cells to include
  frags <- readRDS(paste0("/scratch/tim/pbmc_atac/downsampling/", i, ".rds"))
  cells <- Cells(frags)
  start.time <- Sys.time()
  ArrowFiles <- createArrowFiles(
    inputFiles = paste0("/scratch/tim/pbmc_atac/downsampling/", i, ".bed.gz"),
    sampleNames = paste0("pbmc_", i),
    validBarcodes = cells,
    excludeChr = "",
    force = TRUE,
    minFrags = 1,
    addGeneScoreMat = FALSE,
    addTileMat = FALSE
  )
  elapsed.arrow <- as.numeric(Sys.time() - start.time, units = "secs")
  start.time <- Sys.time()
  proj <- ArchRProject(
    ArrowFiles = ArrowFiles,
    copyArrows = FALSE,
    showLogo = FALSE
  )
  elapsed.proj <- as.numeric(Sys.time() - start.time, units = "secs")
  saveArchRProject(ArchRProj = proj, outputDirectory = paste0("archr_pbmc/", i))
  # save timing
  write(
    x = paste0(elapsed.arrow, "\tArrow\tPBMC\t", i, "\n", elapsed.proj, "\tProject\tPBMC\t", i),
    file = "data/pbmc_atac/benchmarks/archr_object_creation.tsv",
    append = TRUE
  )
}

addArchRGenome("mm10")

for (i in downsamples_biccn) {
  # load the signac fragment file to get list of cells to include
  frags <- readRDS(paste0("/scratch/tim/biccn/downsampling/", i, ".rds"))
  cells <- Cells(frags)
  start.time <- Sys.time()
  ArrowFiles <- createArrowFiles(
    inputFiles = paste0("/scratch/tim//biccn/downsampling/", i, ".bed.gz"),
    sampleNames = paste0("biccn_", i),
    validBarcodes = cells,
    force = TRUE,
    excludeChr = "",
    minFrags = 1,
    addGeneScoreMat = FALSE,
    addTileMat = FALSE
  )
  elapsed.arrow <- as.numeric(Sys.time() - start.time, units = "secs")
  start.time <- Sys.time()
  proj <- ArchRProject(
    ArrowFiles = ArrowFiles,
    copyArrows = FALSE,
    showLogo = FALSE
  )
  elapsed.proj <- as.numeric(Sys.time() - start.time, units = "secs")
  saveArchRProject(ArchRProj = proj, outputDirectory = paste0("archr_biccn/", i))
  # save timing
  write(
    x = paste0(elapsed.arrow, "\tArrow\tBICCN\t", i, "\n", elapsed.proj, "\tProject\tBICCN\t", i),
    file = "data/biccn/benchmarks/archr_object_creation.tsv",
    append = TRUE
  )
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
library(Signac)
set.seed(1234)

# load the full dataset
biccn <- readRDS("objects/biccn.rds")
pbmc <- readRDS("objects/pbmc_atac.rds")

# randomly sample different numbers of cells
downsamples_biccn <- c(50000, 100000, 200000, 300000, 400000, 500000, 600000, 700000)
downsamples_pbmc <- seq(from = 1000, to = ncol(pbmc), by = 2000)

cells.biccn <- sapply(X = downsamples_biccn, FUN = function(x) {
  sample(x = colnames(x = biccn), replace = FALSE, size = x)
})

cells.pbmc <- sapply(X = downsamples_pbmc, FUN = function(x) {
  sample(x = colnames(x = pbmc), replace = FALSE, size = x)
})

downsample_fragments <- function(fragpath, downsamples, cells, outpath, timepath, project) {
  for (i in seq_along(along.with = downsamples)) {
    ds <- format(x = downsamples[[i]], scientific = FALSE)
    outfile <- paste0(outpath, ds, ".bed.gz")
    frag.dest <- paste0(outpath, ds, ".rds")
    FilterCells(
      fragments = fragpath,
      cells = cells[[i]],
      outfile = outfile,
      verbose = TRUE
    )
    time.start <- Sys.time()
    frags <- CreateFragmentObject(
      path = outfile,
      cells = cells[[i]]
    )
    elapsed <- as.numeric(Sys.time() - time.start, units = "secs")
    saveRDS(object = frags, file = frag.dest, version = 2)
    write(
      x = paste0(elapsed, "\tSignac\t", project, "\t", ds),
      file = timepath,
      append = TRUE
    )
  }
}

downsample_fragments(
  fragpath = "data/biccn/fragments.bed.gz",
  outpath = "/scratch/tim/biccn/downsampling/",
  timepath = "data/biccn/benchmarks/signac_object_creation.tsv",
  project = "BICCN",
  cells = cells.biccn,
  downsamples = downsamples_biccn
)

downsample_fragments(
  fragpath = "data/pbmc_atac/fragments.bed.gz",
  outpath = "/scratch/tim/pbmc_atac/downsampling/",
  timepath = "data/pbmc_atac/benchmarks/signac_object_creation.tsv",
  project = "PBMC",
  cells = cells.pbmc,
  downsamples = downsamples_pbmc
)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
library(Signac)
library(EnsDb.Mmusculus.v79)
library(EnsDb.Hsapiens.v75)
library(GenomeInfoDb)

# extract gene annotations from EnsDb
annotations.mm <- GetGRangesFromEnsDb(ensdb = EnsDb.Mmusculus.v79)
annotations.hg <- GetGRangesFromEnsDb(ensdb = EnsDb.Hsapiens.v75)

# change to UCSC style since the data was mapped to hg19/mm10
seqlevelsStyle(annotations.hg) <- 'UCSC'
genome(annotations.hg) <- "hg19"

seqlevelsStyle(annotations.mm) <- 'UCSC'
genome(annotations.mm) <- "mm10"

# save
saveRDS(object = annotations.mm, file = "data/biccn/annotations.rds")
saveRDS(object = annotations.hg, file = "data/pbmc_atac/annotations.rds")
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
library(ggplot2)
library(patchwork)

# load figures
qc_dist <- readRDS("figures/qc_dist.rds")
tss_plot <- readRDS("figures/tss_enrichment.rds")
nucleosome_plot <- readRDS("figures/nucleosome_signal.rds") + ggtitle("Nucleosome signal")
atac_dimplot <- readRDS("figures/pbmc_atac_dimplot.rds")
mp <- readRDS("figures/motifplot.rds")
tf_chromvar <- readRDS("figures/chromvar_vln.rds")
tf_expression <- readRDS("figures/tf_rna_vln.rds")
fp <- readRDS("figures/footprint.rds")
gene_per_link_plot <- readRDS("figures/genes_per_link_plot.rds")
link_per_gene_plot <- readRDS("figures/link_per_gene_plot.rds")
distplot_positive <- readRDS("figures/distance_positive.rds")
distplot_negative <- readRDS("figures/distance_negative.rds")
pval_dist <- readRDS("figures/link_pvals.rds")
label_transfer_accuracy <- readRDS("figures/label_transfer_accuracy.rds")

tf_chromvar <- tf_chromvar & theme(text = element_text(size = 12), axis.text = element_text(size = 12))
tf_expression <- tf_expression & theme(text = element_text(size = 12), axis.text = element_text(size = 12))
lnkplot <- gene_per_link_plot / link_per_gene_plot
distances <- pval_dist / distplot_positive / distplot_negative
qc <- (nucleosome_plot / tss_plot) & ggtitle("")
atac_dimplot <- atac_dimplot + theme(legend.position = "none") +
  xlab("UMAP 1") + ylab("UMAP 2")

qc_violin <- qc_dist[[2]] / qc_dist[[1]] & theme_bw() & theme(legend.position = "none",
                                                              axis.text.x = element_blank(),
                                                              axis.ticks = element_blank())

top.panel <- (qc_violin | qc | atac_dimplot) + plot_layout(widths = c(1, 1, 2.5)) &
  theme(text = element_text(size = 12), axis.text = element_text(size = 12))

panel1 <- (mp / wrap_plots(tf_chromvar) / tf_expression & xlab("")) & theme(text = element_text(size = 12))

ggsave(filename = "figures/figure2.png", plot = top.panel, width = 12, height = 5.5, units = "in", dpi = 400)
ggsave(filename = "figures/figure2_2.png", plot = panel1, width = 6, height = 6, units = "in")
ggsave(filename = "figures/figure2_3.png", plot = fp, width = 4, height = 6, units = 'in')
ggsave(filename = "figures/figure2_4.png", plot = lnkplot, width = 5, height = 6, units = 'in')
ggsave(filename = "figures/figure2_5.png", plot = distances, width = 4, height = 6, units = 'in')

linked_1 <- readRDS("figures/linked_covplot1.rds")
linked_2 <- readRDS("figures/linked_covplot2.rds")

lower.panel <- (linked_1 | linked_2) &
  theme(text = element_text(size = 10), axis.text = element_text(size = 10))

ggsave(filename = "figures/figure2_6.png", plot = lower.panel, width = 16, height = 5, units = "in")

## supplementary figure 1
cp <- readRDS("figures/cellranger_peakcalling.rds")
missed <- readRDS("figures/macs2_pseudobulk.rds")
missed_peak_count <- readRDS("figures/missed_peak_count.rds")
supfig1 <- missed | (missed_peak_count / plot_spacer()) | cp
ggsave(filename = "figures/figs1.png", plot = supfig1, height = 8, width = 15, units = "in")
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
library(ggplot2)
library(patchwork)

dimplot.mito <- readRDS("figures/mito_dimplot.rds") & theme(text = element_text(size = 10))
featplot.mito <- readRDS("figures/mito_allele_plot.rds") & labs(color = "Allele frequency") & theme(text = element_text(size = 10))
featplot.mito <- featplot.mito & theme(legend.title = element_blank())

varplot.mito <- readRDS("figures/mito_varplot.rds") + theme(text = element_text(size = 10))
featplot.mito <- readRDS("figures/mito_allele_plot.rds") & labs(color = "Allele frequency") & theme(text = element_text(size = 10))
heatmap.mito <- readRDS("figures/mito_clone_hm.rds") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) + theme(text = element_text(size = 10))
covplots <- readRDS("figures/mito_covplot.rds") & theme(text = element_text(size = 10))

covplots <- covplots & theme(axis.text.x = element_text(size=4))
fig4 <- (dimplot.mito | varplot.mito | featplot.mito) / ((heatmap.mito | covplots) + plot_layout(widths = c(1, 2)))

ggsave(filename = "figures/figure4.png", plot = fig4, height = 8, width = 12, units = "in")
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
library(Signac)
library(Seurat)
library(ggplot2)
library(patchwork)
library(paletteer)

biccn <- readRDS("objects/biccn.rds")
pbmc <- readRDS("objects/pbmc_atac.rds")

timings_biccn <- read.table("data/biccn/timings.tsv")
timings_pbmc <- read.table("data/pbmc_atac/timings.tsv")

timings_pbmc$Cores <- as.factor(timings_pbmc$Cores)
timings_biccn$Cores <- as.factor(timings_biccn$Cores)

colors.use <- paletteer_d("ggthemes::Tableau_10")
signac_color <- colors.use[[1]]
archr_color <- colors.use[[9]]

# dimplots
dp <- DimPlot(biccn, group.by = "MajorType", label = TRUE, repel = TRUE, raster = FALSE, pt.size = 0.1) +
  theme_classic() +
  NoLegend() +
  ggtitle(label = "Adult mouse brain", subtitle = "734,000 nuclei")

dp_batch <- DimPlot(biccn, group.by = "orig.ident", label = FALSE, raster = FALSE, pt.size = 0.1, shuffle = TRUE) +
  theme_classic() +
  ggtitle(label = "Adult mouse brain", subtitle = "734,000 nuclei")

pbmc$all <- "PBMC"
dp_pbmc <- DimPlot(pbmc, group.by = "all", label = FALSE) +
  theme_classic() +
  NoLegend() +
  ggtitle(label = "Human PBMCs", subtitle = "26,579 nuclei")

