Workflow Steps and Code Snippets

11 tagged steps and code snippets that match keyword BSgenome.Hsapiens.UCSC.hg38

cfMeDIP-seq Circulating Methylome Data Post-processing Pipeline

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
' run_medestrand.R
Run MeDEStrand.

Usage:
    run_medestrand.R -b BAM -o OUTPUT -p PAIRED [ -m MEDESTRAND ]

Options:
    -b --bam BAM                Path to input BAM file
    -o --output OUTPUT          Output path (RDS file)
    -p --paired PAIRED          Sample is paired end or single end sqeuncing based on cohort
    -m --medestrand MEDESTRAND  Path to MeDEStrand Package
' -> doc

if (! interactive()) {
    library(docopt)
    args <- docopt(doc, version='Run MeDEStrand v 1.0')
    print(args)
} else {
    message('Running in interactive mode. Be sure to specify args manually.')
}

if (is.null(args[['medestrand']])) {
    library(MeDEStrand)
} else {
    devtools::load_all(args[['medestrand']])
}
library(GenomicRanges)
library(MEDIPS)
library(BSgenome.Hsapiens.UCSC.hg38)
library(tidyverse)


BIN_WIDTH = 300
allmainchrs = paste0('chr', c(1:22))
BSgenome = 'BSgenome.Hsapiens.UCSC.hg38'
paired_val = (args[['paired']] == "True")

methylset <- MeDEStrand.createSet(
    file = args[['bam']],
    BSgenome = BSgenome,
    uniq = 1,
    extend = 0,
    shift = 0,
    window_size = BIN_WIDTH,
    chr.select = allmainchrs,
    paired = paired_val
)

CS = MeDEStrand.countCG(pattern='CG', refObj=methylset)

absolute_methylation <- MeDEStrand.binMethyl(MSetInput = methylset, CSet = CS, Granges = FALSE)

MSet = methylset[[1]]
chr.select = MSet@chr_names
window_size = window_size(MSet)
chr_lengths = unname( seqlengths(BSgenome.Hsapiens.UCSC.hg38)[ seqnames(BSgenome.Hsapiens.UCSC.hg38@seqinfo)%in%chr.select ] )
no_chr_windows = ceiling(chr_lengths/window_size)
supersize_chr = cumsum(no_chr_windows)
chromosomes=chr.select

all.Granges.genomeVec = MEDIPS.GenomicCoordinates(supersize_chr, no_chr_windows, chromosomes, chr_lengths, window_size)
all.Granges.genomeVec$CF = CS@genome_CF
all.Granges.genomeVec$binMethyl= absolute_methylation

absolute_methylation_df <- as.data.frame(all.Granges.genomeVec)
colnames(absolute_methylation_df) <- c("bin_chr","bin_start","bin_end","bin_width","strand","cpg_count","bin_methyl")
absolute_methylation_df = absolute_methylation_df[, c("bin_chr","bin_start","bin_end","cpg_count","bin_methyl")]

write_tsv(absolute_methylation_df, file = args[['output']], col_names = TRUE)

rm(list = ls())
gc()
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
' run_MEDIPS.R
Run MEDIPS for counts and conduct MEDIPS QC.

Usage:
    run_MEDIPS.R -b BAM -o OUTPUT -q QCOUT -p PAIRED

Options:
    -b --bam BAM                Path to input BAM file
    -o --output OUTPUT          Output path (RDS file)
    -q --qcout QCOUT            Path to output QC results of sample
    -p --paired PAIRED          Sample is paired end or single end sqeuncing based on cohort
' -> doc

if (! interactive()) {
  library(docopt)
  args <- docopt(doc, version='Run MEDIPS v 1.0')
  print(args)
} else {
  message('Running in interactive mode. Be sure to specify args manually.')
}

library(GenomicRanges)
library(BSgenome)
library(BSgenome.Hsapiens.UCSC.hg38)
library(IRanges)
library(MEDIPS)
library(tidyverse)

BIN_WIDTH = 300
allmainchrs = paste0('chr', c(1:22))
BSgenome = 'BSgenome.Hsapiens.UCSC.hg38'
paired_val = (args[['paired']] == "True")

medips_set = MEDIPS.createSet(file = args[['bam']],
                                     BSgenome = BSgenome,
                                     extend = 0,
                                     shift = 0,
                                     uniq = 1,
                                     window_size = BIN_WIDTH,
                                     paired = paired_val,
                                     chr.select = allmainchrs)

chr.select = medips_set@chr_names
window_size = window_size(medips_set)
chr_lengths = unname( seqlengths(BSgenome.Hsapiens.UCSC.hg38)[ seqnames(BSgenome.Hsapiens.UCSC.hg38@seqinfo)%in%chr.select ] )
no_chr_windows = ceiling(chr_lengths/window_size)
supersize_chr = cumsum(no_chr_windows)
chromosomes = chr.select

all.Granges.genomeVec = MEDIPS.GenomicCoordinates(supersize_chr, no_chr_windows, chromosomes, chr_lengths, window_size)
all.Granges.genomeVec$counts = medips_set@genome_count
all.Granges.genomeVec$cpm = (medips_set@genome_count/medips_set@number_regions)*1000000

count_df <- as.data.frame(all.Granges.genomeVec)
colnames(count_df) <- c("bin_chr","bin_start","bin_end","bin_width","strand","bin_counts","bin_cpm")
count_df = count_df[, c("bin_chr","bin_start","bin_end","bin_counts","bin_cpm")]

write_tsv(count_df, file = args[['output']],  col_names = TRUE) 

medipsenrichment <- tryCatch({
  medips_enrichment = MEDIPS.CpGenrich(file = args[['bam']],
                                       BSgenome = BSgenome,
                                       extend = 0,
                                       shift = 0,
                                       uniq = 1,
                                       paired = paired_val,
                                       chr.select = allmainchrs)
  return(TRUE)
}, error = function(e){
  message('Error: unable to create medips enrichment paramaters')
  return(FALSE)
}
)

medips_coverage = MEDIPS.seqCoverage(file = args[['bam']],
                                     pattern = "CG",
                                     BSgenome = BSgenome,
                                     extend = 0,
                                     shift = 0,
                                     uniq = 1,
                                     paired = paired_val,
                                     chr.select = allmainchrs)

medips_saturation = MEDIPS.saturation(file= args[['bam']],
                                      BSgenome = BSgenome,
                                      extend = 0,
                                      shift = 0,
                                      uniq = 1,
                                      window_size = BIN_WIDTH,
                                      nit = 10,
                                      nrit = 1,
                                      empty_bins = TRUE,
                                      rank = FALSE,
                                      chr.select = allmainchrs,
                                      paired = paired_val)

#generating the seqCoverage just on the unique reads
cov.level = c(0, 1, 2, 3, 4, 5)
cov.res = medips_coverage$cov.res
numberReads = medips_coverage$numberReads
numberReadsWO = medips_coverage$numberReadsWO
numberReadsWO_percentage = round((numberReadsWO/numberReads * 100), digits = 2)

results = NULL
for (j in 1:length(cov.level)) {
  if (j == 1) {
    results = c(results, length(cov.res[cov.res <= cov.level[j]])/length(cov.res) * 100)
  }
  else {
    results = c(results, length(cov.res[cov.res > cov.level[j - 1] & cov.res <= cov.level[j]])/length(cov.res) * 100)
  }
}
results = c(results, length(cov.res[cov.res > cov.level[length(cov.level)]])/length(cov.res) * 100)

if(medipsenrichment){
  MEDIPS_EnrichmentScore_GoGe = medips_enrichment$enrichment.score.GoGe
  MEDIPS_EnrichmentScore_relH = medips_enrichment$enrichment.score.relH
}else{
  MEDIPS_EnrichmentScore_GoGe = NA
  MEDIPS_EnrichmentScore_relH = NA
}

QCstats = data.frame(numReads_Unique_MEDIPS = medips_coverage$numberReads,
                     MEDIPS_Enrichment = medipsenrichment,
                     EnrichmentScore_GoGe = MEDIPS_EnrichmentScore_GoGe,
                     EnrichmentScore_relH = MEDIPS_EnrichmentScore_relH,
                     Percent_CpG_Seq_Coverage_0x = results[1],
                     Percent_CpG_Seq_Coverage_1x = results[2],
                     Percent_CpG_Seq_Coverage_2x = results[3],
                     Percent_CpG_Seq_Coverage_3x = results[4],
                     Percent_CpG_Seq_Coverage_4x = results[5],
                     Percent_CpG_Seq_Coverage_5x = results[6],
                     Percent_CpG_Seq_Coverage_Over5x = results[7], 
                     Reads_do_not_cover_CpG = medips_coverage$numberReadsWO,
                     Percent_Reads_do_not_cover_CpG = numberReadsWO_percentage,
                     Estimated_Saturation_Correlation = medips_saturation$maxEstCor[2],
                     True_Saturation_Correlation = medips_saturation$maxTruCor[2])


write_tsv(QCstats, file=args[['qcout']],  col_names = TRUE) #save QC metrics

rm(list = ls())
gc()
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
' run_QSEA.R
Run QSEA for counts and beta value estimation and conduct MEDIPS QC.

