Workflow Steps and Code Snippets
7 tagged steps and code snippets that match keyword BSgenome.Mmusculus.UCSC.mm10
Code for the manuscript "Machine learning reveals STAT motifs as predictors for GR-mediated gene repression"
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 | suppressPackageStartupMessages(library(optparse, warn.conflicts=F, quietly=T)) option_list <- list( make_option(c("--log2fcthresh"), type="numeric", help="Log2FC threshold used in addition to adj.pval to define significant genes"), make_option(c("--chipseq_summits"), type="character", help="Path to summit file of IDR peaks"), make_option(c("--genekey"), type="character", help="Path to biomart genekey that mapps ensembl geeneIDs to MGI symbols"), make_option(c("--contrast_DexVSDexLPS"), type="character", help="Path to annotated tsv file of DeSeq2 contrast of DexLPS vs LPS"), make_option(c("--meme_db_path"), type="character", help="Path to JASPAR motif db file"), make_option(c( "--rna_nascent_fpkm"), type="character", help="FPKM matrix of 4sU experiment"), make_option(c("-o", "--outdir"), type="character", help="Path to output directory")) opt <- parse_args(OptionParser(option_list=option_list)) # set output for logfile to retrieve stats for plot later sink(file=paste0(opt$outdir,"figure_proxanno_prepdata.out")) suppressPackageStartupMessages(library(memes, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(universalmotif, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(biomaRt, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(TxDb.Mmusculus.UCSC.mm10.knownGene, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(BSgenome.Mmusculus.UCSC.mm10, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(dplyr, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(ChIPseeker, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(stringr, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(plyranges, warn.conflicts=F, quietly=T)) #------------------------------- ## Import references #------------------------------- # for gene annotation txdb <- TxDb.Mmusculus.UCSC.mm10.knownGene # for the sequence # either use masked or unmasked (the mask does NOT seem to be for repeats though) mm.genome <- BSgenome.Mmusculus.UCSC.mm10 #------------------------------- ### Determine expressed genes #------------------------------- rna_nascent <- read.table(opt$rna_nascent_fpkm, header=TRUE) print("Determine expressed genes using 4sU data") # what does the read count distribution look like? # compute median per gene and plot it as histogram rna_nascent$median_genecounts <- apply(rna_nascent[,-1], 1, FUN=median) # lots of medians that are below 1 hist(log10(rna_nascent$median_genecounts)) # filter based on expression expressed_genes <- rna_nascent %>% dplyr::filter(median_genecounts > 0) #------------------------------- ### Load genekey to annotate ensembl to mgi #------------------------------- geneKey <- read.delim(opt$genekey) #merge gene annotations to results table expressed_genes <- merge(expressed_genes, geneKey, by.x="Geneid", by.y="ensembl_gene_id") #------------------------------- ## Getting the sequences #------------------------------- # import summit of ChIPseq peaks ChIPseq_summits <- read.table(opt$chipseq_summits) ChIPseq_ranges <- GRanges(seqnames = ChIPseq_summits[,c("V1")], ranges = IRanges(start=ChIPseq_summits[,c("V2")], end=ChIPseq_summits[,c("V3")]-1)) # to make up for 0 vs 1 encoding ChIPseq_ranges$id <- c(1:length(ChIPseq_ranges)) # NOTE: if we only want to annotate to genes that are expressed, we could use ChIPpeakAnno and a filtered annoDB object instead # annotate it to genes print("Annotate ChIPseq summit to closest gene (using genomic reference)") summitAnno <- annotatePeak(ChIPseq_ranges, tssRegion=c(-3000, 3000), TxDb=txdb, annoDb = "org.Mm.eg.db") summitAnno_df <- summitAnno %>% as.data.frame() # see which ones are DE genes and add that info to GRanges as column "directionchange" print("Add info on which genes are DE to the annotated summits") DE_4sU <- read.delim(opt$contrast_DexVSDexLPS) summitAnno_df <- left_join(summitAnno_df, DE_4sU[,c("mgi_symbol","padj","log2FoldChange")], by = c("SYMBOL" = "mgi_symbol")) summitAnno_df <- summitAnno_df %>% mutate(change = case_when(padj<0.05 & log2FoldChange > opt$log2fcthresh ~ "up", padj<0.05& log2FoldChange < -opt$log2fcthresh ~"down", TRUE ~ "ns") ) # save info on gene annotation ChIPseq_ranges$mgi_symbol[match(summitAnno_df$id, ChIPseq_ranges$id )] <- summitAnno_df$SYMBOL # assign directionchange as metadata column ChIPseq_ranges$directionchange[match(summitAnno_df$id, ChIPseq_ranges$id )] <- summitAnno_df$change # ass distance to TSS ChIPseq_ranges$distanceToTSS[match(summitAnno_df$id, ChIPseq_ranges$id )] <- summitAnno_df$distanceToTSS #------------------------------- ## Prefilter motifdb to motifs that are expressed in celltype #------------------------------- print("Prefilter meme_db for those motifs expressed in our 4sU data") meme_db <- read_meme(opt$meme_db_path) %>% to_df() meme_db_expressed <- meme_db %>% # the altname slot of meme_db contains the gene symbol (this is database-specific) # avoid mismatches cased by casing and keep motif if at least one part of composite is expressed tidyr::separate(altname, into=c("tf1", "tf2"), sep="::",remove=FALSE) %>% filter( str_to_upper(tf1) %in% str_to_upper(expressed_genes$mgi_symbol) | str_to_upper(tf2) %in% str_to_upper(expressed_genes$mgi_symbol)) %>% # we don't need the split TF info downstream dplyr::select(!c("tf1","tf2")) print("Number of motifs pre-filtering: ") nrow(meme_db) print("Number of motifs post-filter: ") nrow(meme_db_expressed) #------------------------------- ## OPTIONAL: only run with motifs of interest #------------------------------- meme_motifsOI <- meme_db_expressed %>% filter( grepl("STAT", str_to_upper(altname)) | grepl("NR3C", str_to_upper(altname)) ) #------------------------------- ## FIGURES on peak gene annotation #------------------------------- # filter peaks for those annotated to genes that are expressed summitAnno_expr <- subset(summitAnno, summitAnno@anno$SYMBOL %in% expressed_genes$mgi_symbol) # filter the df version in the same fashion summitAnno_df_expr <- summitAnno_df %>% filter(SYMBOL %in% expressed_genes$mgi_symbol) #--------------------------------- # --- some stats #--------------------------------- distbygene <- summitAnno_df_expr %>% group_by(SYMBOL, change) %>% summarise(min_dist=min(abs(distanceToTSS)), mean_dist=mean(abs(distanceToTSS))) %>% ungroup() %>% mutate(logmindist=log2(min_dist+1)) # why 30kb cutoff distbygene_allDE <- distbygene %>% filter(!change=="ns") %>% mutate(change=factor(change,levels=c("down","up"))) print("We need to justify why we picked a cutoff of 30kb.") print("From a genecentric perspective, we want to include the peak regions that most likely have a regulating function on the gene.") print("With a cutoff of 30kb, how many genes DONT have at least one peak within that range?") tbl <- table(distbygene_allDE$min_dist > 30000) tbl[2]/(tbl[1]+tbl[2]) print("How many genes do we lose of both sets by using that cutoff?") print("In the upregulated fraction:") table( (distbygene %>% filter(change=="up"))$min_dist > 30000) print("In the downregulated fraction:") table( (distbygene %>% filter(change=="down"))$min_dist > 30000) print("Min and mean dist for the genes with log2FC >", opt$log2fcthresh) distbygene %>% filter(change=="up") %>% summarise_all(mean) %>% print() print("Min and mean dist for the genes with log2FC <", opt$log2fcthresh ) distbygene %>% filter(change=="down") %>% summarise_all(mean) %>% print() print("How many peaks per UPregulated gene:") summitAnno_df_expr %>% filter(change=="up")%>% filter(abs(distanceToTSS)<30000) %>% group_by(SYMBOL) %>% summarise(count=n()) %>% pull(count) %>% mean() print("How many peaks per DOWNregulated gene:") summitAnno_df_expr %>% filter(change=="down")%>% filter(abs(distanceToTSS)<30000) %>% group_by(SYMBOL) %>% summarise(count=n()) %>% pull(count) %>% mean() print("The distances between the peaks mapping to the same gene.") print("returns NA if only one 1 peak is annotated to the gene - those are excluded") print("For upregulated genes:") summitAnno_df_expr %>% filter(change=="up")%>% filter(abs(distanceToTSS)<30000) %>% group_by(SYMBOL) %>% summarise(meanpeakdist = mean(dist(distanceToTSS))) %>% # filter(!is.na(meanpeakdist)) %>% pull(meanpeakdist) %>% mean() print("For