########## PBMC ##########
# object creation
runtime_create <- ggplot(data = timings_pbmc[timings_pbmc$Step == "Create", ], mapping = aes(x = Cells, y = Runtime/60, color = Cores)) +
  geom_point() +
  geom_smooth(se = FALSE) +
  facet_wrap(~Method) +
  ylab("Runtime (minutes)") +
  theme_bw() +
  theme(legend.position = "none") +
  scale_x_continuous(labels = scales::comma, breaks = seq(0, 25000, 5000)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) +
  ggtitle("Object creation")

# featurematrix timings
runtime_fmat <- ggplot(data = timings_pbmc[timings_pbmc$Step == "FeatureMatrix", ], mapping = aes(x = Cells, y = Runtime / 60, color = Cores)) +
  geom_point() +
  geom_smooth(se = FALSE) +
  facet_wrap(~Method) +
  ylab("Runtime (minutes)") +
  theme_bw() +
  scale_x_continuous(labels = scales::comma, breaks = seq(0, 25000, 5000)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) +
  ggtitle(label = "FeatureMatrix", subtitle = "160,906 peaks")

# gene activity
runtime_ga <- ggplot(data = timings_pbmc[timings_pbmc$Step == "GeneActivity", ], mapping = aes(x = Cells, y = Runtime / 60, color = Cores)) +
  geom_point() +
  geom_smooth(se = FALSE) +
  facet_wrap(~Method) +
  ylab("Runtime (minutes)") +
  theme_bw() +
  scale_x_continuous(labels = scales::comma, breaks = seq(0, 25000, 5000)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) +
  ggtitle(label = "GeneActivity")

# nucleosome signal timings
runtime_ns <- ggplot(data = timings_pbmc[timings_pbmc$Step == "NucleosomeSignal", ], mapping = aes(x = Cells, y = Runtime / 60)) +
  geom_point() +
  geom_smooth(se = FALSE) +
  ylab("Runtime (minutes)") +
  theme_bw() +
  scale_x_continuous(labels = scales::comma, breaks = seq(0, 25000, 5000)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) +
  ggtitle("NucleosomeSignal")

# QC timings
runtime_qc <- ggplot(
  data = timings_pbmc[timings_pbmc$Step %in% c("NucleosomeSignal", "TSSEnrichment"), ],
  mapping = aes(x = Cells, y = Runtime / 60, color = Cores)) +
  geom_point() +
  geom_smooth(se = FALSE) +
  facet_wrap(~Step, scales = "free_y") +
  ylab("Runtime (minutes)") +
  theme_bw() +
  scale_x_continuous(labels = scales::comma, breaks = seq(0, 25000, 5000)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) +
  ggtitle("Signac quality control metrics")

# LSI timings
runtime_lsi <- ggplot(data = timings_pbmc[timings_pbmc$Step == "LSI", ], mapping = aes(x = Cells, y = Runtime / 60, color = Cores)) +
  geom_point() +
  geom_smooth(se = FALSE) +
  facet_wrap(~Method) +
  ylab("Runtime (minutes)") +
  theme_bw() +
  theme(legend.position = "none") +
  scale_x_continuous(labels = scales::comma, breaks = seq(0, 25000, 5000)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) +
  ggtitle("LSI")

# total runtime
archr_pbmc_total <- as.numeric(readLines(con = "data/pbmc_atac/archr_total_runtime.txt"))
signac_pbmc_total <- as.numeric(readLines(con = "data/pbmc_atac/signac_total_runtime.txt"))

total_pbmc <- ggplot(data = data.frame(Method = c("Signac", "ArchR"), runtime = c(signac_pbmc_total/60, archr_pbmc_total/60)),
                     mapping = aes(y = runtime, x = Method, fill = Method)) +
  geom_bar(stat = "identity") +
  ylab("Runtime (minutes)") +
  theme_bw() +
  ggtitle(label = "Total runtime", subtitle = "26,579 nuclei; 8 cores") +
  scale_fill_manual(values = c(archr_color, signac_color)) +
  theme(legend.position = "none")

# collate all runtime panels
runtimes_pbmc <- ((runtime_create / runtime_fmat) | (runtime_ga / runtime_qc) | (runtime_lsi / total_pbmc)) + plot_layout(guides = "collect")

######### BICCN ###########
# object creation
runtime_create <- ggplot(data = timings_biccn[timings_biccn$Step == "Create", ], mapping = aes(x = Cells, y = Runtime/60, color = Cores)) +
  geom_point() +
  geom_smooth(se = FALSE) +
  facet_wrap(~Method) +
  scale_x_continuous(labels = scales::comma, breaks = seq(0, 700000, 200000)) +
  ylab("Runtime (minutes)") +
  theme_bw() +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) +
  theme(legend.position = "none") +
  ggtitle("Object creation")

# featurematrix timings
runtime_fmat <- ggplot(data = timings_biccn[timings_biccn$Step == "FeatureMatrix", ], mapping = aes(x = Cells, y = Runtime / 60, color = Cores)) +
  geom_point() +
  geom_smooth(se = FALSE) +
  facet_wrap(~Method) +
  ylab("Runtime (minutes)") +
  scale_x_continuous(labels = scales::comma, breaks = seq(0, 700000, 200000)) +
  scale_y_continuous(breaks = seq(0, 300, 60)) +
  theme_bw() +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) +
  ggtitle(label = "FeatureMatrix", subtitle = "263,815 peaks")

# gene activity
runtime_ga <- ggplot(data = timings_biccn[timings_biccn$Step == "GeneActivity", ], mapping = aes(x = Cells, y = Runtime / 60, color = Cores)) +
  geom_point() +
  geom_smooth(se = FALSE) +
  facet_wrap(~Method) +
  ylab("Runtime (minutes)") +
  scale_x_continuous(labels = scales::comma, breaks = seq(0, 700000, 200000)) +
  scale_y_continuous(breaks = seq(0, 300, 60)) +
  theme_bw() +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) +
  ggtitle(label = "GeneActivity")

# QC step
runtime_qc <- ggplot(
  data = timings_biccn[timings_biccn$Step %in% c("NucleosomeSignal", "TSSEnrichment"), ],
  mapping = aes(x = Cells, y = Runtime / 60, color = Cores)) +
  geom_point() +
  geom_smooth(se = FALSE) +
  facet_wrap(~Step) +
  ylab("Runtime (minutes)") +
  theme_bw() +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) +
  scale_x_continuous(labels = scales::comma, breaks = seq(0, 700000, 200000)) +
  ggtitle("Signac quality control metrics")

# LSI timings
runtime_lsi <- ggplot(data = timings_biccn[timings_biccn$Step == "LSI", ], mapping = aes(x = Cells, y = Runtime / 60, color = Cores)) +
  geom_point() +
  geom_smooth(se = FALSE) +
  facet_wrap(~Method) +
  ylab("Runtime (minutes)") +
  theme_bw() +
  theme(legend.position = "none") +
  scale_x_continuous(labels = scales::comma, breaks = seq(0, 700000, 200000)) +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1)) +
  ggtitle("LSI")

# total runtime
archr_biccn_total <- as.numeric(readLines(con = "data/biccn/archr_total_runtime.txt"))
signac_biccn_total <- as.numeric(readLines(con = "data/biccn/signac_total_runtime.txt"))

total_biccn <- ggplot(data = data.frame(Method = c("Signac", "ArchR"), runtime = c(signac_biccn_total/60/60, archr_biccn_total/60/60)),
                     mapping = aes(y = runtime, x = Method, fill = Method)) +
  geom_bar(stat = "identity") +
  ylab("Runtime (hours)") +
  theme_bw() +
  scale_y_continuous(breaks = c(0,1,2,3,4,5)) +
  ggtitle(label = "Total runtime", subtitle = "734,000 nuclei; 8 cores") +
  scale_fill_manual(values = c(archr_color, signac_color)) +
  theme(legend.position = "none")

# collate all runtime panels
runtimes_biccn <- ((runtime_create / runtime_fmat) | (runtime_ga / runtime_qc) | (runtime_lsi / total_biccn)) + plot_layout(guides = "collect")

# save plots
ggsave(filename = "figures/figure5a.png", plot = runtimes_pbmc, height = 6, width = 12, dpi = 500)
ggsave(filename = "figures/figure5b.png", plot = runtimes_biccn, height = 6, width = 12, dpi = 500)
ggsave(filename = "figures/biccn_dimplot_batch.png", plot = dp_batch, height = 12, width = 18, dpi = 300)
ggsave(filename = "figures/biccn_dimplot.png", plot = dp, height = 6, width = 5, dpi = 300)
ggsave(filename = "figures/pbmc_atac_dimplot.png", plot = dp_pbmc, height = 6, width = 5, dpi = 300)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
library(Signac)
library(Seurat)
library(future)
plan(strategy = "multiprocess", workers = 8)
options(future.globals.maxSize = 50 * 1024 ^ 3)

pbmc <- readRDS('objects/pbmc.rds')
DefaultAssay(pbmc) <- "ATAC"

# link peaks to genes
pbmc <- LinkPeaks(
  object = pbmc,
  peak.assay = "ATAC",
  expression.assay = "SCT"
)

saveRDS(object = Links(pbmc), file = "objects/pbmc_links.rds")
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
library(Signac)
library(Seurat)

pbmc <- readRDS("objects/pbmc.rds")

# label transfer
# create separate object from the RNA assay
pbmc.rna <- CreateSeuratObject(
  counts = GetAssayData(pbmc, assay = "RNA", slot = "counts"),
  meta.data = pbmc[[]]
)
pbmc.rna <- NormalizeData(pbmc.rna)
pbmc.rna <- FindVariableFeatures(pbmc.rna, nfeatures = 3000)
pbmc.rna <- ScaleData(pbmc.rna)

# Identify anchors
transfer.anchors <- FindTransferAnchors(
  reference = pbmc.rna,
  query = pbmc,
  features = VariableFeatures(object = pbmc.rna), 
  reference.assay = "RNA",
  query.assay = "GA",
  reduction = "cca",
  dims = 1:30
)

pbmc.rna$ct <- pbmc$celltype
pbmc.rna$coarse_celltype <- pbmc$coarse_celltype

celltype.predictions <- TransferData(
  anchorset = transfer.anchors,
  refdata = pbmc.rna$ct,
  weight.reduction = pbmc[["lsi"]],
  dims = 2:30
)

coarse.predictions <- TransferData(
  anchorset = transfer.anchors,
  refdata = pbmc.rna$coarse_celltype,
  weight.reduction = pbmc[["lsi"]],
  dims = 2:30
)

pbmc.atac <- pbmc
pbmc.atac <- AddMetaData(pbmc.atac, metadata = celltype.predictions)
pbmc.atac$coarse_predicted <- coarse.predictions$predicted.id

# remove unneeded assays
pbmc.atac[["RNA"]] <- NULL
pbmc.atac[["SCT"]] <- NULL
pbmc.atac[["GA"]] <- NULL

pbmc.atac$gt <- as.factor(pbmc.rna$ct)
saveRDS(object = pbmc.atac, file = "objects/multimodal_label_transfer.rds")
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
declare -a ncell=("1000" "3000" "5000" "7000" "9000" "11000" "13000" "15000" "17000" "19000" "21000" "23000" "25000")
declare -a ncore=("1" "2" "4" "8")

[ -d data/pbmc_atac/benchmarks ] || mkdir data/pbmc_atac/benchmarks

# feature matrix
for i in "${ncell[@]}"; do
  # need to run cores separately since it doesn't seem to obey the set number of threads
  taskset --cpu-list 1 Rscript --vanilla code/downsampling_code/run_archr_peakmatrix.R \
      1 \
      archr_pbmc/$i \
      data/pbmc_atac/peaks.bed \
      3 \
      data/pbmc_atac/benchmarks/archr_featmat_runtime_${i}_1.txt \
      "hg19"

  taskset --cpu-list 1,2 Rscript --vanilla code/downsampling_code/run_archr_peakmatrix.R \
      2 \
      archr_pbmc/$i \
      data/pbmc_atac/peaks.bed \
      3 \
      data/pbmc_atac/benchmarks/archr_featmat_runtime_${i}_2.txt \
      "hg19"

  taskset --cpu-list 1,2,3,4 Rscript --vanilla code/downsampling_code/run_archr_peakmatrix.R \
      4 \
      archr_pbmc/$i \
      data/pbmc_atac/peaks.bed \
      3 \
      data/pbmc_atac/benchmarks/archr_featmat_runtime_${i}_4.txt \
      "hg19"

  taskset --cpu-list 1,2,3,4,5,6,7,8 Rscript --vanilla code/downsampling_code/run_archr_peakmatrix.R \
      8 \
      archr_pbmc/$i \
      data/pbmc_atac/peaks.bed \
      3 \
      data/pbmc_atac/benchmarks/archr_featmat_runtime_${i}_8.txt \
      "hg19"
done


