Porting and deploying the HiSea use case on C-SCALE
Help improve this workflow!
This workflow has been published but could be further improved with some additional meta data:- Keyword(s) in categories input, output, operation, topic
You can help improve this workflow by suggesting the addition or removal of keywords, suggest changes and report issues, or request to become a maintainer of the Workflow .
C-SCALE Workflow Solution: Coastal hydrodynamic and water quality modelling using Delft3D FM
C-SCALE workflow solutions are intended to give users a template and reusable components to start building monitoring, modelling and forecasting applications
With the coastal hydrodynamic and water quality modelling workflow solution a user can easily produce hydrodynamic and water quality hindcasts or forecasts for the coastal ocean for a Delft3D FM model schematisation.
The workflow solution has the following functionality
-
Download the necessary input data for the user's Delft3D Flexible Mesh model setup. Input data include Copernicus' Global Ocean Physics Reanalysis and Global ocean biogeochemistry hindcast , ERA5 and FES2012 .
-
Prepare the data for ingestion into the user's Delft 3D Flexible Mesh hydrodynamic and water quality model . This entails the preparation of forcings, initial conditions, and boundary condiditons.
-
Produce hydrodynamic and water quality hindcasts or forcasts based on the user's Delft3D Flexible Mesh hydrodynamic and water quality model setups.
-
Analyse the simulation outputs in an interactive Jupyter Notebook.
The workflow is executed using Snakemake , a workflow management system for creating and executing reproducible and scalable data analyses. The workflow solution can be deployed on any provider part of the C-SCALE data and compute federation offering cloud container compute.
The workflow components and flow is summarised in the below schematic:
Prerequisites
-
Github account. Sign up here .
-
DockerHub account and access to https://hub.docker.com/repository/docker/deltares/delft3dfm (contact [email protected] to arrange access)
-
CMEMS account, which can be obtained by registering at https://resources.marine.copernicus.eu/registration-form .
-
CDS API key. Follow instructions at https://cds.climate.copernicus.eu/api-how-to#install-the-cds-api-key to generate the key.
-
Docker needs to be installed on your computing environment.
-
Snakemake needs to be installed on your computing environment.
Instructions
1. Build the Docker containers
Instructions on how to build and run the Docker conterainers for each workflow component can be found in the README.md files of corresponding folders of this repo:
2. Install Snakemake
To install Snakemake do:
-
conda install -n base -c conda-forge mamba
-
mamba install -c conda-forge -c bioconda snakemake click
3. Run the workflow for the example fm_model included in this repo
-
In your CLI,
cd
touse-case-hisea/.
-
Open
use-case-hisea/workflow/config.yml
in your preferred text editor and specify
a.dependencies
b.data folder locations
c.delft3dfm folders and files
d.area of interest
(this should cover the area of your delft3dfm model schematisation)
e.run mode
-
Execute the workflow from the
use-case-hisea/
directory by doing:snakemake --cores 4 all
-
To run each rule individually, from the
use-case-hisea/
directory do:snakemake -R <insert rule name> --cores 1
Additional instructions
Code Snippets
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 | import pandas as pd import click import warnings import sys sys.path.append('../delft3dfm_helpers') from delft3dfm_helpers import get_tref # Ignore FutureWarning warnings.filterwarnings("ignore", category=FutureWarning) @click.command() @click.option('--mdufile', type=str, help='path/to/mdufile.mdu') @click.option('--filename_in', help='path/filename of input file') @click.option('--filename_out', help='path/filename of output file') @click.option('--date_max', help='date_max as YYYY-MM-DD') def main(mdufile, filename_in, filename_out, date_max): # Define the reference time tref = get_tref(mdufile=mdufile) #print(tref, '\n') # Read the data from file data = pd.read_csv(filename_in, delim_whitespace=True, header=None) # Add