downregulated genes:") summitAnno_df_expr %>% filter(change=="down")%>% filter(abs(distanceToTSS)<30000) %>% group_by(SYMBOL) %>% summarise(meanpeakdist = mean(dist(distanceToTSS))) %>% filter(!is.na(meanpeakdist)) %>% pull(meanpeakdist) %>% mean() #-------------------------------------- #- permutations #-------------------------------------- # Difference in means groupdiff <- diff(tapply(distbygene_allDE$min_dist, distbygene_allDE$change, mean)) print("The mean minimum distance is smaller for the upregulated set") print(paste("The group difference is: ",groupdiff)) print("Permutation test to see if this difference between the groups is meaningful") #Permutation test permutation.test <- function(group, outcome, n, reference){ distribution=c() result=0 for(i in 1:n){ distribution[i]=diff(by(outcome, sample(group, length(group), FALSE), mean)) } result=sum(abs(distribution) >= abs(groupdiff))/(n) return(list(result, distribution, groupdiff)) } permtest_res <- permutation.test(distbygene_allDE$change, distbygene_allDE$min_dist, 100000, groupdiff) #-------------------------------------- #- export objects #-------------------------------------- #--------------------------------- # --- export results of the permutation test saveRDS(permtest_res, file=paste0(opt$outdir,"permtest_res.rds")) #--------------------------------- # --- export up and downregulated summitfraction for deeptools table(ChIPseq_ranges$directionchange) dir.create(paste0(opt$outdir,"peaks_annot2DEgenes_30kb_log2FC0.58/")) export.bed(ChIPseq_ranges %>% filter(directionchange == "up") %>% filter(abs(distanceToTSS)<30000) , con=paste0(opt$outdir,"peaks_annot2DEgenes_30kb_log2FC0.58/UP_summit_unmerged.bed")) export.bed(ChIPseq_ranges %>% filter(directionchange == "down") %>% filter(abs(distanceToTSS)<30000) , con=paste0(opt$outdir,"peaks_annot2DEgenes_30kb_log2FC0.58/DOWN_summit_unmerged.bed")) #------------------------------- ## export objects to run memes afterwards saveRDS(ChIPseq_ranges, file=paste0(opt$outdir,"../memes_bioc/ChIPseq_summit_Granges.rds")) saveRDS(meme_db_expressed, file=paste0(opt$outdir,"../memes_bioc/meme_db_4sUexpressed.rds")) #------------------------------- ## export objects for ggplot figures saveRDS(summitAnno, file=paste0(opt$outdir,"summitAnno.rds")) saveRDS(summitAnno_expr, file=paste0(opt$outdir,"summitAnno_expr.rds")) saveRDS(summitAnno_df_expr, file=paste0(opt$outdir,"summitAnno_df_expr.rds")) sink() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | suppressPackageStartupMessages(library(optparse, warn.conflicts=F, quietly=T)) option_list <- list( make_option(c( "--summit_granges"), type="character", help="Path to rds file of summits in granges format with directionschange and distancetoTSS as additional metadata columns"), make_option(c("--memedb_expressed"), type="character", help="Path to memedb file filtered for motifs where TFs are expressed in 4sU")) opt <- parse_args(OptionParser(option_list=option_list)) suppressPackageStartupMessages(library(here, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(ggplot2, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(memes, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(universalmotif, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(dplyr, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(plyranges, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(GenomicRanges, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(BSgenome.Mmusculus.UCSC.mm10, warn.conflicts=F, quietly=T)) #------------------------------- ## Import reference for sequence #------------------------------- mm.genome <- BSgenome.Mmusculus.UCSC.mm10 #------------------------------- ## read in prepared data #------------------------------- ChIPseq_summit_Granges <- readRDS(opt$summit_granges) # Take 100bp windows around ChIP-seq summits summit_flank_100bp <- ChIPseq_summit_Granges %>% plyranges::anchor_center() %>% plyranges::mutate(width = 100) # Take 100bp windows around ChIP-seq summits summit_flank_1000bp <- ChIPseq_summit_Granges %>% plyranges::anchor_center() %>% plyranges::mutate(width = 1000) meme_db_expressed <- readRDS(opt$memedb_expressed) # to_list() converts the database