# gene activity
for i in "${ncell[@]}"; do
  # need to run cores separately since it doesn't seem to obey the set number of threads
  taskset --cpu-list 1 Rscript --vanilla code/downsampling_code/run_archr_geneactivity.R \
      1 \
      archr_pbmc/$i \
      3 \
      data/pbmc_atac/benchmarks/archr_geneactivity_runtime_${i}_1.txt \
      "hg19"

  taskset --cpu-list 1,2 Rscript --vanilla code/downsampling_code/run_archr_geneactivity.R \
      2 \
      archr_pbmc/$i \
      3 \
      data/pbmc_atac/benchmarks/archr_geneactivity_runtime_${i}_2.txt \
      "hg19"

  taskset --cpu-list 1,2,3,4 Rscript --vanilla code/downsampling_code/run_archr_geneactivity.R \
      4 \
      archr_pbmc/$i \
      3 \
      data/pbmc_atac/benchmarks/archr_geneactivity_runtime_${i}_4.txt \
      "hg19"

  taskset --cpu-list 1,2,3,4,5,6,7,8 Rscript --vanilla code/downsampling_code/run_archr_geneactivity.R \
      8 \
      archr_pbmc/$i \
      3 \
      data/pbmc_atac/benchmarks/archr_geneactivity_runtime_${i}_8.txt \
      "hg19"
done

# lsi
for i in "${ncell[@]}"; do
  taskset --cpu-list 1 Rscript --vanilla code/downsampling_code/run_archr_lsi.R \
    archr_pbmc/$i \
    data/pbmc_atac/peaks.bed \
    3 \
    data/pbmc_atac/benchmarks/archr_lsi_runtime_${i}.txt \
    "hg19"
done

# estimated lsi
for i in "${ncell[@]}"; do
  taskset --cpu-list 1 Rscript --vanilla code/downsampling_code/run_archr_estimated_lsi.R \
    archr_pbmc/$i \
    data/pbmc_atac/peaks.bed \
    3 \
    data/pbmc_atac/benchmarks/archr_est_lsi_runtime_${i}.txt \
    "hg19"
done
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
declare -a ncell=("1000" "3000" "5000" "7000" "9000" "11000" "13000" "15000" "17000" "19000" "21000" "23000" "25000")
declare -a ncore=("1" "2" "4" "8")

[ -d data/pbmc_atac/benchmarks ] || mkdir data/pbmc_atac/benchmarks
[ -d data/pbmc_atac/downsampling ] || mkdir data/pbmc_atac/downsampling

# run each step with different numbers of cores, profile max memory usage

# feature matrix
for i in "${ncell[@]}"; do
  for j in "${ncore[@]}"; do
    /usr/bin/time -o data/pbmc_atac/benchmarks/featmat_mem_${i}_${j}.txt \
      -v Rscript --vanilla code/downsampling_code/run_featurematrix.R \
      $j \
      /scratch/tim/pbmc_atac/downsampling/$i.rds \
      data/pbmc_atac/peaks.bed \
      3 \
      data/pbmc_atac/benchmarks/featmat_runtime_${i}_${j}.txt \
      data/pbmc_atac/downsampling/counts_${i}.rds
  done
done

# nucleosome signal
for i in "${ncell[@]}"; do
  /usr/bin/time -o data/pbmc_atac/benchmarks/nucleosome_mem_${i}.txt \
    -v Rscript --vanilla code/downsampling_code/run_nucleosome.R \
    data/pbmc_atac/downsampling/counts_${i}.rds \
    /scratch/tim/pbmc_atac/downsampling/$i.rds \
    data/pbmc_atac/annotations.rds \
    3 \
    data/pbmc_atac/benchmarks/nucleosome_runtime_${i}.txt \
    data/pbmc_atac/downsampling/nucleosome_${i}.rds
done

# tss enrichment
for i in "${ncell[@]}"; do
  for j in "${ncore[@]}"; do
    /usr/bin/time -o data/biccn/benchmarks/tss_mem_${i}_${j}.txt \
      -v Rscript --vanilla code/downsampling_code/run_tss.R \
      data/pbmc_atac/downsampling/nucleosome_${i}.rds \
      3 \
      data/pbmc_atac/benchmarks/tss_runtime_${i}_${j}.txt \
      data/pbmc_atac/downsampling/tss_${i}.rds \
      $j
  done
done

# gene activity matrix
for i in "${ncell[@]}"; do
  for j in "${ncore[@]}"; do
    /usr/bin/time -o data/pbmc_atac/benchmarks/ga_mem_${i}_${j}.txt \
      -v Rscript --vanilla code/downsampling_code/run_gene_activity.R \
      data/pbmc_atac/downsampling/tss_${i}.rds \
      $j \
      3 \
      data/pbmc_atac/benchmarks/ga_runtime_${i}_${j}.txt
  done
done

# tf-idf
for i in "${ncell[@]}"; do
  /usr/bin/time -o data/pbmc_atac/benchmarks/tfidf_mem_${i}.txt \
    -v Rscript --vanilla code/downsampling_code/run_tfidf.R \
    data/pbmc_atac/downsampling/tss_${i}.rds \
    3 \
    data/pbmc_atac/benchmarks/tfidf_runtime_${i}.txt \
    data/pbmc_atac/downsampling/tfidf_${i}.rds
done

# svd
for i in "${ncell[@]}"; do
  /usr/bin/time -o data/pbmc_atac/benchmarks/svd_mem_${i}.txt \
    -v Rscript --vanilla code/downsampling_code/run_svd.R \
    data/pbmc_atac/downsampling/tfidf_${i}.rds \
    3 \
    data/pbmc_atac/benchmarks/svd_runtime_${i}.txt \
    data/pbmc_atac/downsampling/svd_${i}.rds
done
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
downsamples <- seq(from = 1000, to = 26000, by = 2000)
cores <- c(1, 2, 4, 8)

results_df <- data.frame()

runtime <- read.table(file = "data/pbmc_atac/benchmarks/signac_object_creation.tsv", sep = "\t")
runtime_archr <- read.table(file = "data/pbmc_atac/benchmarks/archr_object_creation.tsv", sep = "\t")
runtime_archr <- runtime_archr[runtime_archr$V2 == "Arrow", ]
result <- data.frame(
  "Cells" = c(runtime$V4, runtime_archr$V4),
  "Cores" = 1,
  "Step" = "Create",
  "Runtime" = c(runtime$V1, runtime_archr$V1),
  "Method" = c(rep("Signac", nrow(runtime)), rep("ArchR", nrow(runtime_archr)))
)
results_df <- rbind(results_df, result)

for (i in downsamples) {
  for (j in cores) {
    runtime <- readLines(con = paste0("data/pbmc_atac/benchmarks/featmat_runtime_", i, "_", j, ".txt"))
    rt_archr <- readLines(con = paste0("data/pbmc_atac/benchmarks/archr_featmat_runtime_", i, "_", j, ".txt"))
    runtime <- sapply(runtime, as.numeric, USE.NAMES = FALSE)
    rt_archr <- sapply(rt_archr, as.numeric, USE.NAMES = FALSE)
    result <- data.frame(
      "Cells" = i,
      "Cores" = j,
      "Step" = "FeatureMatrix",
      "Runtime" = c(runtime, rt_archr),
      "Method" = c(rep("Signac", length(runtime)), rep("ArchR", length(rt_archr)))
    )
    results_df <- rbind(results_df, result)
  }
}

for (i in downsamples) {
  runtime <- readLines(con = paste0("data/pbmc_atac/benchmarks/nucleosome_runtime_", i, ".txt"))
  runtime <- sapply(runtime, as.numeric, USE.NAMES = FALSE)
  result <- data.frame(
    "Cells" = i,
    "Cores" = 1,
    "Step" = "NucleosomeSignal",
    "Runtime" = runtime,
    "Method" = "Signac"
  )
  results_df <- rbind(results_df, result)
}

for (i in downsamples) {
  for (j in cores) {
    runtime <- readLines(con = paste0("data/pbmc_atac/benchmarks/ga_runtime_", i, "_", j, ".txt"))
    rt_archr <- readLines(con = paste0("data/pbmc_atac/benchmarks/archr_geneactivity_runtime_", i, "_", j, ".txt"))
    runtime <- sapply(runtime, as.numeric, USE.NAMES = FALSE)
    rt_archr <- sapply(rt_archr, as.numeric, USE.NAMES = FALSE)
    result <- data.frame(
      "Cells" = i,
      "Cores" = j,
      "Step" = "GeneActivity",
      "Runtime" = c(runtime, rt_archr),
      "Method" = c(rep("Signac", length(runtime)), rep("ArchR", length(rt_archr)))
    )
    results_df <- rbind(results_df, result)
  }
}

for (i in downsamples) {
  for (j in cores) {
    runtime <- readLines(con = paste0("data/pbmc_atac/benchmarks/tss_runtime_", i, "_", j, ".txt"))
    runtime <- sapply(runtime, as.numeric, USE.NAMES = FALSE)
    result <- data.frame(
      "Cells" = i,
      "Cores" = j,
      "Step" = "TSSEnrichment",
      "Runtime" = runtime,
      "Method" = "Signac"
    )
    results_df <- rbind(results_df, result)
  }
}

for (i in downsamples) {
  runtime <- readLines(con = paste0("data/pbmc_atac/benchmarks/tfidf_runtime_", i, ".txt"))
  runtime <- sapply(runtime, as.numeric, USE.NAMES = FALSE)
  result <- data.frame(
    "Cells" = i,
    "Cores" = 1,
    "Step" = "RunTFIDF",
    "Runtime" = runtime,
    "Method" = "Signac"
  )
  results_df <- rbind(results_df, result)
}

for (i in downsamples) {
  runtime <- readLines(con = paste0("data/pbmc_atac/benchmarks/svd_runtime_", i, ".txt"))
  runtime <- sapply(runtime, as.numeric, USE.NAMES = FALSE)
  result <- data.frame(
    "Cells" = i,
    "Cores" = 1,
    "Step" = "RunSVD",
    "Runtime" = runtime,
    "Method" = "Signac"
  )
  results_df <- rbind(results_df, result)
}

for (i in downsamples) {
  runtime <- readLines(con = paste0("data/pbmc_atac/benchmarks/archr_lsi_runtime_", i, ".txt"))
  runtime <- sapply(runtime, as.numeric, USE.NAMES = FALSE)
  result <- data.frame(
    "Cells" = i,
    "Cores" = 1,
    "Step" = "LSI",
    "Runtime" = runtime,
    "Method" = "ArchR"
  )
  results_df <- rbind(results_df, result)
}

for (i in downsamples) {
  runtime <- readLines(con = paste0("data/pbmc_atac/benchmarks/archr_est_lsi_runtime_", i, ".txt"))
  runtime <- sapply(runtime, as.numeric, USE.NAMES = FALSE)
  result <- data.frame(
    "Cells" = i,
    "Cores" = 1,
    "Step" = "estLSI",
    "Runtime" = runtime,
    "Method" = "ArchR"
  )
  results_df <- rbind(results_df, result)
}

