Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
This repository implements the SnakeMake tutorial workflow and uses the Scientific Filesystem (SCIF) to provide a reproducible research environment. Just clone this repository and you can start to try out things. You can build s Singularity and/or Docker container to run the workflow.
Building containers
sudo singularity build snakemake.simg Singularity
docker build -t vanessa/snakemake.scif .
Run the workflow
The
Snakefile
specifies rules that should be executed. State a target file and Snakemake will build a directed acyclic graph (DAG) from the rules until the target file is reached. The rules are then executed to create the target file. The Snakefile hides the details of the environment provided by SCIF in the container as you can see from the commands below. All commands can be executed from outside the container or from within the container.
In all cases we bind the example dataset to the data directory provided by SCIF. SCIF provides the environment in which the workflow steps are executed. The workflow steps themself and therefore the interaction with SCIF is implemented in the Snakefile.
Inside container, Singularity
singularity shell --bind data/:/scif/data snakemake.simg
snakemake all
Inside container, Docker
To run the whole workflow we need the Snakefile which is not part of the container. To access the Snakefile from within the Docker container, we need an additional mount.
docker run -v $PWD/data:/scif/data:z -v $PWD:/working_dir -it -w /working_dir --entrypoint /bin/bash vanessa/snakemake.scif
snakemake all
singularity exec --bind data/:/scif/data snakemake.simg snakemake all
Outside Container, Docker
Because Docker does not mount the current working directory, we mount it to a the SCIF data directory of the SCIF snakemake app. The snakemake app will execute snakemake in
/scif/data/snakemake
, thus snakemake can find the Snakefile.
docker run -v $PWD/data:/scif/data:z -v $PWD:/scif/data/snakemake:z -it vanessa/snakemake.scif run snakemake all
Generate graphical representation of the workflow
The whole workflow should finish within 5 seconds ... too fast to realize what is happening. A visualization of the whole workflow we just ran would be nice ...
The SCIF app
graphviz_create_dag
generates a directed acyclic graph of the workflow execution plan. This is a feature of Snakemake, but needs Graphviz as additional dependency. Therefore Graphviz is installed in the
appinstall
section of this app.
rm -r data/calls/ /data/mapped_reads/ data/sorted_reads/ data/report.html
Now we can generate the graph of the execution plan. The plan is computed from the Snakefile in our current working directory and the target file we specify. In this case we want to create the final report file
report.html
. The directed acyclic graph of the workflow should be saved at
data/dag.svg
. The commands for Singularity and Docker are as follows:
Singularity
singularity run --bind data/:/scif/data snakemake.simg run graphviz_create_dag $PWD report.html dag.svg
> [graphviz_create_dag] executing /bin/bash /scif/apps/graphviz_create_dag/scif/runscript /home/fbartusch/github/snakemake_tutorial report.html dag.svg
> Building DAG of jobs...
Docker
In contrast to Singularity, Docker cannot access the current working directory. Therefore we mount the current working directory to the SCIF data folder of the
graphviz_create_dag
app.
docker run -v $PWD/data:/scif/data:z -v $PWD:/scif/data/graphviz_create_dag:z -it vanessa/snakemake.scif run graphviz_create_dag /scif/data/graphviz_create_dag report.html dag.svg
> [graphviz_create_dag] executing /bin/bash /scif/apps/graphviz_create_dag/scif/runscript /scif/data/graphviz_create_dag report.html dag.svg
> Building DAG of jobs...
Map with bwa mem
Instead of running the whole workflow at once with Snakemake, we can also use the SCIF environment to execute computations. The following examples also illustrate special SCIF syntax for working with environment variables or piping output to a file. First, we map the reads with bwa mem to the reference genome.
Inside container, Singularity
Note the use of
[e]
so we can easily pass the environment variable to the SCIF. Otherwise, it would be evaluated on the host.
singularity shell --bind data/:/scif/data snakemake.simg
mkdir /scif/data/mapped_reads
scif run bwa mem -o [e]SCIF_DATA/mapped_reads/A.sam [e]SCIF_DATA/genome.fa [e]SCIF_DATA/samples/A.fastq
Inside container, Docker
docker run -v $PWD/data:/scif/data:z -it --entrypoint /bin/bash vanessa/snakemake.scif
mkdir -p /scif/data/mapped_reads
scif run bwa mem -o [e]SCIF_DATA/mapped_reads/A.sam [e]SCIF_DATA/genome.fa [e]SCIF_DATA/samples/A.fastq
mkdir -p data/mapped_reads
singularity run --bind data:/scif/data snakemake.simg run bwa mem -o [e]SCIF_DATA/mapped_reads/A.sam [e]SCIF_DATA/genome.fa [e]SCIF_DATA/samples/A.fastq
Outside the container, Docker
mkdir -p data/mapped_reads
docker run -v $PWD/data:/scif/data:z vanessa/snakemake.scif run bwa mem -o [e]SCIF_DATA/mapped_reads/A.sam [e]SCIF_DATA/genome.fa [e]SCIF_DATA/samples/A.fastq
Sam to Bam Conversion
Inside the container, Singularity
Note the use of
[out]
as a substitute for
>
. If you wanted to use
>
you could put the entire thing in quotes.