Usage:
    run_QSEA.R -s SAMPLE -c CHROM -b BAM -o OUTPUT --count Count --beta BETA --qc QCOut [ --group GROUP ]

Options:
    -s --sample SAMPLE          Name of sample
    -c --chrom CHROM            Chromosome
    -b --bam BAM                Path to input BAM file
    -o --output OUTPUT          Output path

    --count Count               Output path for count data
    --beta BETA                 Output path for beta methylation estimate
    --qc QCOut                  Output path for qc matrix

    --group GROUP               Optional input of whether sample belongs to a group,
                                  such as "treatment" or "control"
' -> doc

if (! interactive()) {
  library(docopt)
  args <- docopt(doc, version='Run QSEA v 1.0')
  print(args)
} else {
  message('Running in interactive mode. Be sure to specify args manually.')
}

library(GenomicRanges)
library(BSgenome)
library(BSgenome.Hsapiens.UCSC.hg38)
library(IRanges)
library(qsea)
library(tidyverse)
library(BiocParallel)

register(MulticoreParam(workers=4))

BIN_WIDTH = 300
chrom = args[['chrom']]
BSgenome = 'BSgenome.Hsapiens.UCSC.hg38'
mapq = 30 

if (!is.null(args[['group']])) {
  sample_group = args[['group']]
} else {
  sample_group = "unspecified"
}

sample_info <- data.frame(
  sample_name = args[['sample']],
  file_name = args[['bam']],
  group = sample_group
)

qseaset <- createQseaSet(
  sampleTable = sample_info,
  BSgenome = BSgenome,
  window_size = BIN_WIDTH,
  chr.select = chrom,
)

qseaset = addCoverage(qseaset, uniquePos = TRUE, paired = TRUE, parallel = TRUE, minMapQual = mapq)
qseaset = addPatternDensity(qseaset, "CG", name = "CpG")
qseaset = addLibraryFactors(qseaset)
qseaset = addOffset(qseaset, enrichmentPattern = "CpG")

wd = which(getRegions(qseaset)$CpG_density>1 &
           getRegions(qseaset)$CpG_density<15)
signal = (15-getRegions(qseaset)$CpG_density[wd])*.55/15+.25
signal = matrix(signal,nrow=length(signal),ncol=length(getSampleNames(qseaset)))

qseaenrichment <- tryCatch({
  qseaset = addEnrichmentParameters(
    qseaset,
    enrichmentPattern="CpG", 
    windowIdx=wd,
    signal=signal
  ) 
  return(TRUE)
}, error = function(e){
  message('Error: unable to create enrichment paramaters')
  return(FALSE)
}
)

if(qseaenrichment){
  output_beta <- makeTable(
    qseaset,
    norm_methods = c("beta"),
    samples = getSampleNames(qseaset)
  )
  output_counts <- makeTable(
    qseaset,
    norm_methods = c("counts","rpm"),
    samples = getSampleNames(qseaset)
  )
}else{
  output_counts <- makeTable(
    qseaset,
    norm_methods = c("counts","rpm"),
    samples = getSampleNames(qseaset)
  )
  output_beta <- output_counts[,1:4]
  output_beta$beta <- rep(NA, nrow(output_beta))
  colnames(output_beta) <- c("chr","window_start","window_end","CpG_density",paste(args[['sample']],"_beta",sep = ""))
}

qseaset_percentfragsbackground = getOffset(qseaset) * 100

QCstats = data.frame(numReads_Unique_QSEA = qseaset@libraries$file_name[1,"valid_fragments"],
                     QSEA_Percent_Fragments_due_Background = qseaset_percentfragsbackground,
                     QSEA_Enrichment = qseaenrichment)

## write out

setwd(args[['output']])

write_tsv(output_counts, file = args[['count']], col_names = TRUE)

write_tsv(output_beta, file = args[['beta']], col_names = TRUE)



write_tsv(QCstats, file = args[['qc']],  col_names = TRUE) #save QC metrics

if(qseaenrichment){
  png(file = paste("EnrichmentProfile",args[['chrom']],".png", sep = ""), width = 480, height = 480, units = "px")
  plotEPmatrix(qseaset)
  dev.off()
}

rm(list = ls())
gc()

Easy Copy Number Analysis (EaCoN) Pipeline

 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
renv::activate()
library(EaCoN)


# 0.2 -- Parse Snakemake arguments
input <- snakemake@input
params <- snakemake@params
nthreads <- snakemake@threads
output <- snakemake@output


# 0.3 -- Load platform specific dependencies
if (grepl("snp|cytoscan|oncoscan", params$array_type, ignore.case=TRUE))
    library(affy.CN.norm.data)

if (grepl('snp', params$array_type)) {
        library(apt.snp6.1.20.0)
        library(rcnorm)
        library(GenomeWideSNP.6.na35.r1)
}
## FIXME:: Add conditional dependencies for other platforms

switch(params$reference,
    'BSgenome.Hsapiens.UCSC.hg19'=library(BSgenome.Hsapiens.UCSC.hg19),
    'BSgenome.Hsapiens.UCSC.hg38'={
        if (grepl("snp", params$array_type, ignore.case=TRUE))
            stop("Must use BSgenome.Hsapiens.UCSC.hg19 for GenomeWide SNP6 arrays!")
        library(BSgenome.Hsapiens.UCSC.hg38)
    }
)


# 1 -- Load or create the metadata file specifying CEL paths
if (file.exists(input$pairs_file)) {
    pairs_df <- read.table(input$pairs_file, sep="\t", header=TRUE,
        stringsAsFactors=FALSE)
} else {
    # find all CEL files in the raw data
    cel_file_paths <- list.files(params$rawdata, pattern="*.CEL$",
        recursive=TRUE, full.names=TRUE)
    pairs_df <- data.frame(
        cel_files=cel_file_paths,
        # assumes the second element in path is the sample name
        SampleName=vapply(cel_file_paths, FUN=function(x) strsplit(x)[[1]][2],
            FUN.VALUE=character(1))
    )
    if (!is.null(input$pairs_file) || input$paris_file == "") {
        # create path if it doesn't exist
        pairs_path <- dirname(input$pairs_file)
        if (!file.exists(pairs_path)) dir.create(pairs_path, recursive=TRUE)
        # write out a pairs file
        write.table(pairs_df, input$pairs_file)
    }
}


# 2 -- Format the paths in the pairs_file to match this project directory
#   structure from config.yaml
if (grepl('cytocscan|oncoscan', params$array_type, ignore.case=TRUE)) {
    stopifnot(c("ATChannelCel", "GCChannelCel", "SampleName") %in% colnames(pairs_df))
    # remove existing path, if there is one
    pairs_df$ATChannelCel <- gsub("^.*\\/", "", pairs_df$ATChannelCel)
    pairs_df$GCChannelCel <- gsub("^.*\\/", "", pairs_df$GCChannelCel)
    # create a new path relative to specified rawdata directory
    pairs_df$GCChannelCel <- file.path(getwd(), params$rawdata,
        pairs_df$GCChannelCel)
} else if (grepl('snp6', params$array_type, ignore.case=TRUE)) {
    stopifnot(all(c("cel_files", "SampleName") %in% colnames(pairs_df)))
    # pairs_df$cel_files <- gsub("^.*\\/", "", pairs_df$cel_files)
    # pairs_df$cel_files <- file.path(getwd(), params$rawdata, pairs_df$cel_files)
}
# output the file to temporary storage so it can be read by EaCoN
pairs_file <- file.path(tempdir(), "CEL_pairs_file.csv")
write.table(pairs_df, file=pairs_file, sep="\t")


# 3 -- Preprocess and normalize the raw data; does
if (grepl('cytoscan', params$array_type, ignore.case=TRUE)) {
    EaCoN:::CS.Process.Batch(pairs_file,
        nthread=nthreads, out.dir=params$procdata, force=TRUE,
        cluter.type=params$cluster_type)
} else if (grepl('oncoscan', params$array_type, ignore.case=TRUE)) {
    EaCoN:::OS.Process.Batch(pairs_file,
        nthread=nthreads, out.dir=params$procdata, force=TRUE,
        cluster.type=params$cluster_type)
} else if (grepl('snp', params$array_type, ignore.case=TRUE)) {
    EaCoN:::SNP6.Process.Batch(pairs_file, out.dir=params$procdata, force=TRUE,
        nthread=nthreads, cluster.type=params$cluster_type)
} else if (grepl('wes', params$array_type, ignore.case=TRUE)) {
    stop("WES has not been implemented in this pipeline yet, please see
        https://github.com/gustaveroussy/EaCoN for information on
        setting up your own analysis script.")
} else {
    stop("Supported assay families are wes, cytoscan, oncoscan and snp6")
}

Reproducible reanalysis of a combined ChIP-Seq & RNA-Seq data set

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
suppressMessages({
    library(rtracklayer)
    library(assertthat)
    library(BSgenome.Hsapiens.UCSC.hg38)
})