# add LSI
tfidf <- results_df[results_df$Step == "RunTFIDF", ]
runsvd <- results_df[results_df$Step == "RunSVD", ]
lsi <- runsvd
lsi$Runtime <- runsvd$Runtime + tfidf$Runtime
lsi$Step <- "LSI"
results_df <- rbind(results_df, lsi)

results_df$Cells <- as.numeric(results_df$Cells)
results_df$Cores <- as.factor(results_df$Cores)

write.table(x = results_df, file = "data/pbmc_atac/timings.tsv")
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
library(Signac)
library(Seurat)
library(RANN)
library(ggplot2)
library(cluster)
library(dplyr)
library(patchwork)
library(paletteer)
library(SeuratDisk)

set.seed(1234)

pbmc <- readRDS("objects/pbmc.rds")
atac.assay <- "ATAC"
methods_keep <- c("LSI (Cusanovich2018)", "SnapATAC", "cisTopic CGS", "cisTopic Warp", "SCALE", "LSI (log-TF)", "LSI (Signac)")
colors.use <- paletteer_d("ggthemes::Tableau_10")
colors.use <- rev(colors.use[1:length(methods_keep)])

######## Data loading #########

read_lsi <- function(method, path ="data/pbmc/downsamples/") {
  methodstr <- paste0(as.character(method), ".rds")
  lsi <- paste0(path, c(
    paste0("lsi_1_", methodstr),
    paste0("lsi_0.8_", methodstr),
    paste0("lsi_0.6_", methodstr),
    paste0("lsi_0.4_", methodstr),
    paste0("lsi_0.2_", methodstr)
  ))
  lsi_obj <- lapply(X = lsi, readRDS)
  return(lsi_obj)
}

lsi_1 <- read_lsi(method = 1)
lsi_2 <- read_lsi(method = 2)
lsi_3 <- read_lsi(method = 3)
lsi_4 <- read_lsi(method = 4)

pbmc_ds <- c(1, 0.8, 0.6, 0.4, 0.2)

snap <- lapply(X = paste0("data/pbmc/downsamples/snapatac_", pbmc_ds, ".rds"), FUN = readRDS)
ct_cgs <- lapply(X = paste0("data/pbmc/downsamples/cistopic_cgs_", pbmc_ds, ".rds"), FUN = readRDS)
ct_warp <- lapply(X = paste0("data/pbmc/downsamples/cistopic_warp_", pbmc_ds, ".rds"), FUN = readRDS)

ct_cgs <- lapply(ct_cgs, t)
ct_warp <- lapply(ct_warp, t)

# convert h5ad to h5seurat
scale_pbmc_path <- lapply(
  X = pbmc_ds,
  function(x) {
    Convert(
      source = paste0("data/pbmc/downsamples/scale_", x, "/adata.h5ad"),
      dest = paste0("data/pbmc/downsamples/scale_", x, "/adata.h5seurat"),
      overwrite = TRUE
    )
  }
)

# load h5seurat
scale_pbmc_obj <- lapply(X = scale_pbmc_path, FUN = LoadH5Seurat)

# get embeddings
scale_pbmc <- lapply(X = scale_pbmc_obj, FUN = function(x) {
  Embeddings(x[["latent"]])
})

######## Determine dimensions to use ##########

seqdepth_pbmc <- pbmc$nCount_ATAC

# dim 1
lsi1_depth <- lapply(lsi_1, function(x) {
  which(abs(cor(x, seqdepth_pbmc)) > 0.9)
})
# no dims
lsi2_depth <- lapply(lsi_2, function(x) {
  which(abs(cor(x, seqdepth_pbmc)) > 0.9)
})
# no dims
lsi3_depth <- lapply(lsi_3, function(x) {
  which(abs(cor(x, seqdepth_pbmc)) > 0.9)
})
# no dims
lsi4_depth <- lapply(lsi_4, function(x) {
  which(abs(cor(x, seqdepth_pbmc)) > 0.9)
})
# no dims
cgs_depth <- lapply(ct_cgs, function(x) {
  which(abs(cor(x, seqdepth_pbmc)) > 0.9)
})
# no dims
warp_depth <- lapply(ct_warp, function(x) {
  which(abs(cor(x, seqdepth_pbmc)) > 0.9)
})
# dim 2
snap_depth <- lapply(snap, function(x) {
  which(abs(cor(x, seqdepth_pbmc)) > 0.9)
})
# no dims
scale_depth <- lapply(scale_pbmc, function(x) {
  which(abs(cor(x, seqdepth_pbmc)) > 0.9)
})

######## KNN #########

# use cell types defined by RNA
clustering.use <- "celltype"
clusters <- pbmc[[clustering.use]][[1]]

# first define neighbor graph using the RNA assay
k <- 100
rna.emb <- Embeddings(pbmc[["pca"]])
rna.nn <- nn2(data = rna.emb, k = k + 1)$nn.idx[, 2:k]

knn_purity <- function(embeddings, dims, clusters, rna.nn, k = 100) {
  nn <- nn2(data = embeddings[, dims], k = k + 1)$nn.idx[, 2:k]
  nn_purity <- vector(mode = "numeric", length = length(x = clusters))
  for (i in seq_len(length.out = nrow(x = nn))) {
    nn_purity[i] <- sum(clusters[nn[i, ]] == clusters[i]) / k
  }
  return(nn_purity)
}

get_knn_df <- function(emb_list, dims, clusters, rna_nn, method, ds_list, k) {
  # compute KNN purity for each dimension reduction
  knn_df <- data.frame()
  for (i in seq_along(along.with = emb_list)) {
    knn <- knn_purity(embeddings = emb_list[[i]], dims = dims, clusters = clusters, rna.nn = rna_nn, k = k)
    ds <- ds_list[[i]]
    kd <- data.frame(
      purity = knn,
      downsample = ds, method = method,
      celltype = clusters
    )
    knn_df <- rbind(knn_df, kd)
  }
  return(knn_df)
}

k <- 100
knn_lsi1 <- get_knn_df(
  emb_list = lsi_1,
  dims = 2:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "LSI (Signac)",
  k = k
)

knn_lsi2 <- get_knn_df(
  emb_list = lsi_2,
  dims = 1:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "LSI (Cusanovich2018)",
  k = k
)

knn_lsi3 <- get_knn_df(
  emb_list = lsi_3,
  dims = 1:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "LSI (log-TF)",
  k = k
)

knn_lsi4 <- get_knn_df(
  emb_list = lsi_4,
  dims = 1:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "LSI (Cellranger)",
  k = k
)

knn_snap <- get_knn_df(
  emb_list = snap,
  dims = c(1, 3:20),
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "SnapATAC",
  k = k
)

knn_ct_cgs <- get_knn_df(
  emb_list = ct_cgs,
  dims = 1:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "cisTopic CGS",
  k = k
)

knn_ct_warp <- get_knn_df(
  emb_list = ct_warp,
  dims = 1:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "cisTopic Warp",
  k = k
)

knn_scale <- get_knn_df(
  emb_list = scale_pbmc,
  dims = 1:10,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "SCALE",
  k = k
)

knn_df <- rbind(knn_lsi1, knn_lsi2, knn_lsi3, knn_lsi4, knn_snap, knn_ct_cgs, knn_ct_warp, knn_scale)
knn_df$downsample <- factor(knn_df$downsample, levels = rev(pbmc_ds))

knn_plot <- knn_df[knn_df$method %in% methods_keep, ]
knn_plot$method <- factor(knn_plot$method, levels = methods_keep)

knn_plot<- knn_plot %>% 
  group_by(celltype, method, downsample) %>% 
  mutate(mn = mean(purity)) %>% 
  ungroup()

knn_plot <- knn_plot[, c("celltype", "method", "downsample", "mn")]
knn_plot <- unique(knn_plot)

p2 <- ggplot(knn_plot, aes(x = downsample, y = mn, fill = method)) +
  geom_boxplot(outlier.size = 0.1) +
  theme_bw() +
  ylab("Mean kNN celltype purity") +
  xlab("Fraction of counts retained") +
  scale_fill_manual(values = colors.use)

# test choice of K
knn_df$k <- k

k <- 150
knn_lsi1 <- get_knn_df(
  emb_list = lsi_1,
  dims = 2:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "LSI (Signac)",
  k = k
)

knn_lsi2 <- get_knn_df(
  emb_list = lsi_2,
  dims = 1:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "LSI (Cusanovich2018)",
  k = k
)

knn_lsi3 <- get_knn_df(
  emb_list = lsi_3,
  dims = 1:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "LSI (log-TF)",
  k = k
)

knn_lsi4 <- get_knn_df(
  emb_list = lsi_4,
  dims = 1:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "LSI (Cellranger)",
  k = k
)

knn_snap <- get_knn_df(
  emb_list = snap,
  dims = c(1, 3:20),
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "SnapATAC",
  k = k
)

knn_ct_cgs <- get_knn_df(
  emb_list = ct_cgs,
  dims = 1:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "cisTopic CGS",
  k = k
)

knn_ct_warp <- get_knn_df(
  emb_list = ct_warp,
  dims = 1:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "cisTopic Warp",
  k = k
)

knn_scale <- get_knn_df(
  emb_list = scale_pbmc,
  dims = 1:10,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "SCALE",
  k = k
)

knn_df2 <- rbind(knn_lsi1, knn_lsi2, knn_lsi3, knn_lsi4, knn_snap, knn_ct_cgs, knn_ct_warp, knn_scale)
knn_df2$downsample <- factor(knn_df2$downsample, levels = rev(pbmc_ds))
knn_df2$k <- k

knn_df <- rbind(knn_df, knn_df2)

k <- 50
knn_lsi1 <- get_knn_df(
  emb_list = lsi_1,
  dims = 2:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "LSI (Signac)",
  k = k
)

knn_lsi2 <- get_knn_df(
  emb_list = lsi_2,
  dims = 1:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "LSI (Cusanovich2018)",
  k = k
)

knn_lsi3 <- get_knn_df(
  emb_list = lsi_3,
  dims = 1:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "LSI (log-TF)",
  k = k
)

knn_lsi4 <- get_knn_df(
  emb_list = lsi_4,
  dims = 1:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "LSI (Cellranger)",
  k = k
)

knn_snap <- get_knn_df(
  emb_list = snap,
  dims = c(1, 3:20),
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "SnapATAC",
  k = k
)

knn_ct_cgs <- get_knn_df(
  emb_list = ct_cgs,
  dims = 1:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "cisTopic CGS",
  k = k
)

knn_ct_warp <- get_knn_df(
  emb_list = ct_warp,
  dims = 1:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "cisTopic Warp",
  k = k
)

knn_scale <- get_knn_df(
  emb_list = scale_pbmc,
  dims = 1:10,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "SCALE",
  k = k
)

knn_df2 <- rbind(knn_lsi1, knn_lsi2, knn_lsi3, knn_lsi4, knn_snap, knn_ct_cgs, knn_ct_warp, knn_scale)
knn_df2$downsample <- factor(knn_df2$downsample, levels = rev(pbmc_ds))
knn_df2$k <- k

knn_df <- rbind(knn_df, knn_df2)

k <- 10
knn_lsi1 <- get_knn_df(
  emb_list = lsi_1,
  dims = 2:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "LSI (Signac)",
  k = k
)

knn_lsi2 <- get_knn_df(
  emb_list = lsi_2,
  dims = 1:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "LSI (Cusanovich2018)",
  k = k
)

knn_lsi3 <- get_knn_df(
  emb_list = lsi_3,
  dims = 1:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "LSI (log-TF)",
  k = k
)

knn_lsi4 <- get_knn_df(
  emb_list = lsi_4,
  dims = 1:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "LSI (Cellranger)",
  k = k
)

knn_snap <- get_knn_df(
  emb_list = snap,
  dims = c(1, 3:20),
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "SnapATAC",
  k = k
)

knn_ct_cgs <- get_knn_df(
  emb_list = ct_cgs,
  dims = 1:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "cisTopic CGS",
  k = k
)

knn_ct_warp <- get_knn_df(
  emb_list = ct_warp,
  dims = 1:20,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "cisTopic Warp",
  k = k
)

knn_scale <- get_knn_df(
  emb_list = scale_pbmc,
  dims = 1:10,
  ds_list = pbmc_ds,
  clusters = clusters,
  rna_nn = rna.nn,
  method = "SCALE",
  k = k
)

knn_df2 <- rbind(knn_lsi1, knn_lsi2, knn_lsi3, knn_lsi4, knn_snap, knn_ct_cgs, knn_ct_warp, knn_scale)
knn_df2$downsample <- factor(knn_df2$downsample, levels = rev(pbmc_ds))
knn_df2$k <- k

knn_df <- rbind(knn_df, knn_df2)

knn_df$k <- paste0("k=", as.character(knn_df$k))
knn_df$k <- factor(knn_df$k, levels = c("k=10", "k=50", "k=100", "k=150"))

knn_plot <- knn_df[knn_df$method %in% methods_keep, ]
knn_plot$method <- factor(knn_plot$method, levels = methods_keep)

knn_plot<- knn_plot %>% 
  group_by(celltype, method, downsample, k) %>% 
  mutate(mn = mean(purity)) %>% 
  ungroup()

knn_plot <- knn_plot[, c("celltype", "method", "downsample", "mn", "k")]
knn_plot <- unique(knn_plot)

knn_sensitivity <- ggplot(knn_plot, aes(x = downsample, y = mn, fill = method)) +
  geom_boxplot(outlier.size = 0.1) +
  theme_bw() +
  facet_wrap(~k, ncol = 1) + 
  ylab("Mean kNN celltype purity") +
  xlab("Fraction of counts retained") +
  scale_fill_manual(values = colors.use)

ggsave(filename = "figures/knn_sensitivity.png", plot = knn_sensitivity, height = 8, width = 10, dpi = 300)

