Post-processing Workflow for WRF-Hydro Model Output

public public 1yr ago 0 bookmarks

wrfh_postprocess_workflow

Requirements

You will need to have "Snakemake" installed. The easiest is to create a conda environment

conda create -p /path/to/snakemake_env
co

Code Snippets

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import xarray as xr
import pandas as pd
import glob
from datetime import datetime
import defopt
import numpy as np


fid_dict = {
    'terminus': [227, 198],  #[i, j]
    'cwg': [219, 207],   # [217, 211],
    'cwg_i': [220,207],
    'highelv': [209, 220],
    'soil': [208, 195],
    }


def LDASOUT_energybal_todf(*, file_dir: str='/nesi/project/uoo03104/code/wrf_hydroCrocus_mahuika/Taylor200_glac_update1_2yrloop/NWM', 
    save_dir: str='/nesi/project/uoo03104/snakemake_output/Taylor200_glac_update1_2yrloop/DEC18', station_name: str='cwg'): 

    files = glob.glob(f'{file_dir}/*LDASOUT*')
    files = sorted(files)

    end_index = len(files)

    DATETIME = []
    albedo = []
    swdown = []
    lwdown = []
    fira = []
    fsa = []
    sag = []
    lh = []
    grdflx = []
    hfx = []
    rainrate = []
    ugdrnoff = []
    accprecip = []
    snowh = []
    sneqv = []
    qsnow = []
    acsnow = []
    acsnom = []
    qrain = []
    flow_ice = []
    flow_snow = []
    glacierthickness = []
    psnowthrufal = []
    psnowheight = []
    psnowtotswe = []
    psndrift = []
    emiss = []
    tg = []
    trad = []
    tgb = []
    t2mb = []
    q2mb = []
    snowalb = []    


    snowliq = {}
    snowswe = {}
    snowheat = {}
    snowtemp = {}
    snowrho = {}
    snowdz = {}
    snowrefrz = {}
    snowrph = {}
    snowmph = {}
    snowmelt = {}
    snowswp = {}     
    snowgran1 = {}
    snowgran2 = {}
    snowage = {}

    test = xr.open_dataset(files[0],decode_times=False)
    lev_size = test['glacier_levels'].values.size

    for lev in range(lev_size):
        snowliq[lev] = []
        snowswe[lev] = []
        snowheat[lev] = []
        snowtemp[lev] = []
        snowrho[lev] = []
        snowdz[lev] = []
        snowrefrz[lev] = []
        snowrph[lev] = []
        snowmph[lev] = []
        snowmelt[lev] = []
        snowswp[lev] = [] 
        snowgran1[lev] = []
        snowgran2[lev] = []
        snowage[lev] = []

    snliq = {}
    snice = {}
    for lev2 in range(3):
        snliq[lev2] = []
        snice[lev2] = []

    pix_i = fid_dict[station_name][0]
    pix_j = fid_dict[station_name][1]

    for file in files[0:end_index]:
        ds = xr.open_dataset(file,decode_times=False)

        albedo.append(ds['ALBEDO'][:,pix_j,pix_i].values)
        swdown.append(ds['SWFORC'][:,pix_j,pix_i].values)
        lwdown.append(ds['LWFORC'][:,pix_j,pix_i].values)
        fira.append(ds['FIRA'][:,pix_j,pix_i].values)
        fsa.append(ds['FSA'][:,pix_j,pix_i].values)
        sag.append(ds['SAG'][:,pix_j,pix_i].values)
        lh.append(ds['LH'][:,pix_j,pix_i].values)
        grdflx.append(ds['GRDFLX'][:,pix_j,pix_i].values)
        hfx.append(ds['HFX'][:,pix_j,pix_i].values)
        rainrate.append(ds['RAINRATE'][:,pix_j,pix_i].values)
        ugdrnoff.append(ds['UGDRNOFF'][:,pix_j,pix_i].values)
        accprecip.append(ds['ACCPRCP'][:,pix_j,pix_i].values)
        snowh.append(ds['SNOWH'][:,pix_j,pix_i].values)
        sneqv.append(ds['SNEQV'][:,pix_j,pix_i].values)
        qsnow.append(ds['QSNOW'][:,pix_j,pix_i].values)
        acsnow.append(ds['ACSNOW'][:,pix_j,pix_i].values)
        acsnom.append(ds['ACSNOM'][:,pix_j,pix_i].values)
        qrain.append(ds['QRAIN'][:,pix_j,pix_i].values)
        flow_ice.append(ds['FLOW_ICE'][:,pix_j,pix_i].values)
        flow_snow.append(ds['FLOW_SNOW'][:,pix_j,pix_i].values)
        glacierthickness.append(ds['glacier_thickness'][:,pix_j,pix_i].values)
        psnowthrufal.append(ds['PSNOWTHRUFAL'][:,pix_j,pix_i].values)
        psnowheight.append(ds['PSNOWHEIGHT'][:,pix_j,pix_i].values)
        psnowtotswe.append(ds['PSNOWTOTSWE'][:,pix_j,pix_i].values)
        psndrift.append(ds['PSNOWSUBL'][:,pix_j,pix_i].values)
        emiss.append(ds['EMISS'][:,pix_j,pix_i].values)
        tg.append(ds['TG'][:,pix_j,pix_i].values)
        trad.append(ds['TRAD'][:,pix_j,pix_i].values)
        tgb.append(ds['TGB'][:,pix_j,pix_i].values)
        t2mb.append(ds['T2MB'][:,pix_j,pix_i].values)
        q2mb.append(ds['Q2MB'][:,pix_j,pix_i].values)
        snowalb.append(ds['PSNOWALB'][:,pix_j,pix_i].values)

        for l in range(lev_size):
            snowliq[l].append(ds['PSNOWLIQ'][:,pix_j,l,pix_i].values)
            snowswe[l].append(ds['PSNOWSWE'][:,pix_j,l,pix_i].values)
            snowheat[l].append(ds['PSNOWHEAT'][:,pix_j,l,pix_i].values)
            snowtemp[l].append(ds['PSNOWTEMP'][:,pix_j,l,pix_i].values)
            snowrho[l].append(ds['PSNOWRHO'][:,pix_j,l,pix_i].values)
            snowdz[l].append(ds['PSNOWDZ'][:,pix_j,l,pix_i].values) 
            snowrefrz[l].append(ds['PSNOWREFRZ'][:,pix_j,l,pix_i].values)
            snowrph[l].append(ds['PSNOWRPH'][:,pix_j,l,pix_i].values)
            snowmph[l].append(ds['PSNOWMPH'][:,pix_j,l,pix_i].values)
            snowmelt[l].append(ds['PSNOWMELT'][:,pix_j,l,pix_i].values)
            snowswp[l].append(ds['PSNOWSWP'][:,pix_j,l,pix_i].values)    
            snowgran1[l].append(ds['PSNOWGRAN1'][:,pix_j,l,pix_i].values)
            snowgran2[l].append(ds['PSNOWGRAN2'][:,pix_j,l,pix_i].values)
            snowage[l].append(ds['PSNOWAGE'][:,pix_j,l,pix_i].values)

        for l1 in range(3):
            snliq[l1].append(ds['SNLIQ'][:,pix_j,l1,pix_i].values)
            snice[l1].append(ds['SNICE'][:,pix_j,l1,pix_i].values)