{
    outfile <- snakemake@output[[1]]
    assert_that(is.character(outfile))

    mySession <- browserSession()
    genome(mySession) <- "hg38"
    tab <- getTable(ucscTableQuery(mySession, "cpgIslandExtUnmasked"))
    gr <- makeGRangesFromDataFrame(tab, start.field = "chromStart", end.field = "chromEnd",
                                   starts.in.df.are.0based = TRUE, keep.extra.columns = TRUE,
                                   seqinfo = seqinfo(BSgenome.Hsapiens.UCSC.hg38))
    ## GRanges already knows the length of each feature, so this field is
    ## redundant.
    assert_that(all(width(gr) == gr$length))
    mcols(gr)$length <- NULL
    seqinfo(gr) <- seqinfo(BSgenome.Hsapiens.UCSC.hg38)

    saveRDS(gr, outfile)
}

Run MeDEStrand with bedpe input as part of PLBR database workflow (v0.2.0)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
library(docopt)
## adapted from https://github.com/oicr-gsi/wf_cfmedip/blob/master/workflow/runMedips/runMedips.r

doc <- "Get MEDIPS QC metrics.
Usage:
    QC_MEDIPS.R --bamFile <FILE> --outputDir <DIR> --windowSize <SIZE> [ --genome <GENOME> ]

Options:
    --bamFile FILE       Aligned, sorted, filtered reads (bam)
    --outputDir DIR      Path to output folder
    --windowSize SIZE    Size of genomic windows (bp, e.g. 300)
    --genome GENOME      Path to a folder containing a custom BSgenome as a package, 
                             which will be loaded using devtools::load_all();
                             or the name of BSgenome (usually BSgenome.Hsapiens.UCSC.hg38
                             or BSgenome.Athaliana.TAIR.TAIR9)
    --help               show this help text
"
opt <- docopt(doc)

library(tidyverse)
library(gtools)
library(MEDIPS)
library(BSgenome.Hsapiens.UCSC.hg38)

#if (file.exists(paste(opt[['genome']], 'DESCRIPTION', sep='/'))) {
#    devtools::load_all(opt[['genome']])
#    bsgenome <- getBSgenome(basename(opt[['genome']]))
#} else {
#    bsgenome <- getBSgenome(opt[['genome']])
#}

if (!file.exists(opt$bamFile)){
  stop(paste0("ERROR: bam file not found ", opt$bamFile), call.=FALSE)
}

## get user parameters
bam_file = opt$bamFile
ws = as.numeric(opt$windowSize)
out_dir = paste0(opt$outputDir, "/")
chr.select=paste0("chr", c(1:22,"X","Y"))
#chr.select=c("chr1","chr22")

BSgenome="BSgenome.Hsapiens.UCSC.hg38"
uniq = 0 ## WARNING: default settings normalize the data, must be set to 0 to disable this transformation
extend = 0 ## relevant for single-end: https://support.bioconductor.org/p/81098/
shift = 0
paired = TRUE

# disables the scientific notation to avoid powers in genomic coordinates (i.e. 1e+10)
options(scipen = 999)

## create MEDIPS set ###################################
message("Processing MEDIPS QC metrics: window size: ", ws)
MeDIPset =
  MEDIPS.createSet(file = bam_file,
                   BSgenome = BSgenome,
                   uniq = uniq,
                   extend = extend,
                   shift = shift,
                   paired = paired,
                   window_size = ws,
                   chr.select = chr.select)

fname <- unlist(strsplit(basename(bam_file),split="\\."))[1]
# fname

## coupling set: maps CG densities across the genome
CS = MEDIPS.couplingVector(pattern="CG", refObj=MeDIPset)

## saturation analysis #################################
## whether a given set of mapped reads is sufficient to generate a saturated and reproducible coverage profile
## calculates Pearson correlation of coverage profile between exclusive sets A and B from a sample

sr =
  MEDIPS.saturation(file = bam_file,
                    BSgenome = BSgenome,
                    uniq = uniq,
                    extend = extend,
                    shift = shift,
                    paired = paired,
                    window_size = ws,
                    chr.select = chr.select,
                    nit = 10, nrit = 1, empty_bins = TRUE, rank = FALSE)
print(paste0("Estimated correlation is: ", round(sr$maxEstCor[2], 5)))
print(paste0("True correlation is: ", round(sr$maxTruCor[2],5)))

pdf(paste0(out_dir, fname, ".MEDIPS.SaturationPlot.pdf"), width = 5, height = 4)
MEDIPS.plotSaturation(sr)
dev.off()

## sequence coverage analysis ##########################
## outputs #of CpGs covered/not covered in a sample

cr =
  MEDIPS.seqCoverage(file = bam_file,
                     pattern = "CG",
                     BSgenome = BSgenome,
                     uniq = uniq,
                     extend = extend,
                     shift = shift,
                     paired = paired,
                     chr.select = chr.select)
print(paste0("Total number of reads: ", cr$numberReads))
print(paste0("Number of reads NOT covering a CpG: ", cr$numberReadsWO))
print(paste0("Fraction of reads NOT covering a CpG: ", round(cr$numberReadsWO / cr$numberReads, 5)))

print(paste0("Number of CpGs in reference: ", length(cr$cov.res)))
print(paste0("Number of CpG not covered by a read: ", length(cr$cov.res[cr$cov.res < 1])))
print(paste0("Number of CpG covered by 1 read: ", length(cr$cov.res[cr$cov.res == 1])))
print(paste0("Number of CpG covered by 2 reads: ", length(cr$cov.res[cr$cov.res == 2])))
print(paste0("Number of CpG covered by 3 reads: ", length(cr$cov.res[cr$cov.res == 3])))
print(paste0("Number of CpG covered by 4 reads: ", length(cr$cov.res[cr$cov.res == 4])))
print(paste0("Number of CpG covered by 5 reads: ", length(cr$cov.res[cr$cov.res == 5])))
print(paste0("Number of CpG covered by >5 reads: ", length(cr$cov.res[cr$cov.res > 5])))

print(paste0("Fraction of CpG not covered by a read: ", round(length(cr$cov.res[cr$cov.res < 1]) / length(cr$cov.res),5)))
print(paste0("Fraction of CpG covered by 1 read: ", round(length(cr$cov.res[cr$cov.res == 1]) / length(cr$cov.res),5)))
print(paste0("Fraction of CpG covered by 2 reads: ", round(length(cr$cov.res[cr$cov.res == 2]) / length(cr$cov.res),5)))
print(paste0("Fraction of CpG covered by 3 reads: ", round(length(cr$cov.res[cr$cov.res == 3]) / length(cr$cov.res),5)))
print(paste0("Fraction of CpG covered by 4 reads: ", round(length(cr$cov.res[cr$cov.res == 4]) / length(cr$cov.res),5)))
print(paste0("Fraction of CpG covered by 5 reads: ", round(length(cr$cov.res[cr$cov.res == 5]) / length(cr$cov.res),5)))
print(paste0("Fraction of CpG covered by >5 reads: ", round(length(cr$cov.res[cr$cov.res > 5]) / length(cr$cov.res),5)))


pdf(paste0(out_dir, fname, ".MEDIPS.seqCovPie.pdf"), width = 5, height = 4)
MEDIPS.plotSeqCoverage(seqCoverageObj=cr,
                       type="pie",
                       cov.level = c(0,1,2,3,4,5),
                       main="Sequence pattern coverage, pie chart")
dev.off()

pdf(paste0(out_dir, fname, ".MEDIPS.seqCovHist.pdf"), width = 5, height = 4)
MEDIPS.plotSeqCoverage(seqCoverageObj=cr,
                       type="hist",
                       t = 15,
                       main="Sequence pattern coverage, histogram")
dev.off()

## CpG enrichment #####################################
## test CpG enrichment of given set of short reads covering a set of genomic regions vs reference genome
## regions.relH - relative freq of CpGs within a sample's immunoprecipitated regions
## genome.relH - relative freq of CpGs within reference genome
## enrichment.score.relH - regions.relH/genome.relH
## regions.GoGe - obs/exp ratio of CpGs within a sample's immunoprecipitated regions
## genome.GoGe - obs/exp ratio of CpGs within genomic regions
## enrichment.score.GoGe - regions.GoGe/genome.GoGe
## (relH and GoGe = 2 different ways of calculating enrichment)


## original MEDIPS.CpGenrich has IRanges issue
## this is adapted from script by Nick Cheng
MEDIPS.CpGenrichNew <-
  function(file=NULL, BSgenome=NULL, extend=0, shift=0, uniq=1e-3, chr.select=NULL, paired=F){

    ## Proof correctness....
    if(is.null(BSgenome)){stop("Must specify a BSgenome library.")}

    ## Read region file
    fileName=unlist(strsplit(file, "/"))[length(unlist(strsplit(file, "/")))]
    path=paste(unlist(strsplit(file, "/"))[1:(length(unlist(strsplit(file, "/"))))-1], collapse="/")
    if(path==""){path=getwd()}
    if(!fileName%in%dir(path)){stop(paste("File", fileName, " not found in", path, sep =" "))}

    dataset = get(ls(paste("package:", BSgenome, sep = ""))[1])

    if(!paired){GRange.Reads = getGRange(fileName, path, extend, shift, chr.select, dataset, uniq)}
    else{GRange.Reads = getPairedGRange(fileName, path, extend, shift, chr.select, dataset, uniq)}