###### UMAP ########

umaps_lsi_1 <- lapply(lsi_1, function(x) RunUMAP(x[, 2:20]))
umaps_lsi_2 <- lapply(lsi_2, function(x) RunUMAP(x[, 1:20]))
umaps_lsi_3 <- lapply(lsi_3, function(x) RunUMAP(x[, 1:20]))
umaps_lsi_4 <- lapply(lsi_4, function(x) RunUMAP(x[, 1:20]))
umaps_snap <- lapply(snap, function(x) {
  rownames(x) <- colnames(pbmc)
  dr <- RunUMAP(x[, c(1, 3:20)])
  dr
  }
)
umaps_ct_cgs <- lapply(ct_cgs, function(x) {
  rownames(x) <- colnames(pbmc)
  dr <- RunUMAP(x[, 1:20])
  dr
  }
)
umaps_ct_warp <- lapply(ct_warp, function(x) {
  rownames(x) <- colnames(pbmc)
  dr <- RunUMAP(x[, 1:20])
  dr
}
)
umaps_scale <- lapply(scale_pbmc, function(x) RunUMAP(x[, 1:10]))

######### Runtimes ##########

runtime_lsi <- read.table("data/pbmc/downsamples/lsi_runtime.txt", sep = "\t")
colnames(runtime_lsi) <- c("Seconds", "Downsample", "Method")
runtime_lsi[runtime_lsi$Method == 1, "Method"] <- "LSI (Signac)"
runtime_lsi[runtime_lsi$Method == 2, "Method"] <- "LSI (Cusanovich2018)"
runtime_lsi[runtime_lsi$Method == 3, "Method"] <- "LSI (log-TF)"
runtime_lsi[runtime_lsi$Method == 4, "Method"] <- "LSI (Cellranger)"

runtime_snap <- read.table("data/pbmc/downsamples/snapatac_runtime.txt", sep = "\t")
colnames(runtime_snap) <- c("Seconds", "Downsample")
runtime_snap$Method <- "SnapATAC"

runtime_cistopic_cg <- read.table("data/pbmc/downsamples/cistopic_cgs_runtime.txt", sep = "\t")
colnames(runtime_cistopic_cg) <- c("Seconds", "Downsample")
runtime_cistopic_cg$Method <- "cisTopic CGS"

runtime_cistopic_warp <- read.table("data/pbmc/downsamples/cistopic_warp_runtime.txt", sep = "\t")
colnames(runtime_cistopic_warp) <- c("Seconds", "Downsample")
runtime_cistopic_warp$Method <- "cisTopic Warp"

runtime_scale <- read.table("data/pbmc/downsamples/scale_runtime.txt", sep = "\t")
colnames(runtime_scale) <- c("Seconds", "Downsample")
runtime_scale$Method <- "SCALE"

runtimes <- rbind(runtime_cistopic_cg, runtime_cistopic_warp, runtime_lsi, runtime_snap, runtime_scale)
runtimes <- runtimes[runtimes$Method %in% methods_keep, ]
runtimes$Method <- factor(runtimes$Method, levels = methods_keep)

###### Silhouette ######

# # use cell types defined by RNA (executed above)
clustering.use <- "celltype"
clusters <- pbmc[[clustering.use]][[1]]

get_silhouette <- function(embeddings.list, dims, clusters, method, ds) {
  df <- data.frame()
  for (i in seq_along(along.with = embeddings.list)) {
    dist.matrix <- dist(x = embeddings.list[[i]][, dims])
    sil <- silhouette(x = as.numeric(x = as.factor(x = clusters)), dist = dist.matrix)
    res <- data.frame(
      "celltype" = clusters,
      "silhouette" = sil[, 3],
      "method" = method,
      "downsample" = ds[[i]]
    )
    df <- rbind(df, res)
  }
  return(df)
}

lsi1_sil <- get_silhouette(lsi_1, 2:20, clusters, "LSI (Signac)", pbmc_ds)
lsi2_sil <- get_silhouette(lsi_2, 1:20, clusters, "LSI (Cusanovich2018)", pbmc_ds)
lsi3_sil <- get_silhouette(lsi_3, 1:20, clusters, "LSI (log-TF)", pbmc_ds)
lsi4_sil <- get_silhouette(lsi_4, 1:20, clusters, "LSI (Cellranger)", pbmc_ds)
snap_sil <- get_silhouette(snap, c(1, 3:20), clusters, "SnapATAC", pbmc_ds)
cgs_sil <- get_silhouette(ct_cgs, 1:20, clusters, "cisTopic CGS", pbmc_ds)
warp_sil <- get_silhouette(ct_warp, 1:20, clusters, "cisTopic Warp", pbmc_ds)
scale_sil <- get_silhouette(scale_pbmc, 1:10, clusters, "SCALE", pbmc_ds)

sil_pbmc <- rbind(lsi1_sil, lsi2_sil, lsi3_sil, lsi4_sil,
                  snap_sil, cgs_sil, warp_sil, scale_sil)

sil_pbmc$downsample <- factor(sil_pbmc$downsample)

sil_pbmc_plot <- sil_pbmc[sil_pbmc$method %in% methods_keep, ]
sil_pbmc_plot$method <- factor(sil_pbmc_plot$method, levels =  methods_keep)

sil_pbmc_plot<- sil_pbmc_plot %>% 
  group_by(celltype, method, downsample) %>% 
  mutate(mn = mean(silhouette)) %>% 
  ungroup()

sil_pbmc_plot <- sil_pbmc_plot[, c("celltype", "method", "downsample", "mn")]
sil_pbmc_plot <- unique(sil_pbmc_plot)

sil_plot <- ggplot(sil_pbmc_plot, aes(x = downsample, y = mn, fill = method)) +
  geom_boxplot(outlier.size = 0.1) +
  scale_fill_manual(values = colors.use) +
  xlab("Fraction of counts retained") +
  ylab("Mean Silhouette") +
  theme_bw()

###### Figure ######

create_plot <- function(dr, object) {
  object[['dr']] <- dr
  p <- DimPlot(object, reduction = "dr", group.by = "celltype", pt.size = 0.1) +
    ggtitle("") + ylab("") + xlab("") +
    guides(color = guide_legend(ncol = 1, override.aes = list(size = 2)))
}

# umaps
umap.use <- c(1, 5)
lsi_plot <- lapply(umaps_lsi_1[umap.use], create_plot, object = pbmc)
lsi2_plot <- lapply(umaps_lsi_2[umap.use], create_plot, object = pbmc)
scale_plot <- lapply(umaps_scale[umap.use], create_plot, object = pbmc)
snap_plot <- lapply(umaps_snap[umap.use], create_plot, object = pbmc)

lsi_plot[[1]] <- lsi_plot[[1]] + ylab("Full dataset") + ggtitle("LSI (Signac)")
lsi_plot[[2]] <- lsi_plot[[2]] + ylab("20% counts")
scale_plot[[1]] <- scale_plot[[1]] + ggtitle("SCALE")
snap_plot[[1]] <- snap_plot[[1]] + ggtitle("SnapATAC")

umaps <- wrap_plots(
  list(lsi_plot[[1]], scale_plot[[1]], snap_plot[[1]],
    lsi_plot[[2]], scale_plot[[2]], snap_plot[[2]]),
  ncol = 3,
  guides = "collect"
)

bs <- 16

p3 <- ggplot(runtimes[runtimes$Downsample == 1, ], aes(y = Seconds/60, x = Method, fill = Method)) +
  geom_bar(stat = "identity") +
  scale_y_log10() +
  ggtitle("Total run time") +
  theme_bw(base_size = bs) +
  scale_fill_manual(values = colors.use) +
  ylab("Time (minutes)") +
  xlab("") +
  theme(legend.position = 'none', axis.text.x = element_text(size = 8, angle = 25, vjust = 1, hjust=1))

sil_plot <- sil_plot + theme(legend.position = "none") + theme_bw(base_size = bs)
umaps <- umaps & theme_bw(base_size = bs)
p2 <- p2 + theme_bw(base_size = bs)

fig <- (umaps | p3) + plot_layout(widths = c(3, 1))
metrics <- (p2 / sil_plot) + plot_layout(guides = "collect")
pbmc_fig <- (fig / metrics) & theme(plot.margin = unit(c(0, 0, 0, 0), "cm"))
pbmc_fig + ggsave(filename = "figures/dimreduc_pbmc.png", height = 12, width = 16)

######## Chen #########

chen_levels <- c(250, 500, 1000, 2500, 5000)

read_lsi <- function(method, path ="data/chen/embeddings/", levels = chen_levels) {
  methodstr <- paste0(as.character(method), ".rds")
  lsi <- paste0(path, "lsi_", chen_levels, "_", methodstr)
  lsi_obj <- lapply(X = lsi, readRDS)
  return(lsi_obj)
}

lsi_chen_1 <- read_lsi(method = 1)
lsi_chen_2 <- read_lsi(method = 2)
lsi_chen_3 <- read_lsi(method = 3)
lsi_chen_4 <- read_lsi(method = 4)

snap_chen <- lapply(X = paste0("data/chen/embeddings/snapatac_", chen_levels, ".rds"), FUN = readRDS)
ct_cgs_chen <- lapply(X = paste0("data/chen/embeddings/cistopic_cgs_", chen_levels, ".rds"), FUN = readRDS)
ct_warp_chen <- lapply(X = paste0("data/chen/embeddings/cistopic_warp_", chen_levels, ".rds"), FUN = readRDS)

ct_cgs_chen <- lapply(ct_cgs_chen, t)
ct_warp_chen <- lapply(ct_warp_chen, t)

# convert h5ad to h5seurat
chen_scale_paths <- lapply(
  X = chen_levels,
  function(x) {
    Convert(
      source = paste0("data/chen/embeddings/scale_", x, "/adata.h5ad"),
      dest = paste0("data/chen/embeddings/scale_", x, "/adata.h5seurat"),
      overwrite = TRUE
    )
  }
)

# load h5seurat
scale_chen_obj <- lapply(X = chen_scale_paths, FUN = LoadH5Seurat)

# extract embeddings
scale_chen <- lapply(X = scale_chen_obj, FUN = function(x) {
  Embeddings(x[["latent"]])
})

counts <- readRDS("data/chen/scATAC-benchmarking-master/Synthetic_Data/BoneMarrow_cov5000/input/bonemarrow_cov5000.rds")
chen_obj <- CreateSeuratObject(counts = counts)
chen_obj$celltype <- chen_obj$orig.ident