back from data.frame format to a standard `universalmotif` object. options(meme_db = to_list(meme_db_expressed, extrainfo = FALSE)) # where is meme installed my_memepath="~/software/meme/bin/" check_meme_install(meme_path=my_memepath) summit_flank_100bp_seq <- summit_flank_100bp %>% get_sequence(mm.genome) summit_flank_1000bp_seq <- summit_flank_1000bp %>% get_sequence(mm.genome) #------------------------------- ## run fimo #------------------------------- fimo_results <- runFimo(summit_flank_1000bp_seq, meme_db_expressed, meme_path=my_memepath) saveRDS (fimo_results, here("results/current/memes_bioc/fimo_1000bp/fimo.rds") ) print("Finished running fimo") print("Analysis DONE") |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 | suppressPackageStartupMessages(library(optparse, warn.conflicts=F, quietly=T)) option_list <- list( make_option(c("--ABC_all"), type="character", help="path to abc results of dexlps condition"), make_option(c("--memedb_expressed"), type="character", help="Path to memedb file filtered for motifs where TFs are expressed in 4sU"), make_option(c("--output"), type="character", help="fimo results file") ) opt <- parse_args(OptionParser(option_list=option_list)) suppressPackageStartupMessages(library(here, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(ggplot2, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(memes, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(universalmotif, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(dplyr, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(plyranges, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(GenomicRanges, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(BSgenome.Mmusculus.UCSC.mm10, warn.conflicts=F, quietly=T)) #------------------------------- ## Import reference for sequence #------------------------------- mm.genome <- BSgenome.Mmusculus.UCSC.mm10 #------------------------------- ## read in prepared data #------------------------------- ABC_all <- read.delim(opt$ABC_all) %>% plyranges::as_granges(., seqnames=chr) # no need to run fimo a bunch of times on the same enhancers regions, just because they are listed more than once (with different ABCscores) ABC_unique <- unique(ABC_all) meme_db_expressed <- readRDS(opt$memedb_expressed) # to_list() converts the database back from data.frame format to a standard `universalmotif` object. options(meme_db = to_list(meme_db_expressed, extrainfo = FALSE)) # where is meme installed my_memepath="~/software/meme/bin/" check_meme_install(meme_path=my_memepath) #------------------------------- ## get sequences #------------------------------- enhancer_seq <- ABC_unique %>% get_sequence(mm.genome) #------------------------------- ## run fimo #------------------------------- # conda activate py_3 # perlbrew use perl-5.34.0 # nohup Rscript memes_runanalyses_ABCenhancerregions.r & (from within the script directory) fimo_results <- runFimo(enhancer_seq, meme_db_expressed, meme_path=my_memepath) print("Finished running fimo") saveRDS (fimo_results, opt$output) print("Done saving results") |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 | suppressPackageStartupMessages(library(optparse, warn.conflicts=F, quietly=T)) option_list <- list( make_option(c( "--summit_granges"), type="character", help="Path to rds file of summits in granges format with directionschange and distancetoTSS as additional metadata columns"), make_option(c("--memedb_expressed"), type="character", help="Path to memedb file filtered for motifs where TFs are expressed in 4sU")) opt <- parse_args(OptionParser(option_list=option_list)) suppressPackageStartupMessages(library(here, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(memes, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(universalmotif, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(GenomicRanges, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(BSgenome.Mmusculus.UCSC.mm10, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(plyranges, warn.conflicts=F, quietly=T)) #------------------------------- ## Import reference for sequence #------------------------------- mm.genome <- BSgenome.Mmusculus.UCSC.mm10 #------------------------------- ## read