    ## Sort chromosomes
    if(length(unique(seqlevels(GRange.Reads)))>1){chromosomes=mixedsort(unique(seqlevels(GRange.Reads)))}
    if(length(unique(seqlevels(GRange.Reads)))==1){chromosomes=unique(seqlevels(GRange.Reads))}

    ## Get chromosome lengths for all chromosomes within data set.
    cat(paste("Loading chromosome lengths for ",BSgenome, "...\n", sep=""))

    chr_lengths=as.numeric(seqlengths(dataset)[chromosomes])

    ranges(GRange.Reads) <- restrict(ranges(GRange.Reads),+1)

    ##Calculate CpG density for regions
    total=length(chromosomes)
    cat("Calculating CpG density for given regions...\n")

    ## new code ##################################
    readsChars <- unlist(getSeq(dataset, GRange.Reads, as.character=TRUE))

    regions.CG = sum(vcountPattern("CG",readsChars))
    regions.C  = sum(vcountPattern("C",readsChars))
    regions.G  = sum(vcountPattern("G",readsChars))
    all.genomic= sum(width(readsChars))

    nReads <- length(readsChars)
    ###############################################

    regions.relH=as.numeric(regions.CG)/as.numeric(all.genomic)*100
    regions.GoGe=(as.numeric(regions.CG)*as.numeric(all.genomic))/(as.numeric(regions.C)*as.numeric(regions.G))

    cat(paste("Calculating CpG density for the reference genome",
              BSgenome, "...\n", sep = " "))

    CG <- DNAStringSet("CG")
    pdict0 <- PDict(CG)
    params <- new("BSParams", X = dataset, FUN = countPDict, simplify = TRUE, exclude = c("rand", "chrUn"))
    genome.CG=sum(bsapply(params, pdict = pdict0))
    params <- new("BSParams", X = dataset, FUN = alphabetFrequency, exclude = c("rand", "chrUn"), simplify=TRUE)
    alphabet=bsapply(params)
    genome.l=sum(as.numeric(alphabet))
    genome.C=as.numeric(sum(alphabet[2,]))
    genome.G=as.numeric(sum(alphabet[3,]))
    genome.relH=genome.CG/genome.l*100
    genome.GoGe=(genome.CG*genome.l)/(genome.C*genome.G);

    ##Calculate CpG density for reference genome

    enrichment.score.relH=regions.relH/genome.relH
    enrichment.score.GoGe=regions.GoGe/genome.GoGe

    gc()
    return(list(genome=BSgenome,
                regions.CG=regions.CG,
                regions.C=regions.C,
                regions.G=regions.G,
                regions.relH=regions.relH,
                regions.GoGe=regions.GoGe,
                genome.C=genome.C,
                genome.G=genome.G,
                genome.CG=genome.CG,
                genome.relH=genome.relH,
                genome.GoGe=genome.GoGe,
                enrichment.score.relH=enrichment.score.relH,
                enrichment.score.GoGe=enrichment.score.GoGe))
  }

er =
  MEDIPS.CpGenrichNew(file = bam_file,
                   BSgenome = BSgenome,
                   uniq = uniq,
                   extend = extend,
                   shift = shift,
                   paired = paired,
                   chr.select = chr.select)

## medips.satr.est_cor and medips.satr.tru_cor involve randomness, will not give identical results on repeat runs
## rest of metrics should be identical on repeat runs

message("Writing out MEDIPS QC metrics: saturation, CpG coverage and CpG enrichment.")
QC_MEDIPS.df =
  data.frame(QC_type = rep("medips_QC", 33),
             metrics = c("ref_genome",
                         "satr.est_cor",
                         "satr.tru_cor",
                         "CpG_cov.totalNumReads",
                         "CpG_cov.numReadsWoCpG",
                         "CpG_cov.fracReadsWoCpG",
                         "CpG_cov.numCpGinRef",
                         "CpG_cov.numCpGwoReads",
                         "CpG_cov.numCpGw1read",
                         "CpG_cov.numCpGw2Reads",
                         "CpG_cov.numCpGw3Reads",
                         "CpG_cov.numCpGw4Reads",
                         "CpG_cov.numCpGw5Reads",
                         "CpG_cov.numCpGgt5Reads",
                         "CpG_cov.fracCpGwoReads",
                         "CpG_cov.fracCpGw1read",
                         "CpG_cov.fracCpGw2Reads",
                         "CpG_cov.fracCpGw3Reads",
                         "CpG_cov.fracCpGw4Reads",
                         "CpG_cov.fracCpGw5Reads",
                         "CpG_cov.fracCpGgt5Reads",
                         "enrich.regions.C",
                         "enrich.regions.G",
                         "enrich.regions.CG",
                         "enrich.genome.C",
                         "enrich.genome.G",
                         "enrich.genome.CG",
                         "enrich.regions.relH",
                         "enrich.genome.relH",
                         "enrich.regions.GoGe",
                         "enrich.genome.GoGe",
                         "enrich.enrichment.score.relH",
                         "enrich.enrichment.score.GoGe"),
             values = c(er$genome,
                        round(sr$maxEstCor[2], 5),
                        round(sr$maxTruCor[2], 5),
                        cr$numberReads,
                        cr$numberReadsWO,
                        round(cr$numberReadsWO / cr$numberReads, 5),
                        length(cr$cov.res),
                        length(cr$cov.res[cr$cov.res < 1]),
                        length(cr$cov.res[cr$cov.res == 1]),
                        length(cr$cov.res[cr$cov.res == 2]),
                        length(cr$cov.res[cr$cov.res == 3]),
                        length(cr$cov.res[cr$cov.res == 4]),
                        length(cr$cov.res[cr$cov.res == 5]),
                        length(cr$cov.res[cr$cov.res > 5]),
                        round(length(cr$cov.res[cr$cov.res < 1]) / length(cr$cov.res), 5),
                        round(length(cr$cov.res[cr$cov.res == 1]) / length(cr$cov.res), 5),
                        round(length(cr$cov.res[cr$cov.res == 2]) / length(cr$cov.res), 5),
                        round(length(cr$cov.res[cr$cov.res == 3]) / length(cr$cov.res), 5),
                        round(length(cr$cov.res[cr$cov.res == 4]) / length(cr$cov.res), 5),
                        round(length(cr$cov.res[cr$cov.res == 5]) / length(cr$cov.res), 5),
                        round(length(cr$cov.res[cr$cov.res > 5]) / length(cr$cov.res), 5),
                        er$regions.C,
                        er$regions.G,
                        er$regions.CG,
                        er$genome.C,
                        er$genome.G,
                        er$genome.CG,
                        round(er$regions.relH, 5),
                        round(er$genome.relH, 5),
                        round(er$regions.GoGe, 5),
                        round(er$genome.GoGe, 5),
                        round(er$enrichment.score.relH, 5),
                        round(er$enrichment.score.GoGe, 5)))
names(QC_MEDIPS.df) = c("QC_type", "metrics", fname)
# QC_MEDIPS.df

write.table(QC_MEDIPS.df, paste0(out_dir, fname, "_QC_MEDIPS.csv"), row.names=F, quote=F, sep = '\t')
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
library(docopt)

doc <- "Usage:
MeDEStrandBEDPE.r --inputFile <FILE> --outputFile <FILE> --windowSize <SIZE> --chr_select <CHRS>

--inputFile FILE     Aligned, sorted, filtered bam, or bedpelean
--outputFile FILE    Bedgraph methylation profile
--windowSize SIZE    Size of genomic windows for methylation profiling
--chr_select CHRS    Chromosomes to analyze
--help               show this help text"
opt <- docopt(doc)

#if (!file.exists(opt$inputFile)){
#  stop(paste0("bam or bedpe file not found ",opt$inputFile), call.=FALSE)
#}
#if (!file.exists(opt$outputDir)){
#  dir.create(opt$outputDir)
#}

library(MeDEStrandBEDPE)
library("BSgenome.Hsapiens.UCSC.hg38")
library(GenomicRanges)

args=(commandArgs(TRUE))

# Retrieve user parameters
sample <- opt$inputFile
output <- opt$outputFile
ws <- as.numeric(opt$windowSize)
paired <- TRUE