a datetime column based on the first column data['datetime'] = tref + pd.to_timedelta(data.iloc[:, 0], unit='m') # get the number of days between the last datetime in the last row and date_max date_max = pd.to_datetime(date_max) last_datetime = data.iloc[-1]['datetime'] days_diff = int((date_max - last_datetime) / pd.Timedelta(days=1)) #print(days_diff, '\n') for i in range(days_diff+1): # Append an empty row data = data.append({}, ignore_index=True) # Get the previous value in column 0 prev_value = data.iloc[-2, 0] #print(prev_value, '\n') # Get the unique difference between all the values in column 0 unique_diff = data[0].diff().dropna().unique() #print(unique_diff, '\n') # Fill the value in column 0, last row with the previous value plus the unique differenc data.iloc[-1, 0] = prev_value + unique_diff # Set datetime of last row to the corresponding value from column 0 data.iloc[-1, 2] = tref + pd.to_timedelta(data.iloc[-1, 0], unit='m') # Get the day and month of the datetime in the last row last_date = data.iloc[-1]['datetime'] last_day_month = last_date.strftime('%m-%d') #print(last_date) #print(last_day_month) # Create a mask to filter the rows with the same day and month mask = data['datetime'].dt.strftime('%m-%d') == last_day_month # Compute the average of values in column 1 for these rows # Set the value in the last row of column 1 as the average data.iloc[-1, 1] = data.loc[mask, 1].mean() # convert column 0 to integers data[0] = data[0].astype(int) # write to file data.to_csv(filename_out, columns=[0,1], header=False, index=False, sep='\t', float_format='%.8f') if __name__ == '__main__': main() |
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | run: if params.run_mode == 'forecast': date_min, date_max = set_date_range(run_mode=params.run_mode, forecast_window_mid_pt=params.forecast_window_mid_pt, forecast_window=params.forecast_window, outfile='workflow/config.yml') else: date_min, date_max = set_date_range(run_mode=params.run_mode, tstart=params.tstart, tstop=params.tstop, outfile='workflow/config.yml') os.system('touch workflow/logs/$(date +%Y-%m-%d)_set_date_range.done') current_date = date.today().strftime('%Y-%m-%d') with open(os.path.join("workflow/logs/", f"{current_date}_set_date_range.done"), 'w') as f: f.write(f"date_min: {date_min}\n") f.write(f"date_max: {date_max}\n") |
65 66 | run: update_mdu_tstart_tstop(mdufile = params.mdufile, date_min=params.date_min, date_max=params.date_max) |
84 85 86 87 88 89 90 91 92 93 94 95 96 97 | shell: """ sudo docker run \ -v {params.cdsapirc_loc}:/root/.cdsapirc \ -v {params.data_dir_path}/download/$(date +%Y-%m-%d):/data \ download-input python download_era5.py \ --longitude_min {params.lon_min} \ --longitude_max {params.lon_max} \ --latitude_min {params.lat_min} \ --latitude_max {params.lat_max} \ --date_min {params.date_min} \ --date_max {params.date_max} && \ touch workflow/logs/$(date +%Y-%m-%d)_download_era5.done """ |
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 | shell: """ sudo docker run \ -v {params.data_dir_path}/download/$(date +%Y-%m-%d):/data \ download-input python download_cmems_physics.py \ --username {params.cmems_uname} \ --password {params.cmems_pwd} \ --longitude_min {params.lon_min} \ --longitude_max {params.lon_max} \ --latitude_min {params.lat_min} \ --latitude_max {params.lat_max} \ --date_min {params.date_min} \ --date_max {params.date_max} && \ touch workflow/logs/$(date +%Y-%m-%d)_download_cmems_physics.done """ |
149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 | shell: """ sudo docker run \ -v {params.data_dir_path}/download/$(date +%Y-%m-%d):/data \ download-input python download_cmems_biogeochemistry.py \ --username {params.cmems_uname} \ --password {params.cmems_pwd} \ --longitude_min {params.lon_min} \ --longitude_max {params.lon_max} \ --latitude_min {params.lat_min} \ --latitude_max {params.lat_max} \ --date_min {params.date_min} \ --date_max {params.date_max} && \ touch workflow/logs/$(date +%Y-%m-%d)_download_cmems_biogeochemistry.done """ |