in prepared data #------------------------------- ChIPseq_summit_Granges <- readRDS(opt$summit_granges) # Take 100bp windows around ChIP-seq summits summit_flank_100bp <- ChIPseq_summit_Granges %>% plyranges::anchor_center() %>% plyranges::mutate(width = 100) # Take 100bp windows around ChIP-seq summits summit_flank_1000bp <- ChIPseq_summit_Granges %>% plyranges::anchor_center() %>% plyranges::mutate(width = 1000) meme_db_expressed <- readRDS(opt$memedb_expressed) # to_list() converts the database back from data.frame format to a standard `universalmotif` object. options(meme_db = to_list(meme_db_expressed, extrainfo = FALSE)) # where is meme installed my_memepath="~/software/meme/bin/" check_meme_install(meme_path=my_memepath) #------------------------------- # define inputs #------------------------------- summit_flank_100bp_seq <- summit_flank_100bp %>% get_sequence(mm.genome) summit_flank_1000bp_seq <- summit_flank_1000bp %>% get_sequence(mm.genome) summit_flank_seq_bydirchange <- summit_flank_100bp %>% # remove unchanged ones and only compare "up" vs "down" filter(directionchange !="ns")%>% # Get a list of chip peaks belonging to each set split(mcols(.)$directionchange) %>% # look up the DNA sequence of each peak within each group get_sequence(mm.genome) #------------------------------- ## up vs downregulation # run by directionchange to discover consensus motif separately #------------------------------- #------------------------------- # STREME #------------------------------- print("Start running streme for 100bp") stremeout_100bp_down <- here("results/current/memes_bioc/streme_100bp_down/streme.xml") if (!file.exists( stremeout_100bp_down )){ runStreme(summit_flank_seq_bydirchange[["down"]], control="shuffle", objfun="de", meme_path="~/software/meme/bin/", silent=FALSE, outdir = dirname(stremeout_100bp_down)) } stremeout_100bp_up <- here("results/current/memes_bioc/streme_100bp_up/streme.xml") if (!file.exists( stremeout_100bp_up )){ runStreme(summit_flank_seq_bydirchange[["up"]], control="shuffle", objfun="de", meme_path="~/software/meme/bin/", outdir = dirname(stremeout_100bp_up)) } print("Finished running streme for up- and down-regions") #------------------------------- # DREME #------------------------------- dremeout_100bp_down <- here("results/current/memes_bioc/dreme_100bp_down/dreme.xml") if (!file.exists(dremeout_100bp_down)){ runDreme(summit_flank_seq_bydirchange[["down"]], "shuffle", meme_path="~/software/meme/bin/", outdir = dirname(dremeout_100bp_down)) } dremeout_100bp_up <- here("results/current/memes_bioc/dreme_100bp_up/dreme.xml") if (!file.exists(dremeout_100bp_up)){ runDreme(summit_flank_seq_bydirchange[["up"]], "shuffle", meme_path="~/software/meme/bin/", outdir = dirname(dremeout_100bp_up)) } print("Done running DREME") #------------------------------- ## run ame - discriminative mode #------------------------------- # enriched in upregulated with "down" as control ame_discr_up <- here("results/current/memes_bioc/ame_discr_up/ame.tsv") if (!file.exists( ame_discr_up )){ runAme(summit_flank_seq_bydirchange, control = "down", meme_path=my_memepath, outdir=dirname(ame_discr_up)) } # enriched in downregulated with "up" as control ame_discr_down <- here("results/current/memes_bioc/ame_discr_down/ame.tsv") if (!file.exists(ame_discr_down)){ runAme(summit_flank_seq_bydirchange, control = "up", meme_path=my_memepath, outdir=dirname(ame_discr_down)) } print("Finished running ame in discriminative mode for direction of expressionchange") #------------------------------- ## all summits #------------------------------- ## run streme to discover consensus motif #------------------------------- #print("Starting streme 1000bp") #stremeout_1000bp <- here("results/current/memes_bioc/streme_1000bp/streme.xml") #if (!file.exists( stremeout_1000bp )){ # runStreme(summit_flank_1000bp_seq, control="shuffle", # meme_path="~/software/meme/bin/", # outdir = dirname(stremeout_1000bp) ) #} print("Starting streme 100bp for all summits") stremeout_100bp <- here("results/current/memes_bioc/streme_100bp/streme.xml") if (!file.exists( stremeout_100bp )){ runStreme(summit_flank_100bp_seq, control="shuffle", meme_path="~/software/meme/bin/", outdir = dirname(stremeout_100bp) ) } print("Finished running streme for 100bp summit regions") # Option objfun="cd" does not seem to get passed on to streme #print("Starting streme 1000bp with central enrichment") #stremeout_cd_1000bp <- here("results/current/memes_bioc/streme_cd_1000bp/streme.xml") #if (!file.exists( stremeout_cd_1000bp )){ # runStreme(summit_flank_1000bp_seq[1:100], objfun="cd", control=NA, # meme_path="~/software/meme/bin/", # outdir = dirname(stremeout_cd_1000bp) ) #} #print("Finished running streme for 1000bp summit regions") print("Analysis DONE") |