######## Determine dimensions to use ##########

seqdepth_chen <- chen_obj$nCount_RNA

lsi1_depth <- lapply(lsi_chen_1, function(x) {
  which(abs(cor(x, seqdepth_chen)) > 0.9)
})
lsi2_depth <- lapply(lsi_chen_2, function(x) {
  which(abs(cor(x, seqdepth_chen)) > 0.9)
})
lsi3_depth <- lapply(lsi_chen_3, function(x) {
  which(abs(cor(x, seqdepth_chen)) > 0.9)
})
lsi4_depth <- lapply(lsi_chen_4, function(x) {
  which(abs(cor(x, seqdepth_chen)) > 0.9)
})
cgs_depth <- lapply(ct_cgs_chen, function(x) {
  which(abs(cor(x, seqdepth_chen)) > 0.9)
})
warp_depth <- lapply(ct_warp_chen, function(x) {
  which(abs(cor(x, seqdepth_chen)) > 0.9)
})
snap_depth <- lapply(snap_chen, function(x) {
  which(abs(cor(x, seqdepth_chen)) > 0.9)
})
scale_depth <- lapply(scale_chen, function(x) {
  which(abs(cor(x, seqdepth_chen)) > 0.9)
})

##### neighbors #####

get_knn_df <- function(emb_list, dims, clusters, rna_nn, method, ds_list) {
  # compute KNN purity for each dimension reduction
  knn_df <- data.frame()
  for (i in seq_along(along.with = emb_list)) {
    knn <- knn_purity(embeddings = emb_list[[i]], dims = dims, clusters = clusters, rna.nn = rna_nn)
    ds <- ds_list[[i]]
    kd <- data.frame(purity = knn, downsample = ds, method = method, celltype = clusters)
    knn_df <- rbind(knn_df, kd)
  }
  return(knn_df)
}

clusters <- unlist(lapply(strsplit(x = rownames(lsi_chen_1[[1]]), split = "_"), FUN = `[[`, 1))

knn_lsi1_chen <- get_knn_df(
  emb_list = lsi_chen_1,
  dims = 1:5,
  ds_list = chen_levels,
  clusters = clusters,
  rna_nn = NULL,
  method = "LSI (Signac)"
)

knn_lsi2_chen <- get_knn_df(
  emb_list = lsi_chen_2,
  dims = 1:5,
  ds_list = chen_levels,
  clusters = clusters,
  rna_nn = NULL,
  method = "LSI (Cusanovich2018)"
)

knn_lsi3_chen <- get_knn_df(
  emb_list = lsi_chen_3,
  dims = 1:5,
  ds_list = chen_levels,
  clusters = clusters,
  rna_nn = NULL,
  method = "LSI (log-TF)"
)

knn_lsi4_chen <- get_knn_df(
  emb_list = lsi_chen_4,
  dims = 1:5,
  ds_list = chen_levels,
  clusters = clusters,
  rna_nn = NULL,
  method = "LSI (Cellranger)"
)

knn_ct_cgs_chen <- get_knn_df(
  emb_list = ct_cgs_chen,
  dims = 1:5,
  ds_list = chen_levels,
  clusters = clusters,
  rna_nn = NULL,
  method = "cisTopic CGS"
)

knn_ct_warp_chen <- get_knn_df(
  emb_list = ct_warp_chen,
  dims = 1:5,
  ds_list = chen_levels,
  clusters = clusters,
  rna_nn = NULL,
  method = "cisTopic Warp"
)

knn_snap_chen <- get_knn_df(
  emb_list = snap_chen,
  dims = 1:5,
  ds_list = chen_levels,
  clusters = clusters,
  rna_nn = NULL,
  method = "SnapATAC"
)

knn_scale_chen <- get_knn_df(
  emb_list = scale_chen,
  dims = 1:10,
  ds_list = chen_levels,
  clusters = clusters,
  rna_nn = NULL,
  method = "SCALE"
)

knn_df_chen <- rbind(knn_lsi1_chen, knn_lsi2_chen, knn_lsi3_chen, knn_lsi4_chen,
                     knn_ct_cgs_chen, knn_ct_warp_chen, knn_snap_chen, knn_scale_chen)

knn_df_chen_plot <- knn_df_chen[knn_df_chen$method %in% methods_keep, ]
knn_df_chen_plot$method <- factor(knn_df_chen_plot$method, levels =  methods_keep)

knn_df_chen_plot <- knn_df_chen_plot %>% 
  group_by(downsample, method, celltype) %>% 
  mutate(mn = mean(purity)) %>% 
  ungroup()

knn_df_chen_plot <- knn_df_chen_plot[, c("mn", "method", "downsample")]
knn_df_chen_plot <- unique(knn_df_chen_plot)

# compute UMAP for each
umaps_lsi_1_chen <- lapply(lsi_chen_1, function(x) RunUMAP(x[, 1:5]))
umaps_lsi_2_chen <- lapply(lsi_chen_2, function(x) RunUMAP(x[, 1:5]))
umaps_lsi_3_chen <- lapply(lsi_chen_3, function(x) RunUMAP(x[, 1:5]))
umaps_lsi_4_chen <- lapply(lsi_chen_4, function(x) RunUMAP(x[, 1:5]))
umaps_snap_chen <- lapply(snap_chen, function(x) {
  rownames(x) <- colnames(chen_obj)
  dr <- RunUMAP(x[, 1:5])
  dr
}
)
umaps_ct_cgs_chen<- lapply(ct_cgs_chen, function(x) {
  rownames(x) <- colnames(chen_obj)
  dr <- RunUMAP(x[, 1:5])
  dr
}
)
umaps_ct_warp_chen <- lapply(ct_warp_chen, function(x) {
  rownames(x) <- colnames(chen_obj)
  dr <- RunUMAP(x[, 1:5])
  dr
}
)
umaps_scale_chen <- lapply(scale_chen, function(x) RunUMAP(x[, 1:10]))

## Silhouette ##

lsi1_sil_chen <- get_silhouette(lsi_chen_1, 1:5, clusters, "LSI (Signac)", chen_levels)
lsi2_sil_chen <- get_silhouette(lsi_chen_2, 1:5, clusters, "LSI (Cusanovich2018)", chen_levels)
lsi3_sil_chen <- get_silhouette(lsi_chen_3, 1:5, clusters, "LSI (log-TF)", chen_levels)
lsi4_sil_chen <- get_silhouette(lsi_chen_4, 1:5, clusters, "LSI (Cellranger)", chen_levels)
snap_sil_chen <- get_silhouette(snap_chen, 1:5, clusters, "SnapATAC", chen_levels)
cgs_sil_chen <- get_silhouette(ct_cgs_chen, 1:5, clusters, "cisTopic CGS", chen_levels)
warp_sil_chen <- get_silhouette(ct_warp_chen, 1:5, clusters, "cisTopic Warp", chen_levels)
scale_sil_chen <- get_silhouette(scale_chen, 1:10, clusters, "SCALE", chen_levels)

sil_chen <- rbind(lsi1_sil_chen, lsi2_sil_chen, lsi3_sil_chen, lsi4_sil_chen,
                  snap_sil_chen, cgs_sil_chen, warp_sil_chen, scale_sil_chen)

sil_chen$downsample <- factor(sil_chen$downsample)

sil_chen_plot <- sil_chen[sil_chen$method %in% methods_keep, ]
sil_chen_plot$method <- factor(sil_chen_plot$method, levels =  methods_keep)

sil_chen_plot <- sil_chen_plot %>% 
  group_by(downsample, method, celltype) %>% 
  mutate(mn = mean(silhouette)) %>% 
  ungroup()
sil_chen_plot <- sil_chen_plot[, c("downsample", "method", "mn")]
sil_chen_plot <- unique(sil_chen_plot)

sil_chen <- ggplot(sil_chen_plot, aes(x = downsample, y = mn, fill = method)) +
  geom_boxplot(outlier.size = 0.1) +
  scale_fill_manual(values = colors.use) +
  xlab("Average counts per cell") +
  ylab("Mean Silhouette") +
  theme_bw()

######### Runtimes ##########

runtime_lsi <- read.table("data/chen/embeddings/lsi_runtime.txt", sep = "\t")
colnames(runtime_lsi) <- c("Seconds", "Downsample", "Method")
runtime_lsi[runtime_lsi$Method == 1, "Method"] <- "LSI (Signac)"
runtime_lsi[runtime_lsi$Method == 2, "Method"] <- "LSI (Cusanovich2018)"
runtime_lsi[runtime_lsi$Method == 3, "Method"] <- "LSI (log-TF)"
runtime_lsi[runtime_lsi$Method == 4, "Method"] <- "LSI (Cellranger)"

runtime_snap <- read.table("data/chen/embeddings/snapatac_runtime.txt", sep = "\t")
colnames(runtime_snap) <- c("Seconds", "Downsample")
runtime_snap$Method <- "SnapATAC"

runtime_cistopic_cg <- read.table("data/chen/embeddings/cistopic_cgs_runtime.txt", sep = "\t")
colnames(runtime_cistopic_cg) <- c("Seconds", "Downsample")
runtime_cistopic_cg$Method <- "cisTopic CGS"

runtime_cistopic_warp <- read.table("data/chen/embeddings/cistopic_warp_runtime.txt", sep = "\t")
colnames(runtime_cistopic_warp) <- c("Seconds", "Downsample")
runtime_cistopic_warp$Method <- "cisTopic Warp"

runtime_scale <- read.table("data/chen/embeddings/scale_runtime.txt", sep = "\t")
colnames(runtime_scale) <- c("Seconds", "Downsample")
runtime_scale$Method <- "SCALE"

runtimes <- rbind(runtime_cistopic_cg, runtime_cistopic_warp, runtime_lsi, runtime_snap, runtime_scale)
runtimes <- runtimes[runtimes$Method %in% methods_keep, ]
runtimes$Method <- factor(runtimes$Method, levels = methods_keep)

chen_runtimes <- ggplot(runtimes[runtimes$Downsample == 5000, ], aes(y = Seconds, x = Method, fill = Method)) +
  geom_bar(stat = "identity") +
  scale_y_log10() +
  theme_bw() +
  scale_fill_manual(values = colors.use) +
  ylab("Time (seconds)") +
  theme(axis.text.x = element_text(angle = 45, vjust = 1, hjust=1))

#### Figure #####

# create figure with ARI and UMAPs for chen dataset (supplementary figure)

lsi_plot <- lapply(umaps_lsi_1_chen, create_plot, object = chen_obj)
lsi2_plot <- lapply(umaps_lsi_2_chen, create_plot, object = chen_obj)
lsi3_plot <- lapply(umaps_lsi_3_chen, create_plot, object = chen_obj)
scale_plot <- lapply(umaps_scale_chen, create_plot, object = chen_obj)
cgs_plot <- lapply(umaps_ct_cgs_chen, create_plot, object = chen_obj)
warp_plot <- lapply(umaps_ct_warp_chen, create_plot, object = chen_obj)
snap_plot <- lapply(umaps_snap_chen, create_plot, object = chen_obj)

# set axis grid names
lsi_plot[[1]] <- lsi_plot[[1]] + ylab("LSI (Signac)") + ggtitle("250")
lsi_plot[[2]] <- lsi_plot[[2]] + ggtitle("500")
lsi_plot[[3]] <- lsi_plot[[3]] + ggtitle("1000")
lsi_plot[[4]] <- lsi_plot[[4]] + ggtitle("2500")
lsi_plot[[5]] <- lsi_plot[[5]] + ggtitle("5000")

lsi2_plot[[1]] <- lsi2_plot[[1]] + ylab("LSI (Cusanovich2018)")
lsi3_plot[[1]] <- lsi3_plot[[1]] + ylab("LSI (log-TF)")
scale_plot[[1]] <- scale_plot[[1]] + ylab("SCALE")
cgs_plot[[1]] <- cgs_plot[[1]] + ylab("cisTopic CGS")
warp_plot[[1]] <- warp_plot[[1]] + ylab("cisTopic Warp")
snap_plot[[1]] <- snap_plot[[1]] + ylab("SnapATAC")

p1 <- wrap_plots(
  c(lsi_plot, lsi2_plot, lsi3_plot, scale_plot, cgs_plot, warp_plot, snap_plot),
  nrow = 7,
  guides = "collect"
)

p1 <- p1 & theme(plot.margin =  unit(c(1,1,1,1), "mm"))

p2 <- ggplot(knn_df_chen_plot, aes(x = as.factor(downsample), y = mn, fill = method)) +
  geom_boxplot(outlier.size = 0.1) +
  theme_bw() +
  theme(legend.position = "none") +
  scale_fill_manual(values = colors.use) +
  ylab("Mean kNN celltype purity") +
  xlab("Average counts per cell")

metrics <- (p2 / sil_chen) + plot_layout(guides = "collect")

pp <- (p1 / metrics) + plot_layout(heights = c(3, 1)) & theme(axis.text = element_text(size=8))
ggsave(filename = "figures/dimreduc_chen.png", plot = pp, width = 10, height = 16, units = "in", dpi = 400)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
library(Signac)
library(cisTopic)

