16S rRNA-Seq Analysis Workflow for Kelly Brendan's Lab Data
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
This is using the standard Snakemake workflow template. Replace this text with a comprehensive description covering the purpose and domain. Insert your code into the respective folders, i.e.
scripts
,
rules
, and
envs
. Define the entry point of the workflow in the
Snakefile
and the main configuration in the
config.yaml
file.
The data is 16s (V1-V2) rRNA-seq from Kelly Brendan's lab, published on RSA with bioproject ID: PRJNA682076 Explore both ASV and OTU.
Usage
Running on new respublica by: snakemake --latency-wait 10 -j 10 -p -c "sbatch --job-name={params.jobName} --mem={params.mem} -c {threads} --time=360 -e sbatch/{params.jobName}.e -o sbatch/{params.jobName}.o"
Code Snippets
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | shell: ''' conda activate qiime2-2020.11 qiime dada2 denoise-paired \ --i-demultiplexed-seqs {input.q2_import} \ --p-trunc-len-f {config[truncation_len-f]} \ --p-trunc-len-r {config[truncation_len-r]} \ --p-n-reads-learn {config[training]} \ --p-n-threads {threads} \ --p-chimera-method {config[chimera]} \ --o-table {output.table} \ --o-representative-sequences {output.seq} \ --o-denoising-stats {output.stats} --verbose &> {log} conda deactivate ''' |
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 | shell: ''' conda activate qiime2-2020.11 qiime metadata tabulate \ --m-input-file {input.stats} \ --o-visualization {output.stats_viz} --verbose &> {log} qiime feature-table summarize \ --i-table {input.table} \ --o-visualization {output.table_viz} \ --m-sample-metadata-file {input.stats} --verbose &>> {log} qiime feature-table tabulate-seqs \ --i-data {input.seq} \ --o-visualization {output.seq_viz} --verbose &>> {log} conda deactivate ''' |
34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 | shell: ''' ## --p-sampling-depth should be carefully chosen by reviewing the table_summary file -asv-table.qzv conda activate qiime2-2019.7 # echo "this tis to test conda..." &> {log} qiime diversity core-metrics-phylogenetic \\ --i-phylogeny {input.rooted_tree} \\ --i-table {input.feature_table} \\ --p-sampling-depth {config[sampling_depth]} \\ --p-n-jobs {threads} \\ --m-metadata-file {input.metadata} \\ --o-rarefied-table {output.rarefied_table} \\ --o-faith-pd-vector {output.faith_pd_vector} \\ --o-observed-otus-vector {output.observed_otus_vector} \\ --o-shannon-vector {output.shannon_vector} \\ --o-evenness-vector {output.evenness_vector} \\ --o-unweighted-unifrac-distance-matrix {output.unweighted_unifrac_distance_matrix} \\ --o-weighted-unifrac-distance-matrix {output.weighted_unifrac_distance_matrix} \\ --o-jaccard-distance-matrix {output.jaccard_distance_matrix} \\ --o-bray-curtis-distance-matrix {output.bray_curtis_distance_matrix} \\ --o-unweighted-unifrac-pcoa-results {output.unweighted_unifrac_pcoa_results} \\ --o-weighted-unifrac-pcoa-results {output.weighted_unifrac_pcoa_results} \\ --o-jaccard-pcoa-results {output.jaccard_pcoa_results} \\ --o-bray-curtis-pcoa-results {output.bray_curtis_pcoa_results} \\ --o-unweighted-unifrac-emperor {output.unweighted_unifrac_emperor} \\ --o-weighted-unifrac-emperor {output.weighted_unifrac_emperor} \\ --o-jaccard-emperor {output.jaccard_emperor} \\ --o-bray-curtis-emperor {output.bray_curtis_emperor} &> {log} conda deactivate ''' |
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 | shell: ''' conda activate qiime2-2019.7 qiime diversity alpha-group-significance \\ --i-alpha-diversity {input.faith_pd_vector}\\ --m-metadata-file {input.metadata} \\ --o-visualization {output.faith_pd_group_significance} &> {log} qiime diversity alpha-group-significance \\ --i-alpha-diversity {input.evenness_vector} \\ --m-metadata-file {input.metadata} \\ --o-visualization {output.evenness_group_significance} &>> {log} conda deactivate ''' |
110 111 112 113 114 115 116 117 118 119 120 121 | shell: ''' conda activate qiime2-2019.7 qiime diversity beta-group-significance \\ --i-distance-matrix {input.unweighted_unifrac_distance_matrix} \\ --m-metadata-file {input.metadata} \\ --m-metadata-column recurrence_within_180_days \\ --o-visualization {output.unweighted_unifrac_recurrence_significance} \\ --p-pairwise &> {log} conda deactivate ''' |
10 11 12 13 14 | shell: ''' grabseqs sra {params.project} -m {output.metadata} -o {output.outdir} -r 3 ''' |
15 16 17 18 19 20 21 22 23 24 25 26 27 28 | shell: ''' conda activate qiime2-2019.7 qiime phylogeny align-to-tree-mafft-fasttree \ --p-n-threads {threads} \ --i-sequences {input.rep} \ --o-alignment {output.alignment} \ --o-masked-alignment {output.masked_alignment} \ --o-tree {output.unrooted_tree} \ --o-rooted-tree {output.rooted_tree} \ --verbose &> {log} conda deactivate ''' |