        DATETIME.append(file.split('/')[-1].split('.')[0])


    lst = []
    comp = [swdown, albedo, lwdown, fira, fsa, sag, lh, grdflx, hfx, rainrate, ugdrnoff, accprecip, 
            snowh, sneqv, qsnow, acsnow, acsnom, qrain, flow_ice, flow_snow, glacierthickness, psnowthrufal, 
            psnowheight, psnowtotswe, psndrift, emiss, tg, trad, tgb, t2mb, q2mb, snowalb]
    col_names = ["SWFORC", "ALBEDO", "LWFORC", "FIRA", "FSA", "SAG", "LH", "GRDFLX", "HFX", "RAINRATE", "UGDRNOFF", 
                "ACCPRCP", "SNOWH", "SNEQV", "QSNOW", "ACSNOW", "ACSNOM", "QRAIN", "FLOW_ICE", "FLOW_SNOW", "glacier_thickness", 
                "PSNOWTHRUFAL", "PSNOWHEIGHT", "PSNOWTOTSWE", "PSNDRIFT", "EMISS", "TG", "TRAD", "TGB", "T2MB", "Q2MB", "PSNOWALB"]

    for l in range(lev_size):
        col_names.append(f'PSNOWLIQ{l}')
        col_names.append(f'PSNOWSWE{l}')
        col_names.append(f'PSNOWHEAT{l}')
        col_names.append(f'PSNOWTEMP{l}')
        col_names.append(f'PSNOWRHO{l}')
        col_names.append(f'PSNOWDZ{l}')
        col_names.append(f'PSNOWREFRZ{l}')
        col_names.append(f'PSNOWRPH{l}')
        col_names.append(f'PSNOWMPH{l}')
        col_names.append(f'PSNOWMELT{l}')
        col_names.append(f'PSNOWSWP{l}')
        col_names.append(f'PSNOWGRAN1_{l}')
        col_names.append(f'PSNOWGRAN2_{l}')
        col_names.append(f'PSNOWAGE{l}')


        comp.append(snowliq[l])
        comp.append(snowswe[l])
        comp.append(snowheat[l])
        comp.append(snowtemp[l])
        comp.append(snowrho[l])
        comp.append(snowdz[l])
        comp.append(snowrefrz[l])
        comp.append(snowrph[l])
        comp.append(snowmph[l])
        comp.append(snowmelt[l])
        comp.append(snowswp[l])
        comp.append(snowgran1[l])
        comp.append(snowgran2[l])
        comp.append(snowage[l])


    for l1 in range(3):
        col_names.append(f'SNLIQ{l1}')
        col_names.append(f'SNICE{l1}')

        comp.append(snliq[l1])
        comp.append(snice[l1])

    for ind in range(len(swdown)):
        lst2 = []
        for val in comp:
            lst2.append(val[ind][0])
        lst.append(lst2)

    df = pd.DataFrame(lst, index=pd.to_datetime(DATETIME), columns=col_names)

    #df_dailycyc = df.groupby([df.index.hour]).mean()

    df.to_csv(f'{save_dir}/timeseries_ldasout_{station_name}.csv')

    #df_dailycyc.to_csv(f'{save_dir}/{station_name}_dailycyc.csv')


if __name__=='__main__':
    defopt.run(LDASOUT_energybal_todf)
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
import numpy as np
import pandas as pd
from datetime import datetime
import matplotlib.pyplot as plt
import defopt
import re
from scipy import interpolate
import sys
sys.path.insert(1, '/nesi/project/uoo03104/.conda/envs/xesmf_stable_env/lib/python3.7/site-packages/cmcrameri/')
import cm
#add .plot(cmap=cm.hawaii) for cb friendly
import preprocess_xsect as prep
#warnings.filterwarnings('ignore')
def dataframe_to_datetime(d):
    d['Datetime'] = pd.to_datetime(d['date'] + ' ' + d['hour'])
    d = d.set_index('Datetime')
    d = d.drop(['date','hour'], axis=1)
    d['date']=d.index
    return d



def plot_timeseries(*, save_dir: str='/nesi/project/uoo03104/snakemake_output/Taylor200_glac_update1_2yrloop/DEC18', station_name: str='cwg', plot_name: str='precip', date: str='2018-12-01 04:00:00'):
    """
    Plot timeseries of modelled crocus energy balance

    @param  save_dir directory to save timeseries png
    @param station_name LTER network name of stream gauge

    """

    cohm = pd.read_table('/nesi/nobackup/uoo03104/validation_data/COHM_MB.txt', delim_whitespace=True, header=0)
    cohm = dataframe_to_datetime(cohm)
    cohm = cohm.loc[cohm.index >= '2018-12-01 13:00:00', :]
    cohm = cohm.loc[cohm.index <= '2019-01-01 12:00:00', :]
    cohm.index = cohm.index.tz_localize('Antarctica/Mcmurdo').tz_convert('UTC')
    cohm["hsnow(obs,m)_scaled"] = cohm["hsnow(obs,m)"] - cohm["hsnow(obs,m)"][0]

    cohm_aws = pd.read_table('/nesi/project/uoo03104/COHM_AWS.txt', delim_whitespace=True, header=0)
    cohm_aws = dataframe_to_datetime(cohm_aws)
    cohm_aws = cohm_aws.loc[cohm_aws.index >= '2018-12-01 13:00:00', :]
    cohm_aws = cohm_aws.loc[cohm_aws.index <= '2019-01-01 12:00:00', :]
    cohm_aws.index = cohm_aws.index.tz_localize('Antarctica/Mcmurdo').tz_convert('UTC')

    c = pd.read_csv('/nesi/nobackup/uoo03104/validation_data/long_aws_cwg.csv',delimiter=',',sep='\t', header=0, skiprows=[0,2,3])
    c = c.set_index('TIMESTAMP')
    c.index = pd.to_datetime(c.index)
    c.index = c.index.tz_localize('Antarctica/Mcmurdo').tz_convert('UTC')
    c = c.astype(float)
    hsnow = pd.DataFrame()
    hsnow["SR50T"] = -1*c["SR50T_Avg"].loc[c.index >= '2021-12-01 13:00:00']
    hsnow["hsnow"] = hsnow["SR50T"] - hsnow["SR50T"][0]

    #precip = hsnow["hsnow"].diff()
    time_mask = (hsnow.index.hour == 00) & (hsnow.index.minute == 00) #filter each day
    precip = hsnow[time_mask].diff()["hsnow"] #daily diff in sfc height
    precip[precip < 0.] = 0.
    precip = precip *100. #convert to swe using 250kg/m3 density
    precip = precip.resample('H').ffill()

    daily_sfcheight = hsnow[time_mask].diff()["hsnow"].cumsum()
    daily_sfcheight.loc["2021-12-02 00:00:00+00:00"] = 0.0

