Workflow Steps and Code Snippets
1 tagged steps and code snippets that match keyword BSgenome.Mmusculus.UCSC.mm9
Code for the manuscript "Machine learning reveals STAT motifs as predictors for GR-mediated gene repression"
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | suppressPackageStartupMessages(library(optparse, warn.conflicts=F, quietly=T)) option_list <- list( make_option(c("--ctss_pool1"), type="character", help="Path for ctss file from FANTOM5 of pool 1"), make_option(c("--ctss_pool2"), type="character", help="Path for ctss file from FANTOM5 of pool 2"), make_option(c("--liftoverchain"), type="character", help="Path to liftover chain file for mm9 to mm10"), make_option(c("--gencode_mm9_geneanno"), type="character", help="Path to genomic reference file for mm9"), make_option(c("--gencode_mm10_geneanno"), type="character", help="GENCODE genomic reference for assembly mm10, prefiltered for gene entries"), make_option(c("--outdir"), type="character", help="Output directory") ) opt <- parse_args(OptionParser(option_list=option_list)) suppressPackageStartupMessages(library(dplyr, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(BSgenome.Mmusculus.UCSC.mm9, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(ChIPseeker, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(CAGEr, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(rtracklayer, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(ggplot2, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(GenomicRanges, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(here, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(org.Mm.eg.db, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(TxDb.Mmusculus.UCSC.mm10.knownGene, warn.conflicts=F, quietly=T)) outdir <- here(opt$outdir) # Workflow is based on the CAGEr vignette # https://www.bioconductor.org/packages/release/bioc/vignettes/CAGEr/inst/doc/CAGEexp.html #---------------------- Import CAGE samples from BMDMs #------------------------------------------------------------------------------------ # get URL for public samples, download and read necessariy columns into ctss file (see snakemake workflow) # We want to import bone-marrow derived macrophage samples through CAGEr. # After looking at list of available datasets we can decide what samples best fit our needs. # Let's see what samples are available through FANTOM5 #data(FANTOM5mouseSamples) #head(FANTOM5mouseSamples) # The FANTOM5 dataframe holds descriptions of the samples and the url where they can be retrieved. # There's an easy way to import samples that match a certain term into a CAGEset object. #mac_samples <- FANTOM5mouseSamples[grep("macrophage, bone marrow derived", # FANTOM5mouseSamples[,"description"]),] print("NOTE: reference genome for the public CAGE files is mm9!") ce <- CAGEr::CAGEexp( genomeName = "BSgenome.Mmusculus.UCSC.mm9", inputFiles = c(opt$ctss_pool1 ,opt$ctss_pool2), inputFilesType = "ctss", sampleLabels = c("pool1","pool2") ) # To actually read in the data into the object we use getCTSS() function, that will add an experiment called tagCountMatrix to the CAGEexp object. ce <- CAGEr::getCTSS(ce) ce #------------------------------------------------------------------------------------ #---------------------- QC #------------------------------------------------------------------------------------ ncbim37_anno <- rtracklayer::import.gff(opt$gencode_mm9_geneanno) ce <- annotateCTSS(ce, ncbim37_anno) colData(ce)[,c("librarySizes", "promoter", "exon", "intron", "unknown")] plotAnnot(ce, "counts") corr.m <- plotCorrelation2( ce, samples = "all" , tagCountThreshold = 1, applyThresholdBoth = FALSE , method = "pearson") #------------------------------------------------------------------------------------ #---------------------- Get read clusters #------------------------------------------------------------------------------------ print("Merging samples") #Now we can merge them ce <- mergeSamples(ce, mergeIndex = c(1,1), mergedSampleLabels = c("BMDM")) # redo annotation since this gets reset during merging ce <- annotateCTSS(ce, ncbim37_anno) print("The total library size is:") print(librarySizes(ce)) # Check if data follows a power law distribution plotReverseCumulatives(ce, fitInRange = c(5, 3000), onePlot = TRUE) print("Normalizing reads") # Since we don't really care about making comparisons between different population we could prob just skip the normalization # The fit range is chosen from the plot. We take the alpha from the ref distribution and set T to a million to get the tag count per million (TPM) ce <- normalizeTagCount(ce, method = "powerLaw", fitInRange = c(5, 3000), alpha = 1.15, T = 1*10^6) #mac_CAGEset@tagCountMatrix print("Cluster the tags") # After normalization we can cluster the tags. # Clustering, only seems to work with the CAGEset object (due to some problems with the IRanges column) # From the CAGEr vignette: # "Transcription start sites are found in the promoter region of a gene and reflect the transcriptional activity of that promoter (Figure 