12 13 | shell: "fastqc --quiet -t {threads} --outdir ../results/fastqc {input} &> {log}" |
31 32 33 34 35 | shell: ''' trimmomatic PE -threads {threads} -phred33 -quiet {input.r1} {input.r2} \ {output.r1} {output.r1_unpaired} {output.r2} {output.r2_unpaired} {params.trimmer} ''' |
48 49 | shell: "fastqc --quiet -t {threads} --outdir ../results/fastqc_trim {input} &> {log}" |
63 64 65 66 67 68 | shell: """ multiqc --force --quiet --filename multiqc.html --outdir ../results/raw_multi_fastqc {input.raw_qc} &> {log} #run multiqc # repeat for trimmed data multiqc --force --quiet --filename multiqc.html --outdir ../results/trim_multi_fastqc {input.trim_qc} &>> {log} #run multiqc """ |
15 16 17 18 19 20 21 22 23 24 | shell: ''' # Imports demultiplexed paired end FASTQ files # Needed to create a unique manifest file to map file paths to sample ids qiime tools import \ --type 'SampleData[PairedEndSequencesWithQuality]' \ --input-path {input} \ --input-format PairedEndFastqManifestPhred33V2 \ --output-path {output.q2_import} &> {log} ''' |
17 18 19 20 21 22 | shell: ''' # Creates a QIIME2 summary artifact on demultiplexed FASTQ sequences qiime demux summarize --i-data {input.q2_import} --o-visualization {output.raw} &> {log} qiime demux summarize --i-data {input.q2_primerRM} --o-visualization {output.primer} &>> {log} ''' |
14 15 16 17 18 19 20 21 22 23 24 | shell: ''' qiime cutadapt trim-paired \ --p-cores {threads} \ --i-demultiplexed-sequences {input.q2_import} \ --p-front-f {config[primerF]} \ --p-front-r {config[primerR]} \ --p-error-rate {config[primer_err]} \ --p-overlap {config[primer_overlap]} \ --o-trimmed-sequences {output.q2_primerRM} &> {log} ''' |
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 | shell: ''' conda activate qiime2-2019.7 qiime feature-table filter-samples \ --i-table {input.table} \ --m-metadata-file {input.metadata} \ --o-filtered-table {output.table_cdi_pos} &> {log} qiime feature-table summarize \ --i-table {output.table_cdi_pos} \ --o-visualization {output.table_cdi_pos_viz} \ --m-sample-metadata-file {input.metadata} --verbose &>> {log} qiime feature-table filter-seqs \ --i-data {input.seq} \ --i-table {output.table_cdi_pos} \ --o-filtered-data {output.seq_cdi_pos} &>> {log} qiime feature-table tabulate-seqs \ --i-data {output.seq_cdi_pos} \ --o-visualization {output.seq_cdi_pos_viz} --verbose &>> {log} conda deactivate ''' |
19 20 21 22 23 24 25 26 27 28 | shell: ''' conda activate qiime2-2019.7 qiime feature-classifier classify-sklearn \ --i-classifier {input.classifier} \ --i-reads {input.seq_cdi_pos} \ --o-classification {output.taxonomy} &> {log} conda deactivate ''' |
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | shell: ''' qiime metadata tabulate \ --m-input-file {input.taxonomy} \ --o-visualization {output.taxonomy_viz} &> {log} qiime tools export \ --input-path {input.taxonomy} \ --output-path {params.outdir} &>> {log} qiime taxa barplot \ --i-table {input.feature_table} \ --i-taxonomy {input.taxonomy} \ --m-metadata-file {input.metadata} \ --o-visualization {output.taxa_barplot_viz} &>> {log} ''' |
Support
Do you know this workflow well? If so, you can
request seller status , and start supporting this workflow.
Created: 1yr ago
Updated: 1yr ago
Maitainers:
public
URL:
https://github.com/chaodi51/tag_seq
Name:
tag_seq
Version:
1
Downloaded:
0
Copyright:
Public Domain
License:
MIT License
- Future updates
Related Workflows
ENCODE pipeline for histone marks developed for the psychENCODE project
psychip pipeline is an improved version of the ENCODE pipeline for histone marks developed for the psychENCODE project.
The o...
Near-real time tracking of SARS-CoV-2 in Connecticut
Repository containing scripts to perform near-real time tracking of SARS-CoV-2 in Connecticut using genomic data. This pipeli...
snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...
ATLAS - Three commands to start analyzing your metagenome data
Metagenome-atlas is a easy-to-use metagenomic pipeline based on snakemake. It handles all steps from QC, Assembly, Binning, t...
raw sequence reads
Genome assembly
Annotation track
checkm2
gunc
prodigal
snakemake-wrapper-utils
MEGAHIT
Atlas
BBMap
Biopython
BioRuby
Bwa-mem2
cd-hit
CheckM
DAS
Diamond
eggNOG-mapper v2
MetaBAT 2
Minimap2
MMseqs
MultiQC
Pandas
Picard
pyfastx
SAMtools
SemiBin
Snakemake
SPAdes
SqueezeMeta
TADpole
VAMB
CONCOCT
ete3
gtdbtk
h5py
networkx
numpy
plotly
psutil
utils
metagenomics
RNA-seq workflow using STAR and DESeq2
This workflow performs a differential gene expression analysis with STAR and Deseq2. The usage of this workflow is described ...
This Snakemake pipeline implements the GATK best-practices workflow
This Snakemake pipeline implements the GATK best-practices workflow for calling small germline variants. The usage of thi...