    SWin = c["incommingSW_Avg"].resample('D').sum()
    SWout = c["outgoingSW_Avg"].resample('D').sum()
    Alb = SWout/SWin
    Alb = Alb.resample('H').ffill()

    lwd = c["incomingLW_Avg"].loc["2021-12-01 13:00:00+00:00":"2022-01-01 00:00:00+00:00"]
    lwu = c["outgoingLW_Avg"].loc["2021-12-01 13:00:00+00:00":"2022-01-01 00:00:00+00:00"]
    airT = c["AirTC_Avg"] + 273.15
    airT = airT.loc["2021-12-01 13:00:00+00:00":"2022-01-01 00:00:00+00:00"]
    sigma = 5.67e-8
    eps = 0.98
    tsfc_1 = ((1/sigma)*lwu)**(0.25)
    tsfc_98 = ((1/(eps*sigma))*(lwu - lwd + (eps*lwd)))**(0.25)
    icetemp = tsfc_98.resample('H').mean()
    icetemp[icetemp>273.15] = 273.15 #to match obs to croc

    df = pd.read_csv(f'{save_dir}/timeseries_ldasout_{station_name}.csv', index_col=0)
    df.index = pd.to_datetime(df.index)
    df.index = df.index.tz_localize('UTC')
    hsnow_m = pd.DataFrame()
    hsnow_m["SNOWH"] = df["SNOWH"].loc[df.index>='2021-12-01 13:00:00']
    hsnow_m["SNOWH_scaled"] = hsnow_m["SNOWH"] - hsnow_m["SNOWH"][0]

    df["ACCPRCP_scaled"] = df["ACCPRCP"] - df["ACCPRCP"][0]
    df["ACSNOM_scaled"] = df["ACSNOM"] - df["ACSNOM"][0]
    df["PSNOWTOTSWE_scaled"] = df["PSNOWTOTSWE"] - df["PSNOWTOTSWE"][0]

    #df["subl"] = (df["LH"]*(3600/2838200))  #old subl 
    df["subl"] = (df["LH"]*(3600/(df['PSNOWRHO0']*2.8345e6))) #same as croc

    df['CUMSUM_ACCPRCP'] = df['ACCPRCP'].cumsum()
    df['CUMSUM_subl'] = df['subl'].cumsum()
    df['CUMSUM_subldrift'] = df['PSNDRIFT'].cumsum()
    df['CUMSUM_ACSNOM'] = df['ACSNOM_scaled'].cumsum()

    #en = pd.read_csv('../energybal/middle_energybal.csv', index_col=0)
    #en.index = en.index.tz_localize('UTC')
    #df["subl"] = (en["LH"]*(3600/2838200))
    if plot_name=='albdiognosis':
        df2 = df["2021-12-01 13:00:00+00:00":]
        ftsize=14
        fig, axs = plt.subplots(3, 1, sharex=True, figsize=(18,14))
        fig.suptitle('Albedo Comparison', fontsize=ftsize) 
        axs[0].plot(df2.index, df2["ALBEDO"], color="grey", label="albedo")
        axs[0].legend(loc="upper right")
        axs[1].plot(df2.index, df2["PSNOWRHO0"], color='blue', label='density')
        axs[1].legend(loc="upper right")
        axs[2].plot(df2.index, hsnow_m["SNOWH_scaled"], color='orange', label="snow height")
        axs[2].legend(loc="upper right")
        plt.legend()
        plt.savefig(f'{save_dir}/timeseries_albdiognosis_{station_name}.png')

    if plot_name=='tsfc':
        plt.figure(figsize=[12,7])
        icetemp.plot(label="obs")
        df["TG"].plot(label='model')
        plt.title("Surface Temperature")
        plt.legend(loc="upper right")
        plt.savefig(f'{save_dir}/timeseries_tsfc_{station_name}.png')

    if plot_name=='precip':
        plt.figure(figsize=[12, 7])
        precip.plot(label='obs')
        #cohm["precip(obs,mmwe)"].plot(label='obs')
        df["ACCPRCP"].loc[df.index >= '2021-12-01 13:00:00'].plot(label='model')
        plt.title('precip')
        plt.ylabel('precip (mmwe)')
        plt.legend(loc='upper right')
        plt.savefig(f'{save_dir}/timeseries_precip_{station_name}.png')
        #plt.show()

    if plot_name=='albedo':
        plt.figure(figsize=[12, 7])
        Alb.loc[Alb.index >= '2021-12-02 00:00:00'].plot(label='obs')
        #cohm_aws["Albedo(obs,-)"].plot(label='obs')
        df["ALBEDO"].loc[df.index >= '2021-12-01 13:00:00'].plot(label='model')
        plt.title('Albedo')
        plt.ylabel('Albedo')
        plt.legend(loc='upper right')
        plt.savefig(f'{save_dir}/timeseries_albedo_{station_name}.png')
        #plt.show()

    if plot_name=='snowheight':
        plt.figure(figsize=[12, 7])
        daily_sfcheight.plot(label='obs')
        #cohm["hsnow(obs,m)_scaled"].plot(label='obs')
        hsnow_m["SNOWH_scaled"].plot(label='model')
        plt.title('Surface height')
        plt.ylabel('surface height (m)')
        plt.legend(loc='upper right')
        plt.savefig(f'{save_dir}/timeseries_snowheight_{station_name}.png')
        #plt.show()

    if plot_name=='icetemp':
        plt.figure(figsize=[12, 7])
        df["PSNOWTEMP0"].plot(label='icetemp0')
        df["PSNOWTEMP1"].plot(label='icetemp1')
        plt.title('Glacier Temperature')
        plt.ylabel('T(K)')
        plt.legend(loc='upper right')
        plt.savefig(f'{save_dir}/timeseries_icetemp_{station_name}.png')
        #plt.show()

    ### check units
    # plt.figure()
    # df["ACSNOM_scaled"].plot(label="runoff")
    # df["subl"].plot(label="sublimation")
    # df["ACCPRCP_scaled"].plot(label="precipitation")
    # df["PSNOWTOTSWE_scaled"].plot(label="total snow swe")
    # plt.ylabel('mmwe')
    # plt.title('Mass Balance Components')
    # plt.legend(loc='upper right')
    # plt.savefig(f'{save_dir}/timeseries_massbal_{station_name}.png')
    # #plt.show()

    if plot_name=='massbal':
        plt.figure(figsize=[12, 7])
        df["CUMSUM_ACSNOM"].plot(label="runoff")
        df["CUMSUM_subl"].plot(label="sublimation")
        df["CUMSUM_subldrift"].plot(label="sublimation_drift")
        df["CUMSUM_ACCPRCP"].plot(label="precipitation")
        df["PSNOWTOTSWE_scaled"].plot(label="total snow swe")
        plt.ylabel('mmwe')
        plt.title('Mass Balance Components')
        plt.legend(loc='upper right')
        plt.savefig(f'{save_dir}/timeseries_massbal_{station_name}.png')
        #plt.show()


    df_heat = df.filter(regex=r"PSNOWHEAT")
    df_liq = df.filter(regex=r"PSNOWLIQ")
    df_dz = df.filter(regex=r"PSNOWDZ")

    df_rph = (df.filter(regex=r"PSNOWRPH").sum(axis=1))/3600 #J/m2 to W/m2
    df_mph = (df.filter(regex=r"PSNOWMPH").sum(axis=1))/3600 #J/m2 to W/m2
    df_swp = (df.filter(regex=r"PSNOWSWP").sum(axis=1)) #W/m2