Snakemake project for common mm10 reference files
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 | if (interactive()) { library(methods) Snakemake <- setClass( "Snakemake", slots=c( input='list', output='list', wildcards='list', threads='numeric' ) ) snakemake <- Snakemake( input=list(gtf="gencode.vM21.annotation.mRNA_ends_found.gtf.gz"), output=list(gtf="/fscratch/fanslerm/gencode.vM21.annotation.mRNA_ends_found.txcutr.w500.gtf", fa="/fscratch/fanslerm/gencode.vM21.annotation.mRNA_ends_found.txcutr.w500.fa"), wildcards=list(width="500"), threads=1 ) } ################################################################################ ## Libraries and Parameters ################################################################################ library(txcutr) library(BSgenome.Mmusculus.UCSC.mm10) library(GenomicFeatures) mm10 <- BSgenome.Mmusculus.UCSC.mm10 maxTxLength <- as.integer(snakemake@wildcards$width) ## set cores BiocParallel::register(BiocParallel::MulticoreParam(snakemake@threads)) ################################################################################ ## Load Data, Truncate, and Export ################################################################################ txdb <- makeTxDbFromGFF(file=snakemake@input$gtf, organism="Mus musculus", taxonomyId=10090, chrominfo=seqinfo(mm10)) txdb_result <- truncateTxome(txdb, maxTxLength) exportGTF(txdb_result, snakemake@output$gtf) exportFASTA(txdb_result, mm10, snakemake@output$fa) |
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 | if (interactive()) { library(methods) Snakemake <- setClass( "Snakemake", slots=c( input='list', output='list', wildcards='list', threads='numeric' ) ) snakemake <- Snakemake( input=list(), output=list(gtf="txdb.mm10.ensGene.txcutr.w{width}.gtf", fa="txdb.mm10.ensGene.txcutr.w{width}.fa"), wildcards=list(width="500"), threads=1 ) } ################################################################################ ## Libraries and Parameters ################################################################################ library(txcutr) library(BSgenome.Mmusculus.UCSC.mm10) library(TxDb.Mmusculus.UCSC.mm10.ensGene) mm10 <- BSgenome.Mmusculus.UCSC.mm10 txdb <- TxDb.Mmusculus.UCSC.mm10.ensGene maxTxLength <- as.integer(snakemake@wildcards$width) ## set cores BiocParallel::register(BiocParallel::MulticoreParam(snakemake@threads)) ################################################################################ ## Truncate and Export ################################################################################ txdb_result <- truncateTxome(txdb, maxTxLength) exportGTF(txdb_result, snakemake@output$gtf) exportFASTA(txdb_result, mm10, snakemake@output$fa) |
A snakemake workflow to process ATAC-seq data
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 | myargs <- commandArgs(trailingOnly=TRUE) bamfile <- myargs[1] species <- myargs[2] print("loading packages (ATACseqQC, ggplot, etc)...") suppressPackageStartupMessages(library(ggplot2, quietly=TRUE)) suppressPackageStartupMessages(library(Rsamtools, quietly=TRUE)) suppressPackageStartupMessages(library(ATACseqQC, quietly=TRUE)) suppressPackageStartupMessages(library(ChIPpeakAnno, quietly=TRUE)) suppressPackageStartupMessages(library("GenomicAlignments", quietly=TRUE)) if (species == "mm") { suppressPackageStartupMessages(library(TxDb.Mmusculus.UCSC.mm10.knownGene, quietly=TRUE)) suppressPackageStartupMessages(library(BSgenome.Mmusculus.UCSC.mm10, quietly=TRUE)) txdb <- TxDb.Mmusculus.UCSC.mm10.knownGene bsgenome <- BSgenome.Mmusculus.UCSC.mm10 genome <- Mmusculus print("species is 'mm' using mm10 