#  Adapted from: https://github.com/jxu1234/MeDEStrand/blob/master/R/MeDEStrand.createSet.R
#  The original function  uses hardcoded hg19; here, we switch to hg38
MeDEStrand.binMethyl_hg38 <- function(MSetInput=NULL, CSet=NULL, ccObj=NULL, Granges = FALSE){
  for (i in 1:2) {
    if(is.list(MSetInput)){
      MSet=MSetInput[[i]]
    }
    signal =  genome_count(MSet)
    coupling = genome_CF(CSet)
    ccObj = MeDEStrand.calibrationCurve(MSet=MSet, CSet=CSet, input=F)
    index.max = which(ccObj$mean_signal== max(ccObj$mean_signal[1:ccObj$max_index]))
    MS = ccObj$mean_signal[1:index.max]
    CF = ccObj$coupling_level[1:index.max]
    model.data = data.frame( model.MS =  MS/max( MS), model.CF = CF)
    logistic.fit = glm(model.MS ~ model.CF, family=binomial(logit), data = model.data)
    if (i == 1) { cat("Estimating and correcting CG bias for reads mapped to the DNA positive strand...\n") }
    if (i == 2) { cat("Estimating and correcting CG bias for reads mapped to the DNA negative strand...\n") }
    estim=numeric(length(ccObj$mean_signal))  # all 0's
    low_range=1:index.max
    estim[low_range]=ccObj$mean_signal[low_range]
    high_range = ( length(low_range)+1 ):length(estim)
    y.predict = predict(logistic.fit, 
                        data.frame(model.CF = ccObj$coupling_level[high_range]), 
                        type ="response")*ccObj$mean_signal[ccObj$max_index]
    estim[high_range] = y.predict
    signal=signal/estim[coupling+1]
    signal[coupling==0]=0
    signal = log2(signal)
    signal[is.na(signal)] = 0
    minsignal=min(signal[signal!=-Inf])
    signal[signal!=-Inf]=signal[signal!=-Inf]+abs(minsignal)
    maxsignal = quantile(signal[signal!=Inf], 0.9995  )
    signal[signal!=Inf & signal>maxsignal]=maxsignal
    signal=round((signal/maxsignal), digits=2)
    signal[signal==-Inf | signal ==Inf]=0
    if (i == 1) {pos.signal = signal}
    if (i == 2) {neg.signal = signal}
  }
  merged.signal = (pos.signal+neg.signal)/2
  if(!Granges) {
    return(merged.signal)}else{
      chr.select = MSet@chr_names
      window_size = window_size(MSet)
      chr_lengths=unname(seqlengths(BSgenome.Hsapiens.UCSC.hg38)[ seqnames(BSgenome.Hsapiens.UCSC.hg38@seqinfo)%in%chr.select])
      no_chr_windows = ceiling(chr_lengths/window_size)
      supersize_chr = cumsum(no_chr_windows)
      chromosomes=chr.select
      all.Granges.genomeVec = MEDIPS.GenomicCoordinates(supersize_chr, no_chr_windows, chromosomes, chr_lengths, window_size)
      all.Granges.genomeVec$CF = CS@genome_CF
      all.Granges.genomeVec$binMethyl= merged.signal
      return( all.Granges.genomeVec )
    }
}

# Disables the scientific notation to avoid powers in genomic coordinates (i.e. 1e+10)
options(scipen = 999)

# Set global variables for importing short reads. For details, in R console, type "?MeDEStrand.createSet"
BSgenome="BSgenome.Hsapiens.UCSC.hg38"
uniq = 1
extend = 200
shift = 0
## { change this later to be dynamic }
chr.select = strsplit(opt$chr_select, " ")[[1]]
print(chr.select)
#chr.select = paste0("chr", c(1:22,"X","Y"))

#fname <- unlist(strsplit(basename(opt$inputFile),split="\\."))[1]
#df_for_wig <- NULL
#bed_wig_output <- paste0(opt$outputDir,"/MeDEStrand_hg38_",fname,"_ws",ws,"_wig.bed")

output_df = NULL

tryCatch({

  # Create a MeDIP set
  MeDIP_seq = MeDEStrand.createSet(file=opt$inputFile, BSgenome=BSgenome, extend=extend, shift=shift, uniq=uniq, window_size=ws, chr.select=chr.select, paired=paired)

  #  Count CpG pattern in the bins
  CS = MeDEStrand.countCG(pattern="CG", refObj=MeDIP_seq)

  # Infer genome-wide absolute methylation levels:
  #result.methylation = MeDEStrand.binMethyl(MSetInput = MeDIP_seq, CSet = CS, Granges = TRUE)
  result.methylation = MeDEStrand.binMethyl_hg38(MSetInput = MeDIP_seq, CSet = CS, Granges = TRUE)

  # Create a dataframe from the previous GRanges object.
  # Warning: GRanges and UCSC BED files use different conventions for the genomic coordinates
  # GRanges use 1-based intervals (chr1:2-8 means the 2nd till and including the 8th base of chr1, i.e. a range of length of 7 bases)
  # UCSC bed-files use 0-based coordinates (chr1:2-8 means the 3rd base till and including the 8th base, i.e. a range of length of 6 bases)

  # Dataframe for generating a bed file used to generate then a wig file
  output_df <- data.frame(seqnames=seqnames(result.methylation),
                          starts=start(result.methylation)-1,
                          ends=end(result.methylation),
                          scores=elementMetadata(result.methylation)$binMethyl)

}, error = function(e){
  message("Error: MeDEStrand CpG density normalization failed due to small number of reads")
})

write.table(output_df, file = output, quote=F, sep="\t", row.names=F, col.names=F)

Run MedRemix with bedpe input as part of PLBR database workflow (v0.2.0)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
library(docopt)
## adapted from https://github.com/oicr-gsi/wf_cfmedip/blob/master/workflow/runMedips/runMedips.r

doc <- "Get MEDIPS QC metrics.
Usage:
    QC_MEDIPS.R --bamFile <FILE> --outputDir <DIR> --windowSize <SIZE> [ --genome <GENOME> ]

Options:
    --bamFile FILE       Aligned, sorted, filtered reads (bam)
    --outputDir DIR      Path to output folder
    --windowSize SIZE    Size of genomic windows (bp, e.g. 300)
    --genome GENOME      Path to a folder containing a custom BSgenome as a package, 
                             which will be loaded using devtools::load_all();
                             or the name of BSgenome (usually BSgenome.Hsapiens.UCSC.hg38
                             or BSgenome.Athaliana.TAIR.TAIR9)
    --help               show this help text
"
opt <- docopt(doc)

library(tidyverse)
library(gtools)
library(MEDIPS)
library(BSgenome.Hsapiens.UCSC.hg38)

#if (file.exists(paste(opt[['genome']], 'DESCRIPTION', sep='/'))) {
#    devtools::load_all(opt[['genome']])
#    bsgenome <- getBSgenome(basename(opt[['genome']]))
#} else {
#    bsgenome <- getBSgenome(opt[['genome']])
#}

if (!file.exists(opt$bamFile)){
  stop(paste0("ERROR: bam file not found ", opt$bamFile), call.=FALSE)
}

## get user parameters
bam_file = opt$bamFile
ws = as.numeric(opt$windowSize)
out_dir = paste0(opt$outputDir, "/")
chr.select=paste0("chr", c(1:22,"X","Y"))
#chr.select=c("chr1","chr22")

BSgenome="BSgenome.Hsapiens.UCSC.hg38"
uniq = 0 ## WARNING: default settings normalize the data, must be set to 0 to disable this transformation
extend = 0 ## relevant for single-end: https://support.bioconductor.org/p/81098/
shift = 0
paired = TRUE

# disables the scientific notation to avoid powers in genomic coordinates (i.e. 1e+10)
options(scipen = 999)

## create MEDIPS set ###################################
message("Processing MEDIPS QC metrics: window size: ", ws)
MeDIPset =
  MEDIPS.createSet(file = bam_file,
                   BSgenome = BSgenome,
                   uniq = uniq,
                   extend = extend,
                   shift = shift,
                   paired = paired,
                   window_size = ws,
                   chr.select = chr.select)

fname <- unlist(strsplit(basename(bam_file),split="\\."))[1]
# fname

## coupling set: maps CG densities across the genome
CS = MEDIPS.couplingVector(pattern="CG", refObj=MeDIPset)

## saturation analysis #################################
## whether a given set of mapped reads is sufficient to generate a saturated and reproducible coverage profile
## calculates Pearson correlation of coverage profile between exclusive sets A and B from a sample

sr =
  MEDIPS.saturation(file = bam_file,
                    BSgenome = BSgenome,
                    uniq = uniq,
                    extend = extend,
                    shift = shift,
                    paired = paired,
                    window_size = ws,
                    chr.select = chr.select,
                    nit = 10, nrit = 1, empty_bins = TRUE, rank = FALSE)
print(paste0("Estimated correlation is: ", round(sr$maxEstCor[2], 5)))
print(paste0("True correlation is: ", round(sr$maxTruCor[2],5)))

pdf(paste0(out_dir, fname, ".MEDIPS.SaturationPlot.pdf"), width = 5, height = 4)
MEDIPS.plotSaturation(sr)
dev.off()