174 175 176 177 178 179 180 181 182 183 | shell: """ sudo docker run \ -v {params.data_dir_path}/download/$(date +%Y-%m-%d)/era5:/data/input \ -v {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d):/data/output \ getera ERA5_convert2_FM_and_merge_allVars.py \ --input /data/input \ --output /data/output && \ touch workflow/logs/$(date +%Y-%m-%d)_preprocess_era5.done """ |
190 191 192 193 194 | shell: """ sudo mkdir -p {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/DFMWAQ_input && \ touch workflow/logs/$(date +%Y-%m-%d)_create_random_DFMWAQ_folder.done """ |
208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 | shell: """ sudo docker run \ -v {params.data_dir_path}/download/$(date +%Y-%m-%d)/cmems:/data/input \ -v {params.model_dir_path}:/data/model \ -v {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d):/data/output \ preprocessing boundary.py \ --interp true \ --simultaneous true \ --steric true \ --input /data/input \ --model /data/model \ --output /data/output && \ touch workflow/logs/$(date +%Y-%m-%d)_preprocess_cmems.done """ |
229 230 231 232 | run: fes2012_files_exist = check_fes2012_files_exist(params.fes2012_data_dir_path) if fes2012_files_exist: os.system('touch workflow/logs/check4fes2012_files.done') |
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 | shell: """ sudo docker run \ -v {params.fes2012_data_dir_path}:/data/input \ -v {params.model_dir_path}:/data/model \ -v {params.data_dir_path}/output/preprocessing/fes2012:/data/output \ preprocessing tide.py \ --fespath /data/input \ --coords "{params.lon_min}, {params.lon_max}, {params.lat_min}, {params.lat_max}" \ --pli {params.plifile1} \ --pli {params.plifile2} \ --output /data/output \ --model /data/model && \ touch workflow/logs/preprocess_fes2012.done """ |
278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 | shell: "cp -r \ {params.data_dir_path}/output/preprocessing/fes2012/tide_east2.bc \ {params.data_dir_path}/output/preprocessing/fes2012/tide_south2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/DFMWAQ_east2_tmp.ext \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/DFMWAQ_input \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/DFMWAQ_south2_tmp.ext \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/Diat_east2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/Diat_south2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/east2.pli \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/Green_east2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/Green_south2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/NO3_east2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/NO3_south2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/Opal_east2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/Opal_south2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/OXY_east2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/OXY_south2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/PO4_east2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/PO4_south2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/POC1_east2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/POC1_south2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/PON1_east2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/PON1_south2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/POP1_east2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/POP1_south2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/salinity_east2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/salinity_south2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/Si_east2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/Si_south2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/south2.pli \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/steric_east2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/steric_south2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/temperature_east2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/temperature_south2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/uxuy_east2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/uxuy_south2.bc \ {params.data_dir_path}/output/preprocessing/$(date +%Y-%m-%d)/era5_FM.nc \ {params.model_dir_path}/input/. && \ touch workflow/logs/$(date +%Y-%m-%d)_copy_preprocessed_data_to_model_input_folder.done" |