# PBMC dataset
ds_level <- rev(seq(0.2, 1, 0.2))
for (d in ds_level) {
  counts_use <- readRDS(file = paste0("data/pbmc/downsamples/", d, ".rds"))
  rownames(counts_use) <- GRangesToString(StringToGRanges(rownames(counts_use)), sep = c(":", "-"))
  cisTopicObj <- createcisTopicObject(count.matrix = counts_use, project.name = 'PBMC')

  # CGS model
  time.start <- Sys.time()
  cgs <- runCGSModels(object = cisTopicObj)
  elapsed.cgs <- as.numeric(Sys.time() - time.start, unit = "secs")
  cgs <- selectModel(object = cgs, type = "maximum")

  # WarpLDA model
  time.start <- Sys.time()
  wrp <- runWarpLDAModels(object = cisTopicObj)
  elapsed.warp <- as.numeric(Sys.time() - time.start, unit = "secs")
  wrp <- selectModel(object = wrp, type = "derivative")

  # extract coordinates
  dimreduc_cgs <- cgs@selected.model$document_expects
  dimreduc_wrp <- wrp@selected.model$document_expects

  # save
  saveRDS(object = dimreduc_cgs, file = paste0("data/pbmc/downsamples/cistopic_cgs_", d, ".rds"))
  saveRDS(object = dimreduc_wrp, file = paste0("data/pbmc/downsamples/cistopic_warp_", d, ".rds"))

  write(
    x = paste0(elapsed.cgs, "\t", d),
    file = "data/pbmc/downsamples/cistopic_cgs_runtime.txt",
    append = TRUE
  )
  write(
    x = paste0(elapsed.warp, "\t", d),
    file = "data/pbmc/downsamples/cistopic_warp_runtime.txt",
    append = TRUE
  )
}

# Chen dataset
bm_datasets <- c("250", "500", "1000", "2500", "5000")
filepath <- "data/chen/scATAC-benchmarking-master/Synthetic_Data/BoneMarrow_cov"
for (d in bm_datasets) {
  counts_use <- readRDS(file = paste0(filepath, d, "/input/bonemarrow_cov", d, ".rds"))
  rownames(counts_use) <- GRangesToString(StringToGRanges(rownames(counts_use), sep = c("_", "_")), sep = c(":", "-"))
  cisTopicObj <- createcisTopicObject(count.matrix = counts_use, project.name = 'Simulated')

  # CGS model
  time.start <- Sys.time()
  cgs <- runCGSModels(object = cisTopicObj)
  elapsed.cgs <- as.numeric(Sys.time() - time.start, unit = "secs")
  cgs <- selectModel(object = cgs, type = "maximum")

  # WarpLDA model
  time.start <- Sys.time()
  wrp <- runWarpLDAModels(object = cisTopicObj)
  elapsed.warp <- as.numeric(Sys.time() - time.start, unit = "secs")
  wrp <- selectModel(object = wrp, type = "derivative")

  # extract coordinates
  dimreduc_cgs <- cgs@selected.model$document_expects
  dimreduc_wrp <- wrp@selected.model$document_expects

  # save
  saveRDS(object = dimreduc_cgs, file = paste0("data/chen/embeddings/cistopic_cgs_", d, ".rds"))
  saveRDS(object = dimreduc_wrp, file = paste0("data/chen/embeddings/cistopic_warp_", d, ".rds"))

  write(
    x = paste0(elapsed.cgs, "\t", d),
    file = "data/chen/embeddings/cistopic_cgs_runtime.txt",
    append = TRUE
  )
  write(
    x = paste0(elapsed.warp, "\t", d),
    file = "data/chen/embeddings/cistopic_warp_runtime.txt",
    append = TRUE
  )
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
library(Signac)
library(Seurat)

pbmc <- readRDS("objects/pbmc.rds")
atac.assay <- "ATAC"
method_use <- c(1, 2, 3, 4)
DefaultAssay(pbmc) <- atac.assay
obj <- pbmc

# pbmc multiome
ds_level <- rev(seq(0.2, 1, 0.2))
for (d in ds_level) {
  counts_use <- readRDS(file = paste0("data/pbmc/downsamples/", d, ".rds"))
  obj <- SetAssayData(obj, slot = "counts", assay = atac.assay, new.data = counts_use)
  for (m in method_use) {
    key <- paste(d, m, sep = "_")
    message(key)
    obj <- RunTFIDF(object = obj, assay = atac.assay, method = m)
    time.start <- Sys.time()
    obj <- RunSVD(obj, features = rownames(x = obj))
    elapsed <- as.numeric(Sys.time() - time.start, unit = "secs")
    emb <- Embeddings(object = obj, reduction = "lsi")
    saveRDS(object = emb, file = paste0("data/pbmc/downsamples/lsi_", key, ".rds"))
    write(
      x = paste0(elapsed, "\t", d, "\t", m),
      file = "data/pbmc/downsamples/lsi_runtime.txt",
      append = TRUE
    )
  }
}

# simulated bone marrow
bm_datasets <- c("250", "500", "1000", "2500", "5000")
filepath <- "data/chen/scATAC-benchmarking-master/Synthetic_Data/BoneMarrow_cov"
for (d in bm_datasets) {
  counts_use <- readRDS(file = paste0(filepath, d, "/input/bonemarrow_cov", d, ".rds"))
  obj <- CreateSeuratObject(counts = counts_use, min.cells = -1, min.features = -1, assay = "ATAC")
  for (m in method_use) {
    key <- paste(d, m, sep = "_")
    message(key)
    obj <- RunTFIDF(object = obj, assay = atac.assay, method = m)
    time.start <- Sys.time()
    obj <- RunSVD(obj, features = rownames(x = obj))
    elapsed <- as.numeric(Sys.time() - time.start, unit = "secs")
    emb <- Embeddings(object = obj, reduction = "lsi")
    saveRDS(object = emb, file = paste0("data/chen/embeddings/lsi_", key, ".rds"))
    write(
      x = paste0(elapsed, "\t", d, "\t", m),
      file = "data/chen/embeddings/lsi_runtime.txt",
      append = TRUE
    )
  }
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
library(Signac)
library(Seurat)
library(DropletUtils)

set.seed(1234)

atac.assay <- "ATAC"
pbmc <- readRDS("objects/pbmc.rds")
counts <- GetAssayData(pbmc, slot = "counts", assay = atac.assay)

# downsample counts
ds_level <- rev(seq(0.2, 1, 0.2))

for (d in ds_level) {
  counts_use <- downsampleMatrix(x = counts, prop = d)
  saveRDS(object = counts_use, file = paste0("data/pbmc/downsamples/", d, ".rds"))
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
library(Matrix)

dir.create(file.path("data/pbmc/downsamples/pbmc_scale"), showWarnings = FALSE)
# PBMC dataset
ds_level <- rev(seq(0.2, 1, 0.2))
for (d in ds_level) {
  counts_use <- readRDS(file = paste0("data/pbmc/downsamples/", d, ".rds"))
  writeMM(obj = counts_use, file = "data/pbmc/downsamples/pbmc_scale/counts.mtx")
  peaks <- rownames(counts_use)
  peaks <- gsub("-", "_", peaks)
  write.table(
    x = peaks,
    file = "data/pbmc/downsamples/pbmc_scale/peaks.txt",
    append = FALSE,
    row.names = FALSE,
    col.names = FALSE,
    quote = FALSE
  )
  barcodes <- colnames(counts_use)
  write.table(
    x = barcodes,
    file = "data/pbmc/downsamples/pbmc_scale/barcodes.txt",
    append = FALSE,
    row.names = FALSE,
    col.names = FALSE,
    quote = FALSE
  )
  time.start <- Sys.time()
  cmd <- paste0("SCALE.py -d data/pbmc/downsamples/pbmc_scale --min_peaks 1 -o data/pbmc/downsamples/scale_", d)
  system(command = cmd, wait = TRUE, ignore.stderr = FALSE, ignore.stdout = FALSE)
  elapsed <- as.numeric(Sys.time() - time.start, unit = "secs")
  write(
    x = paste0(elapsed, "\t", d),
    file = "data/pbmc/downsamples/scale_runtime.txt",
    append = TRUE
  )
}

dir.create(file.path("data/chen/embeddings/scale"), showWarnings = FALSE)
# Chen dataset
bm_datasets <- c("250", "500", "1000", "2500", "5000")
filepath <- "data/chen/scATAC-benchmarking-master/Synthetic_Data/BoneMarrow_cov"
for (d in bm_datasets) {
  counts_use <- readRDS(file = paste0(filepath, d, "/input/bonemarrow_cov", d, ".rds"))
  writeMM(obj = counts_use, file = "data/chen/embeddings/scale/counts.mtx")
  peaks <- rownames(counts_use)
  write.table(
    x = peaks,
    file = "data/chen/embeddings/scale/peaks.txt",
    append = FALSE,
    row.names = FALSE,
    col.names = FALSE,
    quote = FALSE
  )
  barcodes <- colnames(counts_use)
  write.table(
    x = barcodes,
    file = "data/chen/embeddings/scale/barcodes.txt",
    append = FALSE,
    row.names = FALSE,
    col.names = FALSE,
    quote = FALSE
  )
  time.start <- Sys.time()
  cmd <- paste0("SCALE.py -d data/chen/embeddings/scale -o data/chen/embeddings/scale_", d)
  system(command = cmd, wait = TRUE, ignore.stderr = FALSE, ignore.stdout = FALSE)
  elapsed <- as.numeric(Sys.time() - time.start, unit = "secs")
  write(
    x = paste0(elapsed, "\t", d),
    file = "data/chen/embeddings/scale_runtime.txt",
    append = TRUE
  )
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
library(Signac)
library(SnapATAC)

# PBMC dataset
ds_level <- rev(seq(0.2, 1, 0.2))
for (d in ds_level) {
  counts_use <- readRDS(file = paste0("data/pbmc/downsamples/", d, ".rds"))
  counts_use <- t(x = counts_use)
  snap <- createSnapFromBmat(
    mat = counts_use,
    barcodes = rownames(x = counts_use),
    bins = StringToGRanges(regions = colnames(x = counts_use))
  )
  snap <- makeBinary(snap, mat = "bmat")
  time.start <- Sys.time()
  snap <- runDiffusionMaps(
    obj = snap,
    input.mat = "bmat",
    num.eigs = 50
  )
  elapsed <- as.numeric(Sys.time() - time.start, unit = "secs")
  reducedMatrix <- snap@smat@dmat
  saveRDS(object = reducedMatrix, file = paste0("data/pbmc/downsamples/snapatac_", d, ".rds"))
  write(
    x = paste0(elapsed, "\t", d),
    file = "data/pbmc/downsamples/snapatac_runtime.txt",
    append = TRUE
  )
}