## sequence coverage analysis ##########################
## outputs #of CpGs covered/not covered in a sample

cr =
  MEDIPS.seqCoverage(file = bam_file,
                     pattern = "CG",
                     BSgenome = BSgenome,
                     uniq = uniq,
                     extend = extend,
                     shift = shift,
                     paired = paired,
                     chr.select = chr.select)
print(paste0("Total number of reads: ", cr$numberReads))
print(paste0("Number of reads NOT covering a CpG: ", cr$numberReadsWO))
print(paste0("Fraction of reads NOT covering a CpG: ", round(cr$numberReadsWO / cr$numberReads, 5)))

print(paste0("Number of CpGs in reference: ", length(cr$cov.res)))
print(paste0("Number of CpG not covered by a read: ", length(cr$cov.res[cr$cov.res < 1])))
print(paste0("Number of CpG covered by 1 read: ", length(cr$cov.res[cr$cov.res == 1])))
print(paste0("Number of CpG covered by 2 reads: ", length(cr$cov.res[cr$cov.res == 2])))
print(paste0("Number of CpG covered by 3 reads: ", length(cr$cov.res[cr$cov.res == 3])))
print(paste0("Number of CpG covered by 4 reads: ", length(cr$cov.res[cr$cov.res == 4])))
print(paste0("Number of CpG covered by 5 reads: ", length(cr$cov.res[cr$cov.res == 5])))
print(paste0("Number of CpG covered by >5 reads: ", length(cr$cov.res[cr$cov.res > 5])))

print(paste0("Fraction of CpG not covered by a read: ", round(length(cr$cov.res[cr$cov.res < 1]) / length(cr$cov.res),5)))
print(paste0("Fraction of CpG covered by 1 read: ", round(length(cr$cov.res[cr$cov.res == 1]) / length(cr$cov.res),5)))
print(paste0("Fraction of CpG covered by 2 reads: ", round(length(cr$cov.res[cr$cov.res == 2]) / length(cr$cov.res),5)))
print(paste0("Fraction of CpG covered by 3 reads: ", round(length(cr$cov.res[cr$cov.res == 3]) / length(cr$cov.res),5)))
print(paste0("Fraction of CpG covered by 4 reads: ", round(length(cr$cov.res[cr$cov.res == 4]) / length(cr$cov.res),5)))
print(paste0("Fraction of CpG covered by 5 reads: ", round(length(cr$cov.res[cr$cov.res == 5]) / length(cr$cov.res),5)))
print(paste0("Fraction of CpG covered by >5 reads: ", round(length(cr$cov.res[cr$cov.res > 5]) / length(cr$cov.res),5)))


pdf(paste0(out_dir, fname, ".MEDIPS.seqCovPie.pdf"), width = 5, height = 4)
MEDIPS.plotSeqCoverage(seqCoverageObj=cr,
                       type="pie",
                       cov.level = c(0,1,2,3,4,5),
                       main="Sequence pattern coverage, pie chart")
dev.off()

pdf(paste0(out_dir, fname, ".MEDIPS.seqCovHist.pdf"), width = 5, height = 4)
MEDIPS.plotSeqCoverage(seqCoverageObj=cr,
                       type="hist",
                       t = 15,
                       main="Sequence pattern coverage, histogram")
dev.off()

## CpG enrichment #####################################
## test CpG enrichment of given set of short reads covering a set of genomic regions vs reference genome
## regions.relH - relative freq of CpGs within a sample's immunoprecipitated regions
## genome.relH - relative freq of CpGs within reference genome
## enrichment.score.relH - regions.relH/genome.relH
## regions.GoGe - obs/exp ratio of CpGs within a sample's immunoprecipitated regions
## genome.GoGe - obs/exp ratio of CpGs within genomic regions
## enrichment.score.GoGe - regions.GoGe/genome.GoGe
## (relH and GoGe = 2 different ways of calculating enrichment)


## original MEDIPS.CpGenrich has IRanges issue
## this is adapted from script by Nick Cheng
MEDIPS.CpGenrichNew <-
  function(file=NULL, BSgenome=NULL, extend=0, shift=0, uniq=1e-3, chr.select=NULL, paired=F){

    ## Proof correctness....
    if(is.null(BSgenome)){stop("Must specify a BSgenome library.")}

    ## Read region file
    fileName=unlist(strsplit(file, "/"))[length(unlist(strsplit(file, "/")))]
    path=paste(unlist(strsplit(file, "/"))[1:(length(unlist(strsplit(file, "/"))))-1], collapse="/")
    if(path==""){path=getwd()}
    if(!fileName%in%dir(path)){stop(paste("File", fileName, " not found in", path, sep =" "))}

    dataset = get(ls(paste("package:", BSgenome, sep = ""))[1])

    if(!paired){GRange.Reads = getGRange(fileName, path, extend, shift, chr.select, dataset, uniq)}
    else{GRange.Reads = getPairedGRange(fileName, path, extend, shift, chr.select, dataset, uniq)}

    ## Sort chromosomes
    if(length(unique(seqlevels(GRange.Reads)))>1){chromosomes=mixedsort(unique(seqlevels(GRange.Reads)))}
    if(length(unique(seqlevels(GRange.Reads)))==1){chromosomes=unique(seqlevels(GRange.Reads))}

    ## Get chromosome lengths for all chromosomes within data set.
    cat(paste("Loading chromosome lengths for ",BSgenome, "...\n", sep=""))

    chr_lengths=as.numeric(seqlengths(dataset)[chromosomes])

    ranges(GRange.Reads) <- restrict(ranges(GRange.Reads),+1)

    ##Calculate CpG density for regions
    total=length(chromosomes)
    cat("Calculating CpG density for given regions...\n")

    ## new code ##################################
    readsChars <- unlist(getSeq(dataset, GRange.Reads, as.character=TRUE))

    regions.CG = sum(vcountPattern("CG",readsChars))
    regions.C  = sum(vcountPattern("C",readsChars))
    regions.G  = sum(vcountPattern("G",readsChars))
    all.genomic= sum(width(readsChars))

    nReads <- length(readsChars)
    ###############################################

    regions.relH=as.numeric(regions.CG)/as.numeric(all.genomic)*100
    regions.GoGe=(as.numeric(regions.CG)*as.numeric(all.genomic))/(as.numeric(regions.C)*as.numeric(regions.G))

    cat(paste("Calculating CpG density for the reference genome",
              BSgenome, "...\n", sep = " "))

    CG <- DNAStringSet("CG")
    pdict0 <- PDict(CG)
    params <- new("BSParams", X = dataset, FUN = countPDict, simplify = TRUE, exclude = c("rand", "chrUn"))
    genome.CG=sum(bsapply(params, pdict = pdict0))
    params <- new("BSParams", X = dataset, FUN = alphabetFrequency, exclude = c("rand", "chrUn"), simplify=TRUE)
    alphabet=bsapply(params)
    genome.l=sum(as.numeric(alphabet))
    genome.C=as.numeric(sum(alphabet[2,]))
    genome.G=as.numeric(sum(alphabet[3,]))
    genome.relH=genome.CG/genome.l*100
    genome.GoGe=(genome.CG*genome.l)/(genome.C*genome.G);

    ##Calculate CpG density for reference genome

    enrichment.score.relH=regions.relH/genome.relH
    enrichment.score.GoGe=regions.GoGe/genome.GoGe

    gc()
    return(list(genome=BSgenome,
                regions.CG=regions.CG,
                regions.C=regions.C,
                regions.G=regions.G,
                regions.relH=regions.relH,
                regions.GoGe=regions.GoGe,
                genome.C=genome.C,
                genome.G=genome.G,
                genome.CG=genome.CG,
                genome.relH=genome.relH,
                genome.GoGe=genome.GoGe,
                enrichment.score.relH=enrichment.score.relH,
                enrichment.score.GoGe=enrichment.score.GoGe))
  }

er =
  MEDIPS.CpGenrichNew(file = bam_file,
                   BSgenome = BSgenome,
                   uniq = uniq,
                   extend = extend,
                   shift = shift,
                   paired = paired,
                   chr.select = chr.select)

## medips.satr.est_cor and medips.satr.tru_cor involve randomness, will not give identical results on repeat runs
## rest of metrics should be identical on repeat runs