    #calculate heat content in W/m2
    df_sum = pd.DataFrame()
    #df_sum.index = df_heat.index
    for i in range(40):
        df_sum["PSNOWHEATDZ"+str(i)] = (df_heat["PSNOWHEAT"+str(i)])/3600
        #df_sum["PSNOWHEATDZ"+str(i)] = (df_heat["PSNOWHEAT"+str(i)]*df_dz["PSNOWDZ"+str(i)])/3600
    df_sum["SUM_hc"] = df_sum.filter(regex=r"PSNOWHEATDZ").sum(axis=1)
    df_sum["DIFF_hc"] = df_sum["SUM_hc"].diff()
    df_sum["HEATCONTENT"] = df_sum["DIFF_hc"]


    #calculate phase change in W/m2: 334000 J/kg lh of fusion of melt and 3600 to get J/s to J/hr
    for i in range(40):
        df_sum["PSNOWLIQDZ"+str(i)] = (df_liq["PSNOWLIQ"+str(i)]*df_dz["PSNOWDZ"+str(i)]*334000)/3600
    df_sum["SUM_pc"] = df_sum.filter(regex=r"PSNOWLIQDZ").sum(axis=1)
    df_sum["PHASECHANGE"] = df_sum["SUM_pc"].diff()

    #calculate residual
    df['qm'] = df['FSA'] - df['FIRA'] - df['LH'] - df['HFX'] - df['GRDFLX']

    df['FIRA'] = -1*df['FIRA']
    df['LH'] = -1*df['LH']
    df['HFX'] = -1*df['HFX']
    df['GRDFLX'] = -1*df['GRDFLX']

    eddy = pd.read_csv('/nesi/nobackup/uoo03104/validation_data/eddypro_COHM_2021_full_output_2022-05-31T164638_exp.csv',header=0, skiprows=[0,2])
    eddy.index = eddy['date'].str.cat(eddy['time'],sep=" ")
    eddy.index = pd.to_datetime(eddy.index).tz_localize('Antarctica/Mcmurdo').tz_convert('UTC')
    eddy.H = eddy.H.replace(-9999.00000,np.nan)
    eddy.H = -1*eddy.H
    eddy.H = eddy["H"].rolling(6).mean()
    eddy = eddy.shift(1,freq='D')
    eddy = eddy.loc[df.index[0]:df.index[-1]]


    if plot_name=='energybal':
        plt.figure(figsize=[12, 8])
        df["qm"].plot(label="residual", linewidth=0.5)
        df["FSA"].plot(label="net shortwave radiation", linewidth=0.5)
        df["FIRA"].plot(label="net longwave radiation", linewidth=0.5)
        df["LH"].plot(label="latent heat flux", linewidth=0.7)
        df["HFX"].plot(label="sensible heat flux", linewidth=0.7)
        df["GRDFLX"].plot(label="ground flux", linewidth=0.7)
        df_rph.plot(label="refreezing", linewidth=0.7)
        df_mph.plot(label="melt", linewidth=0.7)
        df_swp.plot(label="SW penetrative radiation", linewidth=0.7)
        df_sum["HEATCONTENT"].plot(label="heat content", linewidth=0.7)
        #df_sum["PHASECHANGE"].plot(label="phase change")

        #df.plot(linewidth=0.7)
        plt.title(f'Energy balance components for {station_name}',fontsize=18)
        plt.ylabel('Energy (W/m2)', fontsize=14)
        plt.xlabel(f'Datetime (UTC)')
        plt.legend(loc='upper right')
        plt.ylim([-300., 450.])
        plt.savefig(f'{save_dir}/timeseries_energybal_{station_name}.png')

    if plot_name=='heatflux':
        plt.figure(figsize=[12, 8])
        df["HFX"].plot(label="modelled", linewidth=0.7)
        eddy["H"].plot(label="observed", linewidth=0.7)
        plt.title(f'Sensible heat flux for {station_name}',fontsize=18)
        plt.ylabel('Energy (W/m2)', fontsize=14)
        plt.xlabel(f'Datetime (UTC)')
        plt.legend(loc='upper right')
        plt.savefig(f'{save_dir}/timeseries_heatflux_{station_name}.png')

    if plot_name=='melt':
        plt.figure(figsize=[12, 8])
        df_rph.plot(label="refreezing", linewidth=0.7)
        df_mph.plot(label="melt", linewidth=0.7)
        df_swp.plot(label="SW penetrative radiation", linewidth=0.7)
        plt.title(f'Energy balance components for {station_name}',fontsize=18)
        plt.ylabel('Energy (W/m2)', fontsize=14)
        plt.xlabel(f'Datetime (UTC)')
        plt.legend(loc='upper right')
        #plt.ylim([-300., 450.])
        plt.savefig(f'{save_dir}/timeseries_melt_{station_name}.png')

    if plot_name=='heatcontent':
        plt.figure(figsize=[12, 7])
        df_sum["HEATCONTENT"].plot(label="heat content")
        plt.title('Heat Content')
        plt.ylabel('Heat content (W/m2)')
        plt.legend(loc='upper right')
        plt.savefig(f'{save_dir}/timeseries_heatcontent_{station_name}.png')

    if plot_name=='phasechange':
        plt.figure(figsize=[12, 7])
        df_sum["PHASECHANGE"].plot(label="phase change")
        plt.title('Phase change energy')
        plt.ylabel('Phase change (W/m2)')
        plt.legend(loc='upper right')
        plt.savefig(f'{save_dir}/timeseries_phasechange_{station_name}.png')

#------------------- scripts to generate xsections, vert profiles etc

    if plot_name=='icetD':

        df_snowh, df_dz, df_var = prep.proc_xsection(save_dir)


        #calculate each of the heights for each timestep
        z_005 = df_snowh -0.05
        z_010 = df_snowh -0.1
        z_020 = df_snowh -0.2
        z_050 = df_snowh -0.5
        z_100 = df_snowh -1.0
        z_200 = df_snowh -2.0

        dt = pd.DataFrame(columns=["0.05", "0.1", "0.2", "0.5", "1.0", "2.0"], index=z_005.index)

        for i in range(len(z_005)):
            # print(z_005.iloc[i]) #target to interp to
            f = interpolate.interp1d(df_dz.iloc[i].values, df_var.iloc[i].values, bounds_error=False)
            t_005 = f(z_005.iloc[i])
            t_010 = f(z_010.iloc[i])
            t_020 = f(z_020.iloc[i])
            t_050 = f(z_050.iloc[i])
            t_100 = f(z_100.iloc[i])
            t_200 = f(z_200.iloc[i])
            dt.iloc[i] = pd.Series({'0.05':t_005, '0.1':t_010, '0.2':t_020, '0.5':t_050, '1.0':t_100, '2.0':t_200}, dtype=np.float64)

        dt = dt.astype(np.float64)
        dt = dt.resample('d').mean()
        plt.figure(figsize=[12, 7])
        dt.plot()
        plt.savefig(f'{save_dir}/timeseries_icetD_{station_name}.png')

    if plot_name=='icetH':

        df_snowh, df_dz, df_var = prep.proc_xsection(save_dir)