singularity shell --bind data/:/scif/data snakemake.simg
scif run samtools view -Sb [e]SCIF_DATA/mapped_reads/A.sam [out] [e]SCIF_DATA/mapped_reads/A.bam # or
scif run samtools 'view -Sb $SCIF_DATA/mapped_reads/A.sam > $SCIF_DATA/mapped_reads/A.bam'
> [samtools] executing /bin/bash /scif/apps/samtools/scif/runscript view -Sb $SCIF_DATA/mapped_reads/A.sam > $SCIF_DATA/mapped_reads/A.bam
Inside the container, Docker
docker run -v $PWD/data:/scif/data:z -it --entrypoint /bin/bash vanessa/snakemake.scif
scif run samtools view -Sb [e]SCIF_DATA/mapped_reads/A.sam [out] [e]SCIF_DATA/mapped_reads/A.bam # or
scif run samtools 'view -Sb $SCIF_DATA/mapped_reads/A.sam > $SCIF_DATA/mapped_reads/A.bam'
> [samtools] executing /bin/bash /scif/apps/samtools/scif/runscript view -Sb $SCIF_DATA/mapped_reads/A.sam > $SCIF_DATA/mapped_reads/A.bam
singularity run --bind data:/scif/data snakemake.simg run samtools view -Sb [e]SCIF_DATA/mapped_reads/A.sam [out] [e]SCIF_DATA/mapped_reads/A.bam # or
singularity run --bind data:/scif/data snakemake.simg run samtools 'view -Sb $SCIF_DATA/mapped_reads/A.sam > $SCIF_DATA/mapped_reads/A.bam'
Outside the container, Docker
docker run -v $PWD/data:/scif/data vanessa/snakemake.scif run samtools view -Sb [e]SCIF_DATA/mapped_reads/A.sam [out] [e]SCIF_DATA/mapped_reads/A.bam # or
docker run -v $PWD/data:/scif/data vanessa/snakemake.scif run samtools 'view -Sb $SCIF_DATA/mapped_reads/A.sam > $SCIF_DATA/mapped_reads/A.bam'
Interactive development
This can be done for Docker or Singularity, just with different commands to shell into the container!
docker run -it -v $PWD/data:/scif/data:z vanessa/snakemake.scif pyshell
singularity run --bind data/:/scif/data snakemake.simg pyshell
Found configurations for 4 scif apps
bwa
graphviz_create_dag
samtools
snakemake
[scif] /scif bwa | graphviz_create_dag | samtools | snakemake
Python 3.6.2 |Anaconda, Inc.| (default, Sep 22 2017, 02:03:08)
[GCC 7.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
(InteractiveConsole)
>>>
# Activate bwa
client.activate('samtools')
# Environment variables active
client.environment
# Run bwa interactively
args = ['mem', '-o', '[e]SCIF_DATA/mapped_reads/a.sam', '[e]SCIF_DATA/genome.fa', '[e]SCIF_DATA/samples/A.fastq']
client.run('bwa', args=args)
# Run sam--bam interactively
args = ["view", "-Sb", "/scif/data/mapped_reads/r1_subset.sam", ">", "/scif/data/mapped_reads/r1_subset.bam"]
client.run('samtools', args=args)
This repo is also used as example on the SCIF GitHub repo, so take a look:
Code Snippets
9 10 | shell: "scif run bwa index {input}" |
19 20 | shell: "scif run bwa mem -o {output} {input.ref} {input.reads}" |
28 29 | shell: "scif --quiet run samtools 'view -bS $SCIF_DATA/{input} > $SCIF_DATA/{output}'" |
37 38 | shell: "scif --quiet run samtools 'sort -T $SCIF_DATA/sorted_reads/{wildcards.sample} -O bam $SCIF_DATA/{input} > $SCIF_DATA/{output}'" |
46 47 | shell: "scif run samtools 'index $SCIF_DATA/{input}'" |
57 58 | shell: "scif --quiet run samtools 'mpileup -g -f $SCIF_DATA/{input.fa} $SCIF_DATA/{input.bam} | bcftools call -mv - > $SCIF_DATA/{output}'" |
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 | run: from snakemake.utils import report with open(input[0]) as vcf: n_calls = sum(1 for l in vcf if not l.startswith("#")) report(""" An example variant calling workflow =================================== Reads were mapped to the Yeast reference genome and variants were called jointly with SAMtools/BCFtools. This resulted in {n_calls} variants (see Table T1_). """, output[0], T1=input[0]) |
Support
- Future updates