message("Writing out MEDIPS QC metrics: saturation, CpG coverage and CpG enrichment.")
QC_MEDIPS.df =
  data.frame(QC_type = rep("medips_QC", 33),
             metrics = c("ref_genome",
                         "satr.est_cor",
                         "satr.tru_cor",
                         "CpG_cov.totalNumReads",
                         "CpG_cov.numReadsWoCpG",
                         "CpG_cov.fracReadsWoCpG",
                         "CpG_cov.numCpGinRef",
                         "CpG_cov.numCpGwoReads",
                         "CpG_cov.numCpGw1read",
                         "CpG_cov.numCpGw2Reads",
                         "CpG_cov.numCpGw3Reads",
                         "CpG_cov.numCpGw4Reads",
                         "CpG_cov.numCpGw5Reads",
                         "CpG_cov.numCpGgt5Reads",
                         "CpG_cov.fracCpGwoReads",
                         "CpG_cov.fracCpGw1read",
                         "CpG_cov.fracCpGw2Reads",
                         "CpG_cov.fracCpGw3Reads",
                         "CpG_cov.fracCpGw4Reads",
                         "CpG_cov.fracCpGw5Reads",
                         "CpG_cov.fracCpGgt5Reads",
                         "enrich.regions.C",
                         "enrich.regions.G",
                         "enrich.regions.CG",
                         "enrich.genome.C",
                         "enrich.genome.G",
                         "enrich.genome.CG",
                         "enrich.regions.relH",
                         "enrich.genome.relH",
                         "enrich.regions.GoGe",
                         "enrich.genome.GoGe",
                         "enrich.enrichment.score.relH",
                         "enrich.enrichment.score.GoGe"),
             values = c(er$genome,
                        round(sr$maxEstCor[2], 5),
                        round(sr$maxTruCor[2], 5),
                        cr$numberReads,
                        cr$numberReadsWO,
                        round(cr$numberReadsWO / cr$numberReads, 5),
                        length(cr$cov.res),
                        length(cr$cov.res[cr$cov.res < 1]),
                        length(cr$cov.res[cr$cov.res == 1]),
                        length(cr$cov.res[cr$cov.res == 2]),
                        length(cr$cov.res[cr$cov.res == 3]),
                        length(cr$cov.res[cr$cov.res == 4]),
                        length(cr$cov.res[cr$cov.res == 5]),
                        length(cr$cov.res[cr$cov.res > 5]),
                        round(length(cr$cov.res[cr$cov.res < 1]) / length(cr$cov.res), 5),
                        round(length(cr$cov.res[cr$cov.res == 1]) / length(cr$cov.res), 5),
                        round(length(cr$cov.res[cr$cov.res == 2]) / length(cr$cov.res), 5),
                        round(length(cr$cov.res[cr$cov.res == 3]) / length(cr$cov.res), 5),
                        round(length(cr$cov.res[cr$cov.res == 4]) / length(cr$cov.res), 5),
                        round(length(cr$cov.res[cr$cov.res == 5]) / length(cr$cov.res), 5),
                        round(length(cr$cov.res[cr$cov.res > 5]) / length(cr$cov.res), 5),
                        er$regions.C,
                        er$regions.G,
                        er$regions.CG,
                        er$genome.C,
                        er$genome.G,
                        er$genome.CG,
                        round(er$regions.relH, 5),
                        round(er$genome.relH, 5),
                        round(er$regions.GoGe, 5),
                        round(er$genome.GoGe, 5),
                        round(er$enrichment.score.relH, 5),
                        round(er$enrichment.score.GoGe, 5)))
names(QC_MEDIPS.df) = c("QC_type", "metrics", fname)
# QC_MEDIPS.df

write.table(QC_MEDIPS.df, paste0(out_dir, fname, "_QC_MEDIPS.csv"), row.names=F, quote=F, sep = '\t')

A snakemake workflow to process ATAC-seq data

 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
myargs <- commandArgs(trailingOnly=TRUE)
bamfile <- myargs[1]
species <- myargs[2]

print("loading packages (ATACseqQC, ggplot, etc)...")
suppressPackageStartupMessages(library(ggplot2, quietly=TRUE))
suppressPackageStartupMessages(library(Rsamtools, quietly=TRUE))
suppressPackageStartupMessages(library(ATACseqQC, quietly=TRUE))
suppressPackageStartupMessages(library(ChIPpeakAnno, quietly=TRUE))
suppressPackageStartupMessages(library("GenomicAlignments", quietly=TRUE))

if (species == "mm") {
  suppressPackageStartupMessages(library(TxDb.Mmusculus.UCSC.mm10.knownGene, quietly=TRUE))
  suppressPackageStartupMessages(library(BSgenome.Mmusculus.UCSC.mm10, quietly=TRUE))
  txdb <- TxDb.Mmusculus.UCSC.mm10.knownGene
  bsgenome <- BSgenome.Mmusculus.UCSC.mm10
  genome <- Mmusculus
  print("species is 'mm' using mm10 for analysis")
  ### Note: Everything below is deprecated until I can figure out a way to port a 
  ### static/local package with snakemake
  # Note: phastCons60way was manually curated from GenomicAlignments, built, and installed as an R package
  # score was obtained according to: https://support.bioconductor.org/p/96226/
  # package was built and installed according to: https://www.bioconductor.org/packages/devel/bioc/vignettes/GenomicScores/inst/doc/GenomicScores.html
  # (section 5.1: Building an annotation package from a GScores object)
  #suppressWarnings(suppressPackageStartupMessages(library(GenomicScores, lib.loc="/users/dia6sx/snakeATAC/scripts/", quietly=TRUE)))
  #suppressWarnings(suppressPackageStartupMessages(library(phastCons60way.UCSC.mm10, lib.loc="/users/dia6sx/snakeATAC/scripts/", quietly=TRUE)))
} else if (species == "hs") {
  suppressPackageStartupMessages(library(TxDb.Hsapiens.UCSC.hg38.knownGene, quietly=TRUE))
  suppressPackageStartupMessages(library(BSgenome.Hsapiens.UCSC.hg38, quietly=TRUE))
  txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene
  bsgenome <- BSgenome.Hsapiens.UCSC.hg38
  genome <- Hsapiens
  print("species is 'hs' using hg38 for analysis")
} else {
  print(paste("params ERROR: ATACseqQC is not configured to use species =", species))
  print("exiting...")
  quit(status=1)
}

doATACseqQC <- function(bamfile, txdb, bsgenome, genome) {
    # Fragment size distribution
    print(paste("generating output for ",strsplit(basename(bamfile),split='\\.')[[1]][1],"...",sep=""))
    print("calculating Fragment size distribution...")
    bamfile.labels <- gsub(".bam", "", basename(bamfile))
    loc_to_save_figures <- paste(dirname(dirname(bamfile)),"/qc/ATACseqQC",sep="")
    if (file.exists(loc_to_save_figures)) {
        print("Warning: old figures will be overwritten")
    } else {
        dir.create(loc_to_save_figures)
    }
    png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_fragment_size_distribution.png",sep="")
    png(png_file)
    fragSizeDist(bamfile, bamfile.labels)
    dev.off()

    # Adjust the read start sites
    print("adjusting read start sites...")
    ## bamfile tags to be read in
    possibleTag <- list("integer"=c("AM", "AS", "CM", "CP", "FI", "H0", "H1", "H2", 
                                    "HI", "IH", "MQ", "NH", "NM", "OP", "PQ", "SM",
                                    "TC", "UQ"), 
                    "character"=c("BC", "BQ", "BZ", "CB", "CC", "CO", "CQ", "CR",
                                "CS", "CT", "CY", "E2", "FS", "LB", "MC", "MD",
                                "MI", "OA", "OC", "OQ", "OX", "PG", "PT", "PU",
                                "Q2", "QT", "QX", "R2", "RG", "RX", "SA", "TS",
                                "U2"))
    bamTop100 <- scanBam(BamFile(bamfile, yieldSize = 100),
                     param = ScanBamParam(tag=unlist(possibleTag)))[[1]]$tag
    tags <- names(bamTop100)[lengths(bamTop100)>0]
    ## files will be output into outPath
    ## shift the coordinates of 5'ends of alignments in the bam file
    outPath <- paste(dirname(dirname(bamfile)),"/alignments_shifted", sep="")
    seqinformation <- seqinfo(txdb)
    gal <- readBamFile(bamfile, tag=tags, asMates=TRUE, bigFile=TRUE)
    shiftedBamfile <- file.path(outPath, paste(bamfile.labels,"_shifted.bam",sep=""))
    # check if shifted Bam file exists from previous run
    if (file.exists(shiftedBamfile)) {
        print("Shifted Bamfile found.")
        print("Loading in...")
        gal <- readBamFile(shiftedBamfile, tag=tags, asMates=TRUE, bigFile=TRUE)
        ## This step is mostly for formating so splitBam can
        ## take in bamfile. Implementing shift of 0 bp on positive strand
        ## and 0 bp on negative strand because shifted Bamfile should
        ## already have these shifts
        gal1 <- shiftGAlignmentsList(gal, positive = 0L, negative = 0L)
    } else {
        # shifted bam file does not exist check if
        # old shifted alignments directory exists
        # if so remove and create new one
        if (file.exists(outPath)){
            unlink(outPath,recursive=TRUE)
        }
        dir.create(outPath)
        print("*** creating shifted bam file ***")
        gal1 <- shiftGAlignmentsList(gal, outbam=shiftedBamfile)
    }

    # Promoter/Transcript body (PT) score
    print("calculating Promoter/Transcript body (PT) score...")
    txs <- transcripts(txdb)
    pt <- PTscore(gal1, txs)
    png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_ptscore.png",sep="")
    png(png_file)
    plot(pt$log2meanCoverage, pt$PT_score, 
        xlab="log2 mean coverage",
        ylab="Promoter vs Transcript",
        main=paste(bamfile.labels,"PT score"))
    dev.off()

    # Nucleosome Free Regions (NFR) score
    print("calculating Nucleosome Free Regions (NFR) score")
    nfr <- NFRscore(gal1, txs)
    png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_nfrscore.png",sep="")
    png(png_file)
    plot(nfr$log2meanCoverage, nfr$NFR_score, 
        xlab="log2 mean coverage",
        ylab="Nucleosome Free Regions score",
        main=paste(bamfile.labels,"\n","NFRscore for 200bp flanking TSSs",sep=""),
        xlim=c(-10, 0), ylim=c(-5, 5))
    dev.off()