        #calculate each of the heights for each timestep
        #z_005 = df_snowh -0.05
        #z_010 = df_snowh -0.1
        #z_020 = df_snowh -0.2
        #z_050 = df_snowh -0.5
        #z_100 = df_snowh -1.0
        #z_200 = df_snowh -2.0

        #dt = pd.DataFrame(columns=["0.05", "0.1", "0.2", "0.5", "1.0", "2.0"], index=z_005.index)

        #for i in range(len(z_005)):
            # print(z_005.iloc[i]) #target to interp to
            #f = interpolate.interp1d(df_dz.iloc[i].values, df_var.iloc[i].values, bounds_error=False)
            #t_005 = f(z_005.iloc[i])
            #t_010 = f(z_010.iloc[i])
            #t_020 = f(z_020.iloc[i])
            #t_050 = f(z_050.iloc[i])
            #t_100 = f(z_100.iloc[i])
            #t_200 = f(z_200.iloc[i])
            #dt.iloc[i] = pd.Series({'0.05':t_005, '0.1':t_010, '0.2':t_020, '0.5':t_050, '1.0':t_100, '2.0':t_200}, dtype=np.float64)

        #dt = dt.astype(np.float64)
        #dt = dt-273.15

        hsnow = hsnow.resample('H').mean()

        hsnow["h_TC1"] = 0.05 + hsnow["hsnow"] #calculate height of sensor as snowpack melts
        hsnow["h_TC2"] = 0.1 + hsnow["hsnow"]
        hsnow["h_TC3"] = 0.2 + hsnow["hsnow"]
        hsnow["h_TC4"] = 0.5 + hsnow["hsnow"]
        hsnow["h_TC5"] = 1.0 + hsnow["hsnow"]
        hsnow["h_TC6"] = 2.0 + hsnow["hsnow"]

        hsnow["h_TC1"] = hsnow["h_TC1"].where(hsnow["h_TC1"]>=0.0, np.nan) #filter if sensor melts out
        hsnow["h_TC2"] = hsnow["h_TC2"].where(hsnow["h_TC2"]>=0.0, np.nan)
        hsnow["h_TC3"] = hsnow["h_TC3"].where(hsnow["h_TC3"]>=0.0, np.nan)
        hsnow["h_TC4"] = hsnow["h_TC4"].where(hsnow["h_TC4"]>=0.0, np.nan)
        hsnow["h_TC5"] = hsnow["h_TC5"].where(hsnow["h_TC5"]>=0.0, np.nan)
        hsnow["h_TC6"] = hsnow["h_TC6"].where(hsnow["h_TC6"]>=0.0, np.nan)

        df_dz = df_dz.loc[hsnow.index[0]:]
        df_var = df_var.loc[hsnow.index[0]:]

        df_snowh = df_snowh.loc[hsnow.index[0]:]
        df_snowh.index = df_snowh.index.tz_localize('UTC')
        z_005 = df_snowh - hsnow["h_TC1"] #snow height of each sensor mapped to model
        z_010 = df_snowh - hsnow["h_TC2"]
        z_020 = df_snowh - hsnow["h_TC3"]
        z_050 = df_snowh - hsnow["h_TC4"]
        z_100 = df_snowh - hsnow["h_TC5"]
        z_200 = df_snowh - hsnow["h_TC6"]

        #interpolate for each sensor height in model
        dt = pd.DataFrame(columns=["0.05", "0.1", "0.2", "0.5", "1.0", "2.0"], index=z_005.index)
        z_005 = z_005.loc[:df_snowh.index[-1]]
        for i in range(len(z_005)):
            # print(z_005.iloc[i]) #target to interp to
            f = interpolate.interp1d(df_dz.iloc[i].values, df_var.iloc[i].values, bounds_error=False)
            t_005 = f(z_005.iloc[i])
            t_010 = f(z_010.iloc[i])
            t_020 = f(z_020.iloc[i])
            t_050 = f(z_050.iloc[i])
            t_100 = f(z_100.iloc[i])
            t_200 = f(z_200.iloc[i])
            dt.iloc[i] = pd.Series({'0.05':t_005, '0.1':t_010, '0.2':t_020, '0.5':t_050, '1.0':t_100, '2.0':t_200}, dtype=np.float64)

        dt = dt.astype(np.float64)
        dt = dt-273.15

        #c["TC5_Avg"].loc["2021-12-15 18:00:00":"2021-12-16 19:30:00"] = c["TC5_Avg"].loc["2021-12-15 18:00:00":"2021-12-16 19:30:00"].where(c["TC5_Avg"]<-8.7, np.nan) #filter out weird meltwater spike
        #c["TC4_Avg"].loc["2021-12-15 18:00:00":"2021-12-16 19:30:00"] = c["TC4_Avg"].loc["2021-12-15 18:00:00":"2021-12-16 19:30:00"].where(c["TC4_Avg"]<-5.2, np.nan)
        melt_index = np.argwhere(c["TC1_Avg"].loc["2021-12-01 00:00:00":"2021-12-31 23:00:00"].values>0.0)[0][0] #index where TC1 melts out
        c["TC1_Avg"].loc["2021-12-01 00:00:00":][melt_index:] = np.nan       

        melt_index = np.argwhere(c["TC2_Avg"].loc["2021-12-01 00:00:00":"2021-12-31 23:00:00"].values>0.0)[0][0] #index where TC2 melts out
        c["TC2_Avg"].loc["2021-12-01 00:00:00":][melt_index:] = np.nan

        melt_index = np.argwhere(c["TC3_Avg"].loc["2021-12-01 00:00:00":"2021-12-31 23:00:00"].values>0.0)[0][0] #index where TC3 melts out
        c["TC3_Avg"].loc["2021-12-01 00:00:00":][melt_index:] = np.nan