for analysis") ### Note: Everything below is deprecated until I can figure out a way to port a ### static/local package with snakemake # Note: phastCons60way was manually curated from GenomicAlignments, built, and installed as an R package # score was obtained according to: https://support.bioconductor.org/p/96226/ # package was built and installed according to: https://www.bioconductor.org/packages/devel/bioc/vignettes/GenomicScores/inst/doc/GenomicScores.html # (section 5.1: Building an annotation package from a GScores object) #suppressWarnings(suppressPackageStartupMessages(library(GenomicScores, lib.loc="/users/dia6sx/snakeATAC/scripts/", quietly=TRUE))) #suppressWarnings(suppressPackageStartupMessages(library(phastCons60way.UCSC.mm10, lib.loc="/users/dia6sx/snakeATAC/scripts/", quietly=TRUE))) } else if (species == "hs") { suppressPackageStartupMessages(library(TxDb.Hsapiens.UCSC.hg38.knownGene, quietly=TRUE)) suppressPackageStartupMessages(library(BSgenome.Hsapiens.UCSC.hg38, quietly=TRUE)) txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene bsgenome <- BSgenome.Hsapiens.UCSC.hg38 genome <- Hsapiens print("species is 'hs' using hg38 for analysis") } else { print(paste("params ERROR: ATACseqQC is not configured to use species =", species)) print("exiting...") quit(status=1) } doATACseqQC <- function(bamfile, txdb, bsgenome, genome) { # Fragment size distribution print(paste("generating output for ",strsplit(basename(bamfile),split='\\.')[[1]][1],"...",sep="")) print("calculating Fragment size distribution...") bamfile.labels <- gsub(".bam", "", basename(bamfile)) loc_to_save_figures <- paste(dirname(dirname(bamfile)),"/qc/ATACseqQC",sep="") if (file.exists(loc_to_save_figures)) { print("Warning: old figures will be overwritten") } else { dir.create(loc_to_save_figures) } png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_fragment_size_distribution.png",sep="") png(png_file) fragSizeDist(bamfile, bamfile.labels) dev.off() # Adjust the read start sites print("adjusting read start sites...") ## bamfile tags to be read in possibleTag <- list("integer"=c("AM", "AS", "CM", "CP", "FI", "H0", "H1", "H2", "HI", "IH", "MQ", "NH", "NM", "OP", "PQ", "SM", "TC", "UQ"), "character"=c("BC", "BQ", "BZ", "CB", "CC", "CO", "CQ", "CR", "CS", "CT", "CY", "E2", "FS", "LB", "MC", "MD", "MI", "OA", "OC", "OQ", "OX", "PG", "PT", "PU", "Q2", "QT", "QX", "R2", "RG", "RX", "SA", "TS", "U2")) bamTop100 <- scanBam(BamFile(bamfile, yieldSize = 100), param = ScanBamParam(tag=unlist(possibleTag)))[[1]]$tag tags <- names(bamTop100)[lengths(bamTop100)>0] ## files will be output into outPath ## shift the coordinates of 5'ends of alignments in the bam file outPath <- paste(dirname(dirname(bamfile)),"/alignments_shifted", sep="") seqinformation <- seqinfo(txdb) gal <- readBamFile(bamfile, tag=tags, asMates=TRUE, bigFile=TRUE) shiftedBamfile <- file.path(outPath, paste(bamfile.labels,"_shifted.bam",sep="")) # check if shifted Bam file exists from previous run if (file.exists(shiftedBamfile)) { print("Shifted Bamfile found.") print("Loading in...") gal <- readBamFile(shiftedBamfile, tag=tags, asMates=TRUE, bigFile=TRUE) ## This step is mostly for formating so splitBam can ## take in bamfile. Implementing shift of 0 bp on positive strand ## and 0 bp on negative strand because shifted Bamfile should ## already have these shifts gal1 <- shiftGAlignmentsList(gal, positive = 0L, negative = 0L) } else { # shifted bam file does not exist check if # old shifted alignments directory exists # if so remove and create new one if (file.exists(outPath)){ unlink(outPath,recursive=TRUE) } dir.create(outPath) print("*** creating shifted bam file ***") gal1 <- shiftGAlignmentsList(gal, outbam=shiftedBamfile) } # Promoter/Transcript body (PT) score print("calculating Promoter/Transcript body (PT) score...") txs <- transcripts(txdb) pt <- PTscore(gal1, txs) png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_ptscore.png",sep="") png(png_file) plot(pt$log2meanCoverage, pt$PT_score, xlab="log2 mean coverage", ylab="Promoter vs Transcript", main=paste(bamfile.labels,"PT score")) dev.off() # Nucleosome Free Regions (NFR) score print("calculating Nucleosome Free Regions (NFR) score") nfr <- NFRscore(gal1, txs) png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_nfrscore.png",sep="") png(png_file) plot(nfr$log2meanCoverage, nfr$NFR_score, xlab="log2 mean coverage", ylab="Nucleosome Free Regions score", main=paste(bamfile.labels,"\n","NFRscore for 200bp flanking TSSs",sep=""), xlim=c(-10, 0), ylim=c(-5, 5)) dev.off() # Transcription Start Site (TSS) Enrichment Score print("calculating Transcription Start Site (TSS) Enrichment score") tsse <- TSSEscore(gal1, txs) png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_tss_enrichment_score.png",sep="") png(png_file) plot(100*(-9:10-.5), tsse$values, type="b", xlab="distance to TSS", ylab="aggregate TSS score", main=paste(bamfile.labels,"\n","TSS Enrichment score",sep="")) dev.off() # Split reads, Heatmap and coverage curve for nucleosome positions print("splitting reads by fragment length...") genome <- genome outPath <- paste(dirname(dirname(bamfile)),"/alignments_split", sep="") TSS <- promoters(txs, upstream=0, downstream=1) TSS <- unique(TSS) ## estimate the library size for normalization librarySize <- estLibSize(bamfile) ## calculate the signals around TSSs. NTILE <- 101 dws <- ups <- 1010 splitBamfiles <- paste(outPath,"/",c("NucleosomeFree", "mononucleosome", "dinucleosome", "trinucleosome"),".bam",sep="") # check if split Bam files exists from previous run if (all(file.exists(splitBamfiles))) { print("*** split bam files found! ***") print("Loading in...") sigs <- enrichedFragments(bamfiles=splitBamfiles, index=splitBamfiles, TSS=TSS, librarySize=librarySize, TSS.filter=0.5, n.tile = NTILE, upstream = ups, downstream = dws) } else { # split bam files do not exist check if # old split alignments directory exists # if so remove and create new one if (file.exists(outPath)){ unlink(outPath,recursive=TRUE) } print("*** creating split bam files ***") dir.create(outPath) ## split the reads into NucleosomeFree, mononucleosome, ## dinucleosome and trinucleosome. ## and save the binned alignments into bam files. objs <- splitGAlignmentsByCut(gal1, txs=txs, genome=genome, outPath = outPath) #objs <- splitBam(bamfile, tags=tags, outPath=outPath, # txs=txs, genome=genome, # conservation=phastCons60way.UCSC.mm10, # seqlev=paste0("chr", c(1:19, "X", "Y"))) sigs <- enrichedFragments(gal=objs[c("NucleosomeFree", "mononucleosome", "dinucleosome", "trinucleosome")], TSS=TSS, librarySize=librarySize, TSS.filter=0.5, n.tile = NTILE, upstream = ups, downstream = dws) } ## log2 transformed signals sigs.log2 <- lapply(sigs, function(.ele) log2(.ele+1)) ## plot heatmap png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_nucleosome_pos_heatmap.png",sep="") png(png_file) featureAlignedHeatmap(sigs.log2, reCenterPeaks(TSS, width=ups+dws), zeroAt=.5, n.tile=NTILE) dev.off() ## get signals normalized for nucleosome-free and nucleosome-bound regions. out <- featureAlignedDistribution(sigs, reCenterPeaks(TSS, width=ups+dws), zeroAt=.5, n.tile=NTILE, type="l", ylab="Averaged coverage") ## rescale the nucleosome-free and nucleosome signals to 0~1 range01 <- function(x){(x-min(x))/(max(x)-min(x))} out <- apply(out, 2, range01) png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_TSS_signal_distribution.png",sep="") png(png_file) matplot(out, type="l", xaxt="n", xlab="Position (bp)", ylab="Fraction of signal", main=paste(bamfile.labels,"\n","TSS signal distribution",sep="")) axis(1, at=seq(0, 100, by=10)+1, labels=c("-1K", seq(-800, 800, by=200), "1K"), las=2) abline(v=seq(0, 100, by=10)+1, lty=2, col="gray") dev.off() print("QC Finished.") print("Generated QC figures can be found in qc folder under ATACseQC") print(paste("*** removing temp files in",outPath,"***")) unlink(outPath,recursive=TRUE) outPath <- paste(dirname(dirname(bamfile)),"/alignments_shifted", sep="") print(paste("*** removing temp files in",outPath,"***")) unlink(outPath,recursive=TRUE) } doATACseqQC(bamfile, txdb, bsgenome, genome) |
data / bioconductor
BSgenome.Mmusculus.UCSC.mm10
Full genome sequences for Mus musculus (UCSC version mm10, based on GRCm38.p6): Full genome sequences for Mus musculus (Mouse) as provided by UCSC (mm10, based on GRCm38.p6) and stored in Biostrings objects.