# Chen dataset
bm_datasets <- c("250", "500", "1000", "2500", "5000")
filepath <- "data/chen/scATAC-benchmarking-master/Synthetic_Data/BoneMarrow_cov"
for (d in bm_datasets) {
  counts_use <- readRDS(file = paste0(filepath, d, "/input/bonemarrow_cov", d, ".rds"))
  counts_use <- t(x = counts_use)
  snap <- createSnapFromBmat(
    mat = counts_use,
    barcodes = rownames(x = counts_use),
    bins = StringToGRanges(regions = colnames(x = counts_use), sep = c("_", "_"))
  )
  snap <- makeBinary(snap, mat = "bmat")
  time.start <- Sys.time()
  snap <- runDiffusionMaps(
    obj = snap,
    input.mat = "bmat",
    num.eigs = 50
  )
  elapsed <- as.numeric(Sys.time() - time.start, unit = "secs")
  reducedMatrix <- snap@smat@dmat
  saveRDS(object = reducedMatrix, file = paste0("data/chen/embeddings/snapatac_", d, ".rds"))
  write(
    x = paste0(elapsed, "\t", d),
    file = "data/chen/embeddings/snapatac_runtime.txt",
    append = TRUE
  )
}
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
library(Seurat)
library(Signac)
library(ggplot2)
library(patchwork)
library(GenomicRanges)


pbmc <- readRDS("objects/pbmc.rds")
ident.use <- "CD14 Mono"

obj <- pbmc[, Idents(pbmc) == ident.use]

ds.level <- seq(50, 2850, 100)
pk.list <- list()
cp.list <- list()
for (i in seq_along(ds.level)) {
  set.seed(1234)
  cells.use <- sample(x = colnames(obj), size = ds.level[[i]], replace = FALSE)
  obj.ds <- obj[, cells.use]
  obj.ds$ds <- paste0(ds.level[[i]], " cells")
  pk <- CallPeaks(
    object = obj.ds,
    group.by = "celltype",
    additional.args = "--max-gap 50"
  )
  cp.ds <- CoveragePlot(
    object = obj.ds,
    region = "LYZ",
    group.by = "ds",
    extend.upstream = 6000,
    extend.downstream = 8000,
    peaks = FALSE,
    ranges = pk,
    ymax = 260
  )
  pk.list[[as.character(i)]] <- pk
  cp.list[[as.character(i)]] <- cp.ds
}

# find overlaps with highest sampling
pk.highest <- pk.list[[length(pk.list)]]

olap <- c()
for (i in seq_along(pk.list)) {
  ol <- sum(countOverlaps(query = pk.list[[i]], pk.highest)) / length(pk.highest)
  olap[[i]] <- ol
}

df <- data.frame(x = unlist(olap), cells = ds.level)
p <- ggplot(data = df, mapping = aes(x = cells, y = x)) +
  geom_point() +
  geom_smooth(se = FALSE) +
  xlab("Number of cells") +
  ylab("Fraction of peaks recovered") +
  theme_bw() +
  ylim(c(0, 1)) +
  scale_x_continuous(breaks=seq(0, 2850, 200))

cp.use <- cp.list[c(29, 10, 1)]
p2 <- wrap_plots(cp.use, ncol = 1)
fig <- (p | p2) + plot_layout(heights = c(1, 3))
ggsave(filename = "figures/peakcalls.png", plot = fig, height = 10, width = 16)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
library(Signac)
library(Seurat)
library(GenomicRanges)

frags <- "data/pbmc_atac/fragments.bed.gz"

fragment.counts <- CountFragments(frags)
cells.use <- fragment.counts[fragment.counts$frequency_count > 1000, "CB"]

fragments <- CreateFragmentObject(
  path = frags,
  cells = cells.use,
  validate.fragments = FALSE
)

peaks <- CallPeaks(fragments, macs2.path = "/home/stuartt/miniconda3/envs/signac/bin/macs2")
peaks <- subsetByOverlaps(peaks, blacklist_hg19, invert = TRUE)

counts <- FeatureMatrix(
  fragments = fragments,
  features = peaks,
  cells = cells.use
)

pbmc <- CreateSeuratObject(
  counts = CreateChromatinAssay(
    counts = counts,
    fragments = fragments
  ),
  assay = "ATAC"
)

pbmc <- pbmc[, pbmc$nCount_ATAC > 1000]

peaks <- granges(pbmc)
peaks <- as.data.frame(peaks)
write.table(x = peaks, file = "data/pbmc_atac/peaks.bed", sep = "\t", row.names = FALSE, col.names = TRUE, quote = FALSE)
writeLines(text = colnames(x = pbmc), con = "data/pbmc_atac/cells.txt")

# cluster and make UMAP
pbmc <- FindTopFeatures(pbmc, min.cutoff = 10)
pbmc <- RunTFIDF(pbmc)
pbmc <- RunSVD(pbmc)
pbmc <- RunUMAP(pbmc, reduction = "lsi", dims = 2:30)
pbmc <- FindNeighbors(pbmc, reduction = "lsi", dims = 2:30)
pbmc <- FindClusters(pbmc, algorithm = 3, resolution = 0.5)

saveRDS(object = pbmc, file = "objects/pbmc_atac.rds")
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
options(repos = c("CRAN" = "https://cran.rstudio.com/"))
options(Ncpus = 4)

install.packages(
  pkgs = c("remotes", "BiocManager", "tidyr", "dplyr", "RANN", "cluster", "ROCR",
           "patchwork", "mclust", "paletteer", "ggthemes", "dplyr", "arrow")
)
BiocManager::install()
BiocManager::install(pkgs = c("GenomeInfoDbData", "HSMMSingleCell", "GO.db", "DelayedArray"))
setRepositories(ind = 1:2)

install.packages("Seurat", dependencies = TRUE)
install.packages("Signac", dependencies = TRUE)
remotes::install_github(repo = "jlmelville/uwot")
remotes::install_github(repo = "mojaveazure/seurat-disk")

BiocManager::install(
  pkgs = c("EnsDb.Mmusculus.v79",
           "BSgenome.Mmusculus.UCSC.mm10",
           "TFBSTools",
           "JASPAR2020",
           "EnsDb.Hsapiens.v86",
           "BSgenome.Hsapiens.UCSC.hg38",
           "EnsDb.Hsapiens.v75",
           "BSgenome.Hsapiens.UCSC.hg19",
           "DropletUtils",
           "chromVAR",
           "HDF5Array",
           "DelayedMatrixStats",
           "batchelor",
           "scater"
           )
  )

# snapatac
install.packages(c("doSNOW", "plot3D"))
devtools::install_github("r3fang/SnapATAC")

# archr
devtools::install_github("GreenleafLab/ArchR", ref="release_1.0.1", repos = BiocManager::repositories())

# cistopic
devtools::install_github("aertslab/RcisTarget")
devtools::install_github("aertslab/AUCell")
devtools::install_github("aertslab/cisTopic")
19
20
21
22
23
shell:
    """
    Rscript install_r_packages.R
    touch install.done
    """
34
35
36
37
38
shell:
    """
    wget -i {input} -P data/{wildcards.dset}
    touch data/{wildcards.dset}/done.txt
    """
47
48
49
50
51
shell:
    """
    wget -i {input} -P data/pbmc_atac
    touch data/pbmc_atac/done.txt
    """
60
61
62
63
64
65
66
shell:
    """
    wget -i {input} -P data/gtex
    cd data/gtex
    tar -xvf GTEx_v8_finemapping_CAVIAR.tar
    rm GTEx_v8_finemapping_CAVIAR.tar
    """
73
74
75
76
77
78
79
shell:
    """
    wget -i {input} -P data/chen
    cd data/chen
    unzip master.zip
    rm master.zip
    """
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
shell:
    """
    cd data/pbmc_atac
    gzip -d *.tsv.gz
    awk 'BEGIN {{FS=OFS="\\t"}} {{print $1,$2,$3,"10kng_"$4,$5}}' atac_pbmc_10k_nextgem_fragments.tsv > 1.bed
    awk 'BEGIN {{FS=OFS="\\t"}} {{print $1,$2,$3,"10k_"$4,$5}}' atac_pbmc_10k_v1_fragments.tsv > 2.bed
    awk 'BEGIN {{FS=OFS="\\t"}} {{print $1,$2,$3,"5kng_"$4,$5}}' atac_pbmc_5k_nextgem_fragments.tsv > 3.bed
    awk 'BEGIN {{FS=OFS="\\t"}} {{print $1,$2,$3,"5k_"$4,$5}}' atac_pbmc_5k_v1_fragments.tsv > 4.bed
    cat *.bed > frags.bed
    sort -k1,1 -k2,2n frags.bed > fragments.bed
    bgzip -@ {threads} fragments.bed
    tabix -p bed fragments.bed.gz
    rm *.bed *.tsv
    """
112
shell: "Rscript code/process_pbmc_atac.R"
SnakeMake From line 112 of master/Snakefile
121
shell: "Rscript code/process_{wildcards.dset}.R"
SnakeMake From line 121 of master/Snakefile
134
shell: "Rscript code/downsampling_code/downsample.R"
SnakeMake From line 134 of master/Snakefile
145
shell: "code/downsampling_code/downsample_archr.R"
SnakeMake From line 145 of master/Snakefile
154
shell: "Rscript code/downsampling_code/get_annotations.R"
SnakeMake From line 154 of master/Snakefile
164
shell: "bash code/biccn_downsampling/benchmark.sh"
SnakeMake From line 164 of master/Snakefile
174
shell: "bash code/pbmc_atac_downsampling/benchmark.sh"
SnakeMake From line 174 of master/Snakefile
181
shell: "bash code/pbmc_atac_downsampling/benchmark_archr.sh"
SnakeMake From line 181 of master/Snakefile
188
shell: "bash code/biccn_downsampling/benchmark_archr.sh"
SnakeMake From line 188 of master/Snakefile
198
199
200
201
202
shell:
    """
    Rscript code/biccn_downsampling/collate_timings.R
    Rscript code/pbmc_atac_downsampling/collate_timings.R
    """
SnakeMake From line 198 of master/Snakefile
211
shell: "Rscript code/pbmc_downsampling/run_pbmc_downsample.R"
SnakeMake From line 211 of master/Snakefile
222
shell: "Rscript code/pbmc_downsampling/run_lsi.R"
SnakeMake From line 222 of master/Snakefile
235
shell: "Rscript code/pbmc_downsampling/run_cistopic.R"
SnakeMake From line 235 of master/Snakefile
246
shell: "Rscript code/pbmc_downsampling/run_snapatac.R"
SnakeMake From line 246 of master/Snakefile
257
shell: "Rscript code/pbmc_downsampling/run_scale.R"
SnakeMake From line 257 of master/Snakefile
272
shell: "Rscript code/pbmc_downsampling/evaluate_dimreducs.R"
SnakeMake From line 272 of master/Snakefile
285
286
287
288
289
290
291
shell:
    """
    Rscript code/create_biccn_signac.R
    Rscript code/create_biccn_archr.R
    Rscript code/create_pbmc_atac_signac.R
    Rscript code/create_pbmc_atac_archr.R
    """
SnakeMake From line 285 of master/Snakefile
301
302
303
304
shell:
    """
    Rscript code/link_peaks.R
    """
SnakeMake From line 301 of master/Snakefile
315
316
317
318
319
shell:
    """
    Rscript code/analyze_pbmc.R
    touch eqtl.done
    """
SnakeMake From line 315 of master/Snakefile
328
329
330
331
shell:
    """
    Rscript code/multimodal_label_transfer.R
    """
SnakeMake From line 328 of master/Snakefile
342
343
344
345
shell:
    """
    Rscript code/analyze_pbmc.R
    """
SnakeMake From line 342 of master/Snakefile
354
355
356
357
shell:
    """
    Rscript code/figure2.R
    """
SnakeMake From line 354 of master/Snakefile
364
365
366
367
shell:
    """
    Rscript code/figure4.R
    """
SnakeMake From line 364 of master/Snakefile
376
377
378
379
shell:
    """
    Rscript code/figure5.R
    """
SnakeMake From line 376 of master/Snakefile
386
387
388
389
shell:
    """
    Rscript code/peak_calling.R
    """
SnakeMake From line 386 of master/Snakefile
396
397
398
399
shell:
    """
    Rscript code/clustering.R
    """
SnakeMake From line 396 of master/Snakefile
ShowHide 51 more snippets with no or duplicated tags.

Login to post a comment if you would like to share your experience with this workflow.

Do you know this workflow well? If so, you can request seller status , and start supporting this workflow.

Free

Created: 1yr ago
Updated: 1yr ago
Maitainers: public
URL: https://doi.org/10.1038/s41592-021-01282-5
Name: signac-paper
Version: 1
Badge:
workflow icon

Insert copied code into your website to add a link to this workflow.

Downloaded: 0
Copyright: Public Domain
License: None
  • Future updates

Related Workflows

cellranger-snakemake-gke
snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...