        plt.figure(figsize=(12,8))
        c["TC1_Avg"].loc["2021-12-01 00:00:00":"2021-12-31 23:00:00"].plot(label='0.05_ob', color='red', linestyle='dotted')
        c["TC2_Avg"].loc["2021-12-01 00:00:00":"2021-12-31 23:00:00"].plot(label='0.1_ob', color='orange', linestyle='dotted')
        c["TC3_Avg"].loc["2021-12-01 00:00:00":"2021-12-31 23:00:00"].plot(label='0.2_ob', color='green', linestyle='dotted')
        c["TC4_Avg"].loc["2021-12-01 00:00:00":"2021-12-31 23:00:00"].plot(label='0.5_ob', color='blue', linestyle='dotted')
        c["TC5_Avg"].loc["2021-12-01 00:00:00":"2021-12-31 23:00:00"].plot(label='1.0_ob', color='purple', linestyle='dotted')
        c["TC6_Avg"].loc["2021-12-01 00:00:00":"2021-12-31 23:00:00"].plot(label='2.0_ob', color='brown', linestyle='dotted')
        dt["0.05"].loc["2021-12-01 00:00:00":"2021-12-31 23:00:00"].plot(label='0.05_Croc', color='red')
        dt["0.1"].loc["2021-12-01 00:00:00":"2021-12-31 23:00:00"].plot(label='0.1_Croc', color='orange')
        dt["0.2"].loc["2021-12-01 00:00:00":"2021-12-31 23:00:00"].plot(label='0.2_Croc', color='green')
        dt["0.5"].loc["2021-12-01 00:00:00":"2021-12-31 23:00:00"].plot(label='0.5_Croc', color='blue')
        dt["1.0"].loc["2021-12-01 00:00:00":"2021-12-31 23:00:00"].plot(label='1.0_Croc', color='purple')
        dt["2.0"].loc["2021-12-01 00:00:00":"2021-12-31 23:00:00"].plot(label='2.0_Croc', color='brown')
        plt.axhline(y=0.0, color='k', linestyle='dotted', label='XTT')
        plt.title('Glacier Temperature')
        plt.ylabel('T(C)')
        plt.legend(loc='upper left')
        plt.savefig(f'{save_dir}/timeseries_icetH_{station_name}.png')
        #plt.show()


        #dt = dt.astype(np.float64)
        #plt.figure()
        #dt.plot()
        #plt.savefig(f'{save_dir}/timeseries_icetH_{station_name}.png')

    if plot_name=='flow':
        df = prep.preprocess_flow(save_dir)

        ftsize=14
        fig, axs = plt.subplots(4, 1, sharex=True, figsize=(18,14))
        fig.suptitle('Runoff at CWG', fontsize=ftsize)

        axs[0].plot(df.index, df["PSNOWTHRUFAL"], color='blue', label="PTHRUFAL")
        axs[0].legend(loc='upper right')
        axs[1].plot(df.index, df["PSNOWTHRUFAL"].cumsum(), color='blue', label="PTHRUFAL_acc")
        axs[1].legend(loc='upper right')
        axs[2].plot(df.index, df["FLOW_ICE"], color='green', label="FLOW_ICE")
        axs[2].legend(loc='upper right')
        axs[3].plot(df.index, df["FLOW_SNOW"], color='orange', label="FLOW_SNOW")
        axs[3].legend(loc='upper right')

        my_xticks = []
        for i in df.index.values:
            my_xticks.append(i)
        my_xticks2 = [re.sub(r'\:00\:00\.0+$', '', str(d)) for d in my_xticks]

        plt.xticks(rotation=45)
        plt.subplots_adjust(top=0.925, bottom=0.12, left=0.085, right=0.9)
        fig.supylabel('Runoff (mm)')
        plt.savefig(f'{save_dir}/timeseries_flow_{station_name}.png')

    if plot_name=='4panel':
        height,temp,heat,rho,liq, thruf, fsno, fice,melt,refrz = prep.proc_4panel(date, save_dir, station_name)
        fig, axs = plt.subplots(2, 2)
        fig.suptitle(date)
        fig.text(0.04, 0.5, 'Height (m)', va='center', rotation='vertical')
        axs[0, 0].plot(temp, height)
        axs[0, 0].invert_yaxis() 
        axs[0, 0].axvline(x=273.15, color='k', linestyle='dotted', label='XTT')
        axs[0,0].legend(loc='upper right')
        axs[0, 0].set_xlabel('PSNOWTEMP (K)')
        axs[0, 1].plot(rho, height, 'tab:orange')
        axs[0, 1].set_xlabel('PSNOWRHO (kg/m3)')
        axs[0, 1].axvline(x=850., color='k', linestyle='dotted', label='XRHOTHRESHOLD')
        axs[0,1].legend(loc='upper right')
        axs[0, 1].invert_yaxis()
        axs[1, 0].plot(liq, height, 'tab:green',label='liq')
        axs[1, 0].plot(melt, height, 'tab:red',label='melt')
        axs[1, 0].plot(refrz, height, 'tab:blue',label='refrz')
        axs[1,0].legend(loc='upper right')
        axs[1, 0].set_xlabel('PSNOWLIQ (kg/m3)')
        axs[1, 0].invert_yaxis()
        axs[1, 1].plot(heat, height, 'tab:red')
        axs[1, 1].set_xlabel('PSNOWHEAT (J/m2)')
        axs[1, 1].invert_yaxis()
        plt.savefig(f'{save_dir}/timeseries_4panel_{station_name}.png')

    if plot_name=='xsect_top2':
        var_names = ["PSNOWTEMP", "PSNOWRHO", "PSNOWLIQ", "PSNOWHEAT"]
        Z_list = []
        cp_list = []

        for var_name in var_names[2:]:
            df_snowh, df_dz, df_var = prep.proc_xsection(save_dir, station_name, var_name)
            z = np.arange(df_snowh.values.max() - 0.1, df_snowh.values.max(), 0.001)
            #z = np.arange(df_snowh.values.max() - 0.5, df_snowh.values.max(), 0.01)
            z = np.append(np.arange(df_snowh.values.max() - 1.0, df_snowh.values.max() - 0.1, 0.5), z)
            #z = np.append(np.arange(df_snowh.values.max() - 3.5, df_snowh.values.max() - 0.5, 0.5), z)
            z.sort()
            z_rev = z

            dt = pd.DataFrame(columns=["depths", "var"], index=df_dz.index)
            dt2 = pd.DataFrame(columns=z_rev, index=df_dz.index)

            for index, row in df_dz.iterrows(): #iterating over all of the timesteps
                z_real = df_dz.loc[index].to_list() #extract the depth
                #find index of the first element isnan
                try:
                    nan_index = np.argwhere(np.isnan(z_real))[0][0]
                except IndexError:
                    nan_index = -1 #this only happens when init run
                #interp wants monotonically increasing z_real and no NaNs
                z_real_rev = z_real[0:nan_index]
                z_real_rev.reverse()
                t_real_rev = df_var.loc[index][0:nan_index].to_list()
                t_real_rev.reverse() #reverse is an in place operation

                f = interpolate.interp1d(z_real_rev, t_real_rev, bounds_error=False)
                t = f(z_rev)
                dt.loc[index] = pd.Series({'depths':z_rev, 'var':t})
                for ind in range(len(t)):
                    dt2.loc[index][z_rev[ind]] = t[ind]

            data=dt2
            x_vals = np.linspace(0, len(data.index), len(data.index), dtype=int)
            y_vals = z_rev
            X, Y = np.meshgrid(x_vals, y_vals, indexing='ij')
            Z = data.values
            Z_list.append(Z)

        ftsize=14
        fig, axs = plt.subplots(len(var_names[2:]), 1, sharex=True, figsize=(16,20))
        fig.suptitle("Cross-sections at CWG AWS", fontsize=ftsize)