    # Transcription Start Site (TSS) Enrichment Score
    print("calculating Transcription Start Site (TSS) Enrichment score")
    tsse <- TSSEscore(gal1, txs)
    png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_tss_enrichment_score.png",sep="")
    png(png_file)
    plot(100*(-9:10-.5), tsse$values, type="b", 
        xlab="distance to TSS",
        ylab="aggregate TSS score",
        main=paste(bamfile.labels,"\n","TSS Enrichment score",sep=""))
    dev.off()

    # Split reads, Heatmap and coverage curve for nucleosome positions
    print("splitting reads by fragment length...")
    genome <- genome
    outPath <- paste(dirname(dirname(bamfile)),"/alignments_split", sep="")
    TSS <- promoters(txs, upstream=0, downstream=1)
    TSS <- unique(TSS)
    ## estimate the library size for normalization
    librarySize <- estLibSize(bamfile)
    ## calculate the signals around TSSs.
    NTILE <- 101
    dws <- ups <- 1010
    splitBamfiles <- paste(outPath,"/",c("NucleosomeFree", 
                                             "mononucleosome",
                                             "dinucleosome",
                                             "trinucleosome"),".bam",sep="")
    # check if split Bam files exists from previous run
    if (all(file.exists(splitBamfiles))) {
        print("*** split bam files found! ***")
        print("Loading in...")
        sigs <- enrichedFragments(bamfiles=splitBamfiles,
                                    index=splitBamfiles, 
                                    TSS=TSS,
                                    librarySize=librarySize,
                                    TSS.filter=0.5,
                                    n.tile = NTILE,
                                    upstream = ups,
                                    downstream = dws)
    } else {
        # split bam files do not exist check if
        # old split alignments directory exists
        # if so remove and create new one
        if (file.exists(outPath)){
            unlink(outPath,recursive=TRUE)
        }
        print("*** creating split bam files ***")
        dir.create(outPath)
        ## split the reads into NucleosomeFree, mononucleosome, 
        ## dinucleosome and trinucleosome.
        ## and save the binned alignments into bam files.
        objs <- splitGAlignmentsByCut(gal1, txs=txs, genome=genome, outPath = outPath)
        #objs <- splitBam(bamfile, tags=tags, outPath=outPath,
            #        txs=txs, genome=genome,
            #       conservation=phastCons60way.UCSC.mm10,
            #      seqlev=paste0("chr", c(1:19, "X", "Y")))
        sigs <- enrichedFragments(gal=objs[c("NucleosomeFree", 
                                        "mononucleosome",
                                        "dinucleosome",
                                        "trinucleosome")], 
                                    TSS=TSS,
                                    librarySize=librarySize,
                                    TSS.filter=0.5,
                                    n.tile = NTILE,
                                    upstream = ups,
                                    downstream = dws)
    }
    ## log2 transformed signals
    sigs.log2 <- lapply(sigs, function(.ele) log2(.ele+1))
    ## plot heatmap
    png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_nucleosome_pos_heatmap.png",sep="")
    png(png_file)
    featureAlignedHeatmap(sigs.log2, reCenterPeaks(TSS, width=ups+dws),
                        zeroAt=.5, n.tile=NTILE)
    dev.off()
    ## get signals normalized for nucleosome-free and nucleosome-bound regions.
    out <- featureAlignedDistribution(sigs, 
                                    reCenterPeaks(TSS, width=ups+dws),
                                    zeroAt=.5, n.tile=NTILE, type="l", 
                                    ylab="Averaged coverage")
    ## rescale the nucleosome-free and nucleosome signals to 0~1
    range01 <- function(x){(x-min(x))/(max(x)-min(x))}
    out <- apply(out, 2, range01)
    png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_TSS_signal_distribution.png",sep="")
    png(png_file)
    matplot(out, type="l", xaxt="n", 
            xlab="Position (bp)", 
            ylab="Fraction of signal",
            main=paste(bamfile.labels,"\n","TSS signal distribution",sep=""))
    axis(1, at=seq(0, 100, by=10)+1, 
        labels=c("-1K", seq(-800, 800, by=200), "1K"), las=2)
    abline(v=seq(0, 100, by=10)+1, lty=2, col="gray")
    dev.off()

    print("QC Finished.")
    print("Generated QC figures can be found in qc folder under ATACseQC")
    print(paste("*** removing temp files in",outPath,"***"))
    unlink(outPath,recursive=TRUE)
    outPath <- paste(dirname(dirname(bamfile)),"/alignments_shifted", sep="")
    print(paste("*** removing temp files in",outPath,"***"))
    unlink(outPath,recursive=TRUE)
}

doATACseqQC(bamfile, txdb, bsgenome, genome)

Snakemake pipeline for Epicure analyses (0.14.1)

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
base::message("Loading libraries ... ")
suppressPackageStartupMessages(library("ATACseqQC"))
suppressPackageStartupMessages(library("TxDb.Hsapiens.UCSC.hg38.knownGene"))
suppressPackageStartupMessages(library("BSgenome.Hsapiens.UCSC.hg38"))
suppressPackageStartupMessages(library("phastCons100way.UCSC.hg38"))
suppressPackageStartupMessages(library("MotifDb"))
suppressPackageStartupMessages(library("ChIPpeakAnno"))
suppressPackageStartupMessages(library("Rsamtools"))
base::message("Libraries loaded.")

# base::message("Setting sequence level style...")
# seqlevelsStyle(TxDb.Hsapiens.UCSC.hg38.knownGene) <- "Ensembl"
# seqlevelsStyle(BSgenome.Hsapiens.UCSC.hg38) <- "Ensembl"
# base::message("Database chromosome renamed.")

base::message("Acquiering bam file...")
bamfile <- BamFile(
    file = base::as.character(x = snakemake@input[["bam"]])
)
name <- base::as.character(x = snakemake@params[["name"]])
base::print(bamfile)
base::print(name)
base::message("BamFiles identified")

base::message("Reading bam tags...")
possibleTag <- list(
    "integer" = c(
        "AM", "AS", "CM", "CP", "FI", "H0", "H1",
        "H2", "HI", "IH", "MQ", "NH", "NM", "OP",
        "PQ", "SM", "TC", "UQ"
    ),
    "character" = c(
        "BC", "BQ", "BZ", "CB", "CC", "CO", "CQ", "CR",
        "CS", "CT", "CY", "E2", "FS", "LB", "MC", "MD",
        "MI", "OA", "OC", "OQ", "OX", "PG", "PT", "PU",
        "Q2", "QT", "QX", "R2", "RG", "RX", "SA", "TS", "U2"
    )
)
bamTop100 <- scanBam(
    BamFile(bamfile$path, yieldSize = 100),
    param = ScanBamParam(tag=unlist(possibleTag))
)[[1]]$tag
tags <- names(bamTop100)[lengths(bamTop100) > 0]
base::print(tags)
base::message("Tags Acquired")

base::message("Retrieving sequence level informations...")
seqlev <- as.vector(
    sapply(c(1:22, "X", "Y"), function(chrom) paste0("chr", chrom))
)
seqinformation <- seqinfo(TxDb.Hsapiens.UCSC.hg38.knownGene)
which <- as(seqinformation[seqlev], "GRanges")
base::print(which)
base::message("Sequences retrived")

base::message("Loading bam file...")
bamdata <- readBamFile(
    bamFile = bamfile$path,
    bigFile = TRUE,
    asMates = TRUE,
    tags = tags,
    which = which,
)
base::message("Bam file loaded")

base::message("Shifting bam...")
shiftedBamfile <- base::as.character(x = snakemake@output[["shifted"]])
shiftedBamdir <- base::dirname(shiftedBamfile)
print(shiftedBamdir)
base::dir.create(
    path = shiftedBamdir,
    recursive = TRUE
)
bamdata <- shiftGAlignmentsList(
    gal = bamdata,
    outbam = shiftedBamfile
)
print(bamdata)
base::message("Shift OK")

base::message("Acquiering motif...")
motif_name <- base::as.character(x = snakemake@params[["motif"]])
motif <- query(MotifDb, c(motif_name))
motif <- as.list(motif)
print(motif[[1]], digits = 2)
base::message("Motif retrieved.")

base::message("plot Footprints...")
genome <- Hsapiens
print(genome)

png(
    filename = snakemake@output[["png"]],
    width = 1024,
    height = 768,
    units = "px"
)
sigs <- factorFootprints(
    shiftedBamfile,
    pfm = motif[[1]],
    genome = genome,
    min.score = "90%",
    seqlev = c(1:22, "X", "Y"),
    upstream = 100,
    downstream = 100
)
dev.off()
base::message("Done.")

base::save.image(file = base::as.character(x = snakemake@output[["rda"]]))
base::message("Process over")
data / bioconductor

BSgenome.Hsapiens.UCSC.hg38

Full genomic sequences for Homo sapiens (UCSC genome hg38): Full genomic sequences for Homo sapiens as provided by UCSC (genome hg38, based on assembly GRCh38.p14 since 2023/01/31). The sequences are stored in DNAString objects.