329 330 331 332 333 334 335 336 337 | shell: """ python scripts/workarounds/update_existing_RadSurf_daily_dot_tim.py \ --mdufile {params.mdufile} \ --filename_in {params.model_dir_path}/input/RadSurf_daily.tim \ --filename_out {params.model_dir_path}/input/RadSurf_daily.tim \ --date_max {params.date_max} && \ touch workflow/logs/$(date +%Y-%m-%d)_workaround_update_RadSurf_daily.done """ |
359 360 361 362 363 364 365 366 367 | shell: """ sudo docker run \ -v {params.model_dir_path}:/data \ --shm-size=4gb \ --ulimit stack=-1 \ -t deltares/delft3dfm:latest && \ touch workflow/logs/$(date +%Y-%m-%d)_run_delft3dfm.done """ |
377 378 379 380 381 382 383 384 385 386 387 388 389 390 | shell: """ sudo mkdir -p {params.data_dir_path}/output/fm_model_runs/$(date +%Y-%m-%d)/rst && \ sudo mv {params.model_dir_path}/DFM_OUTPUT_tttz_waq/*rst* {params.data_dir_path}/output/fm_model_runs/$(date +%Y-%m-%d)/rst/. && \ sudo mkdir -p {params.data_dir_path}/output/fm_model_runs/$(date +%Y-%m-%d)/map && \ sudo mv {params.model_dir_path}/DFM_OUTPUT_tttz_waq/*map* {params.data_dir_path}/output/fm_model_runs/$(date +%Y-%m-%d)/map/. && \ sudo mkdir -p {params.data_dir_path}/output/fm_model_runs/$(date +%Y-%m-%d)/his && \ sudo mv {params.model_dir_path}/DFM_OUTPUT_tttz_waq/*his* {params.data_dir_path}/output/fm_model_runs/$(date +%Y-%m-%d)/his/. && \ sudo mkdir -p {params.data_dir_path}/output/fm_model_runs/$(date +%Y-%m-%d)/dia && \ sudo mv {params.model_dir_path}/DFM_OUTPUT_tttz_waq/*dia* {params.data_dir_path}/output/fm_model_runs/$(date +%Y-%m-%d)/dia/. && \ sudo mkdir -p {params.data_dir_path}/output/fm_model_runs/$(date +%Y-%m-%d)/other && \ sudo mv {params.model_dir_path}/DFM_OUTPUT_tttz_waq/* {params.data_dir_path}/output/fm_model_runs/$(date +%Y-%m-%d)/other/. && \ touch workflow/logs/$(date +%Y-%m-%d)_move_raw_data_to_output_folder.done """ |
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 | shell: """ sudo rm -r \ {params.model_dir_path}/input/tide_east2.bc \ {params.model_dir_path}/input/tide_south2.bc \ {params.model_dir_path}/input/DFMWAQ_east2_tmp.ext \ {params.model_dir_path}/input/DFMWAQ_input \ {params.model_dir_path}/input/DFMWAQ_south2_tmp.ext \ {params.model_dir_path}/input/Diat_east2.bc \ {params.model_dir_path}/input/Diat_south2.bc \ {params.model_dir_path}/input/east2.pli \ {params.model_dir_path}/input/Green_east2.bc \ {params.model_dir_path}/input/Green_south2.bc \ {params.model_dir_path}/input/NO3_east2.bc \ {params.model_dir_path}/input/NO3_south2.bc \ {params.model_dir_path}/input/Opal_east2.bc \ {params.model_dir_path}/input/Opal_south2.bc \ {params.model_dir_path}/input/OXY_east2.bc \ {params.model_dir_path}/input/OXY_south2.bc \ {params.model_dir_path}/input/PO4_east2.bc \ {params.model_dir_path}/input/PO4_south2.bc \ {params.model_dir_path}/input/POC1_east2.bc \ {params.model_dir_path}/input/POC1_south2.bc \ {params.model_dir_path}/input/PON1_east2.bc \ {params.model_dir_path}/input/PON1_south2.bc \ {params.model_dir_path}/input/POP1_east2.bc \ {params.model_dir_path}/input/POP1_south2.bc \ {params.model_dir_path}/input/salinity_east2.bc \ {params.model_dir_path}/input/salinity_south2.bc \ {params.model_dir_path}/input/Si_east2.bc \ {params.model_dir_path}/input/Si_south2.bc \ {params.model_dir_path}/input/south2.pli \ {params.model_dir_path}/input/steric_east2.bc \ {params.model_dir_path}/input/steric_south2.bc \ {params.model_dir_path}/input/temperature_east2.bc \ {params.model_dir_path}/input/temperature_south2.bc \ {params.model_dir_path}/input/uxuy_east2.bc \ {params.model_dir_path}/input/uxuy_south2.bc \ {params.model_dir_path}/input/era5_FM.nc \ {params.model_dir_path}/DFM_interpreted_idomain_myortho3_net.nc \ {params.model_dir_path}/log*.irlog \ {params.model_dir_path}/myortho3_*_net.nc \ {params.model_dir_path}/tttz_waq_*.cache \ {params.model_dir_path}/tttz_waq_*.mdu \ {params.model_dir_path}/unstruc.dia && \ sudo cp {params.mdufile} {params.data_dir_path}/output/fm_model_runs/$(date +%Y-%m-%d)/. && \ touch workflow/logs/$(date +%Y-%m-%d)_cleanup_model_folder.done """ |
Support
- Future updates