        for r in range(len(var_names[2:])):
            r+=2 #2,3
            l_ax = r-2 # 0,1 for axes
            var_dict = {
            'PSNOWTEMP': [1, cm.vik, 100, "Temperature", "K", [273.15]],  #[levels, cmap, nbins, label, unit]
            'PSNOWRHO': [1, cm.hawaii, 100, "Density", "kg/m3", [850]],
            'PSNOWLIQ': [1, cm.vik, 100, "Liquid content", "mmwe", [0]],
            'PSNOWHEAT': [1, cm.vik, 100, "Heat content", "J/m2", [0]],
            }
            #print(r)
            #breakpoint()
            x = Z_list[l_ax][~pd.isnull(Z_list[l_ax])]
            min_z = x.min()
            max_z = x.max()
            step_z = (max_z - min_z)/100.
            lev = np.arange(min_z, max_z+(2*step_z), step_z)
            cp = axs[l_ax].contourf(X, Y, Z_list[l_ax], cmap=var_dict[var_names[r]][1], levels=lev) #levels=var_dict[var_names[r]][0])
            fig.colorbar(cp, ax=axs[l_ax], label=f'{var_dict[var_names[r]][3]} ({var_dict[var_names[r]][4]})')
            axs[l_ax].plot(X, df_snowh.values, '-k', linewidth=0.1)

        my_xticks = []
        for i in data.index.values:
            my_xticks.append(i)
        my_xticks2 = [re.sub(r'\:00\:00\.0+$', '', str(d)) for d in my_xticks]

        plt.xticks(list(range(0,len(data.index),1)), my_xticks2, rotation=45)
        n=var_dict[var_name][2]
        plt.locator_params(axis='x', nbins=n)
        plt.subplots_adjust(top=0.934, bottom=0.145, left=0.063, right=0.99, hspace=0.19, wspace=0.2)
        fig.supylabel('Height (m)')

        plt.savefig(f'{save_dir}/timeseries_xsect_top2_{station_name}.png', bbox_inches='tight')
    plt.close(plt.figure())

    if plot_name=='xsect_top':
        #var_name="PSNOWTEMP"
        var_names = ["PSNOWTEMP", "PSNOWRHO", "PSNOWLIQ", "PSNOWHEAT"]
        Z_list = []
        cp_list = []

        for var_name in var_names[:2]:
            df_snowh, df_dz, df_var = prep.proc_xsection(save_dir, station_name, var_name)
            z = np.arange(df_snowh.values.max() - 0.1, df_snowh.values.max(), 0.001)
            #z = np.arange(df_snowh.values.max() - 0.5, df_snowh.values.max(), 0.01)
            z = np.append(np.arange(df_snowh.values.max() - 1.0, df_snowh.values.max() - 0.1, 0.5), z)
            #z = np.append(np.arange(df_snowh.values.max() - 3.5, df_snowh.values.max() - 0.5, 0.5), z)
            z.sort()
            z_rev = z

            dt = pd.DataFrame(columns=["depths", "var"], index=df_dz.index)
            dt2 = pd.DataFrame(columns=z_rev, index=df_dz.index)

            for index, row in df_dz.iterrows(): #iterating over all of the timesteps
                z_real = df_dz.loc[index].to_list() #extract the depth
                #find index of the first element isnan
                try:
                    nan_index = np.argwhere(np.isnan(z_real))[0][0]
                except IndexError:
                    nan_index = -1 #this only happens when init run
                #interp wants monotonically increasing z_real and no NaNs
                z_real_rev = z_real[0:nan_index]
                z_real_rev.reverse()
                t_real_rev = df_var.loc[index][0:nan_index].to_list()
                t_real_rev.reverse() #reverse is an in place operation

                f = interpolate.interp1d(z_real_rev, t_real_rev, bounds_error=False)
                t = f(z_rev)
                dt.loc[index] = pd.Series({'depths':z_rev, 'var':t})
                for ind in range(len(t)):
                    dt2.loc[index][z_rev[ind]] = t[ind]

            data=dt2
            #var_dict = {
            #'PSNOWTEMP': [np.arange(data.min().min(), 274.0, 0.5), cm.vik, len(data.index)/240, "Temperature", "K", [273.15]],  #[levels, cmap, nbins, label, unit]
            #'PSNOWRHO': [np.arange(data.min().min(), data.max().max(), 0.5), cm.hawaii, len(data.index)/240, "Density", "kg/m3", [850]],
            #'PSNOWLIQ': [np.arange(data.min().min(), data.max().max(), 0.5), cm.vik, len(data.index)/240, "Liquid content", "mmwe", [0]],
            #'PSNOWHEAT': [np.arange(data.min().min(), data.max().max(), 0.5), cm.vik, len(data.index)/240, "Heat content", "J/m2", [0]],
            #}
            x_vals = np.linspace(0, len(data.index), len(data.index), dtype=int)
            y_vals = z_rev
            # y_vals = np.linspace(0, len(z), len(z), dtype=int)
            X, Y = np.meshgrid(x_vals, y_vals, indexing='ij')
            Z = data.values
            Z_list.append(Z)

        #breakpoint()
        #var_dict = {
        #    'PSNOWTEMP': [np.arange(Z_list[r].min().min(), 274.0, 0.5), cm.vik, len(data.index)/240, "Temperature", "K", [273.15]],  #[levels, cmap, nbins, label, unit]
        #    'PSNOWRHO': [np.arange(Z_list[r].min().min(), Z_list[r].max().max(), 0.5), cm.hawaii, len(data.index)/240, "Density", "kg/m3", [850]],
        #    'PSNOWLIQ': [np.arange(Z_list[r].min().min(), Z_list[r].max().max(), 0.5), cm.vik, len(data.index)/240, "Liquid content", "mmwe", [0]],
        #    'PSNOWHEAT': [np.arange(Z_list[r].min().min(), Z_list[r].max().max(), 0.5), cm.vik, len(data.index)/240, "Heat content", "J/m2", [0]],
        #}
        ftsize=14
        fig, axs = plt.subplots(len(var_names[:2]), 1, sharex=True, figsize=(16,20))
        fig.suptitle("Cross-sections at CWG AWS", fontsize=ftsize)

        for r in range(len(var_names[0:2])):
            var_dict = {
            'PSNOWTEMP': [1, cm.vik, 100, "Temperature", "K", [273.15]],  #[levels, cmap, nbins, label, unit]
            'PSNOWRHO': [1, cm.hawaii, 100, "Density", "kg/m3", [850]],
            'PSNOWLIQ': [1, cm.vik, 100, "Liquid content", "mmwe", [0]],
            'PSNOWHEAT': [1, cm.vik, 100, "Heat content", "J/m2", [0]],
            }
            x = Z_list[r][~pd.isnull(Z_list[r])]
            min_z = x.min()
            max_z = x.max()
            step_z = (max_z - min_z)/100.
            #new_max = max_z + (max_z - min_z)/50
            lev = np.arange(min_z, max_z + (2*step_z), step_z)

            cp = axs[r].contourf(X, Y, Z_list[r], cmap=var_dict[var_names[r]][1], levels=lev)   #, levels=var_dict[var_names[r]][0])
            fig.colorbar(cp, ax=axs[r], label=f'{var_dict[var_names[r]][3]} ({var_dict[var_names[r]][4]})')
            axs[r].plot(X, df_snowh.values, '-k', linewidth=0.1)
            axs[r].contour(cp, levels=var_dict[var_names[r]][-1], colors='white') #plot contour ice and melting point
        my_xticks = []
        for i in data.index.values:
            my_xticks.append(i)
        my_xticks2 = [re.sub(r'\:00\:00\.0+$', '', str(d)) for d in my_xticks]

        #plt.subplots_adjust(bottom=1.3)
        plt.xticks(list(range(0,len(data.index),1)), my_xticks2, rotation=45)
        n=var_dict[var_name][2]
        plt.locator_params(axis='x', nbins=n)
        plt.subplots_adjust(top=0.934, bottom=0.145, left=0.063, right=0.99, hspace=0.19, wspace=0.2)
        fig.supylabel('Height (m)')
        #fig.supxlabel('Datetime (UTC)')
        #plt.contour(cp, levels=var_dict[var_name][-1], colors='white')        

        #plt.title(f'Cross Section of the changes in {var_name} for a pixel')
        #plt.xlabel('Datetime')
        #plt.ylabel('Height (m)')
        plt.savefig(f'{save_dir}/timeseries_xsect_top_{station_name}.png', bbox_inches='tight')

if __name__ == "__main__":
    defopt.run(plot_timeseries)
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import pandas as pd 
import matplotlib.pyplot as plt
import numpy as np 
import re
from scipy import interpolate
import sys
sys.path.insert(1, '/nesi/project/uoo03104/.conda/envs/xesmf_stable_env/lib/python3.7/site-packages/cmcrameri/')
import cm

def proc_xsection(file_dir='.', station_name='cwg', var_name="PSNOWTEMP"):
    #df = pd.read_csv(f'{file_dir}/{station_name}_restart.csv', index_col=0)
    df = pd.read_csv(f'{file_dir}/timeseries_ldasout_{station_name}.csv', index_col=0)
    df.index = pd.to_datetime(df.index)
    df_dz = df.filter(regex=r"PSNOWDZ")
    df_var = df.filter(regex=rf'{var_name}')
    df_snowh = df["SNOWH"] #glacier thickness at start of period
    #df_snowh.loc["2016-06-01 00:00:00"] = 50.0 #ini only
    df_dz[df_dz==0.]=np.nan
    df_var[df_var==0.]=np.nan

    d = df_dz

    d = -1*d
    d["PSNOWDZ0"] = df_snowh + d["PSNOWDZ0"]
    df_dz = d.cumsum(axis=1)
    df_dz = df_dz + df.filter(regex=r"PSNOWDZ")

    try:
        np.argwhere(np.isnan(df_dz.iloc[0].values))[0][0]
    except IndexError: #if its the init run
        drop_time = df_dz.iloc[0].name
        df_dz.drop([drop_time], axis=0, inplace=True)
        df_snowh.drop([drop_time], axis=0, inplace=True)
        df_var.drop([drop_time], axis=0, inplace=True)

    return df_snowh, df_dz, df_var




def preprocess_flow(save_dir='./', station_name='cwg'):
    df = pd.read_csv(f'{save_dir}/timeseries_ldasout_{station_name}.csv', index_col=0)
    df.index = pd.to_datetime(df.index)

    df = df[["PSNOWTHRUFAL", "FLOW_SNOW", "FLOW_ICE"]]

    return df


def proc_4panel(date="2016-12-01 00:00:00+00:00", save_dir='./', station_name='cwg'):
    df = pd.read_csv(f'{save_dir}/timeseries_ldasout_{station_name}.csv', index_col=0)
    df.index = pd.to_datetime(df.index)
    df_dz = df.filter(regex=r"PSNOWDZ")
    df_temp = df.filter(regex=r"PSNOWTEMP")
    df_liq = df.filter(regex=r"PSNOWLIQ")
    df_rho = df.filter(regex=r"PSNOWRHO")
    df_heat = df.filter(regex=r"PSNOWHEAT")
    df_melt = df.filter(regex=r"PSNOWMELT")
    df_refrz = df.filter(regex=r"PSNOWREFRZ")

    df_dz[df_dz==0.]=np.nan
    df_temp[df_temp==0.]=np.nan
    df_heat[df_heat==0.]=np.nan
    df_rho[df_rho==999.]=np.nan
    df_liq[df_liq==0.]=np.nan
    df_melt[df_melt==0.]=np.nan
    df_refrz[df_refrz==0.]=np.nan

    #nan_index = np.argwhere(np.isnan(z_real))[0][0]
    #df_liq.where(np.isnan(df_dz)

    # d = df_dz
    # d = -1*d
    # df_snowh = df["SNOWH"]
    # d["PSNOWDZ0"] = df_snowh + d["PSNOWDZ0"]
    #d["PSNOWDZ0"] = -1*(d["PSNOWDZ0"].sub(df_snowh, axis=0))
    # df_dz = d.cumsum(axis=1)
    # df_dz = df_dz + df.filter(regex=r"PSNOWDZ")

    # height = df_dz.loc[date].values
    #height = np.linspace(0, 39, 40, dtype=int)

    height = np.linspace(0, len(df_temp.columns) - 1, len(df_temp.columns), dtype=int)
    temp = df_temp.loc[date].values
    heat = df_heat.loc[date].values
    rho = df_rho.loc[date].values
    liq = df_liq.loc[date].values
    melt = df_melt.loc[date].values
    refrz = df_refrz.loc[date].values

    thruf = df["PSNOWTHRUFAL"][date]
    fsno = df["FLOW_SNOW"][date]
    fice = df["FLOW_ICE"][date]

    print(f'{save_dir}: PSNOWTHRUFAL={thruf}, FLOW_SNOW={fsno}, FLOW_ICE={fice}')

    return height,temp,heat,rho,liq, thruf, fsno, fice, melt, refrz
29
30
shell:
    "python generate_timeseries_ldasout.py -f {FILE_DIR} --save-dir={SAVE_DIR} --station-name={STATION_NAMES}"
SnakeMake From line 29 of main/Snakefile
37
38
shell:
    "python plot_timeseries_energybal.py --save-dir={SAVE_DIR} --station-name={STATION_NAMES} --plot-name={wildcards.pname} --date={D_ATE}"
SnakeMake From line 37 of main/Snakefile
ShowHide 3 more snippets with no or duplicated tags.

Login to post a comment if you would like to share your experience with this workflow.

Do you know this workflow well? If so, you can request seller status , and start supporting this workflow.

Free

Created: 1yr ago
Updated: 1yr ago
Maitainers: public
URL: https://github.com/tpletzer/wrfh_postprocess_workflow_ldasout
Name: wrfh_postprocess_workflow_ldasout
Version: 1
Badge:
workflow icon

Insert copied code into your website to add a link to this workflow.

Downloaded: 0
Copyright: Public Domain
License: MIT License
  • Future updates

Related Workflows

cellranger-snakemake-gke
snakemake workflow to run cellranger on a given bucket using gke.
A Snakemake workflow for running cellranger on a given bucket using Google Kubernetes Engine. The usage of this workflow ...