5). TSSs in the close proximity of each other give rise to a functionally equivalent set of transcripts and are likely regulated by the same promoter elements. Thus, TSSs can be spatially clustered into larger transcriptional units, called tag clusters (TCs) that correspond to individual promoters. CAGEr supports three methods for spatial clustering of TSSs along the genome, two ab initio methods driven by the data itself, as well as assigning TSSs to predefined genomic regions:" ce <- clusterCTSS(ce, threshold=1, thresholdIsTpm = TRUE, nrPassThreshold = 1, method="distclu", maxDist=20, removeSingletons = TRUE, keepSingletonsAbove = 3) # Let's have a look what the result looks like head(tagClustersGR(ce, sample = "BMDM")) # calculate cumulative distribution for every tag cluster in each of the samples ce <- cumulativeCTSSdistribution(ce, clusters = "tagClusters", useMulticore = T) # determine the positions of selected quantiles ce <- quantilePositions(ce, clusters = "tagClusters", qLow = 0.1, qUp = 0.9) # How many tagclusters do we have in total? length(tagClustersGR(ce, sample = "BMDM")) # histogram of interquantile width plotInterquantileWidth(ce, clusters = "tagClusters", tpmThreshold = 3, qLow = 0.1, qUp = 0.9) print("Retrieving clusters as GenomicRanges") clusters_gr <- tagClustersGR(ce, sample="BMDM") #------------------------------------------------------------------------------------ #---------------------- Liftover coordinates to mm10 #------------------------------------------------------------------------------------ print("Liftover to mm10") # * Now we can lift over the intervals to mm10 # * Annotate them with peakanno # * pick the most highly expressed one for each gene liftover <- function(peaks_gr_mm9){ #input is a GenomicRanges object in mm9 coordinates #lift peak locations from mm9 to mm10 chain <- rtracklayer::import.chain(opt$liftoverchain) on.exit( close( file(opt$liftoverchain)) ) peaks_gr_mm10 <- rtracklayer::liftOver(peaks_gr_mm9, chain) peaks_gr_mm10 <- GenomicRanges::GRanges(unlist(peaks_gr_mm10)) return(peaks_gr_mm10) } mac_cage_mm10 <- liftover( clusters_gr ) ggplot(as.data.frame(mac_cage_mm10), aes(x=width)) + geom_histogram(bins = 100) # Liftover coordinates of dominant_ctss dominant_ctss <- liftover( GRanges( seqnames = seqnames(clusters_gr), ranges = IRanges(start = clusters_gr$dominant_ctss, end = clusters_gr$dominant_ctss), score=clusters_gr$score) ) #------------------------------------------------------------------------------------ #----------------- Annotate TSS clusters to reference gene coordinates #------------------------------------------------------------------------------------ print("Annotate TSS coordinates") # Use coordinates of the dominant ctss downstream mac_cage_anno <- ChIPseeker::annotatePeak(dominant_ctss, tssRegion=c(-1000, 1000), #more stringent than default level = "gene", TxDb=TxDb.Mmusculus.UCSC.mm10.knownGene, annoDb = "org.Mm.eg.db") # For those that are reasonably close to a TSS, # check for each gene, which position has the highest score. mac_cage_maxscore <- as.data.frame(mac_cage_anno) %>% filter(abs(distanceToTSS)<=30000) %>% mutate(SYMBOL=as.factor(SYMBOL)) %>% filter(SYMBOL!="") %>% group_by(SYMBOL)%>% filter(score == max(score))%>% filter(distanceToTSS == min(distanceToTSS )) # for tied score, use shorter distance nrow(mac_cage_maxscore) ggplot(mac_cage_maxscore, aes(x=distanceToTSS)) + geom_histogram(bins = 100) #------------------------------------------------------------------------------------ #---------- retrieve gene coordinates and promoterregion from reference #------------------------------------------------------------------------------------ gencode_mm10_geneanno <- rtracklayer::import.gff(opt$gencode_mm10_geneanno) genecoords <- as.data.frame(gencode_mm10_geneanno) %>% dplyr::select("seqnames","start","end","strand","gene_id") %>% mutate(score=0) %>% dplyr::mutate(gene_id=gsub("\\.[0-9]*$","",gene_id)) %>% dplyr::filter(!"gene_id"=="")%>% dplyr::select("seqnames","start","end","gene_id","score","strand") gencode_mm10_promoterregions <- promoters(gencode_mm10_geneanno) gencode_mm10_promoterregions <- as.data.frame(gencode_mm10_promoterregions) %>% dplyr::select("seqnames","start","end","strand","gene_id") %>% mutate(score=0) %>% dplyr::mutate(gene_id=gsub("\\.[0-9]*$","",gene_id)) %>% dplyr::filter(!"gene_id"=="")%>% dplyr::select("seqnames","start","end","gene_id","score","strand") #------------------------------------------------------------------------------------ #----------------- export files #------------------------------------------------------------------------------------ write.table(genecoords, file = paste0(outdir,"reference_genecoords.bed"), sep="\t", col.names = FALSE, quote=FALSE, row.names = FALSE) write.table(gencode_mm10_promoterregions, file = paste0(outdir,"reference_promoterregions.bed"), sep="\t", col.names = FALSE, quote=FALSE, row.names = FALSE) rtracklayer::export.bed(as.data.frame(mac_cage_mm10), paste0(outdir, "mac_cage_tssclusterregions.bed"), format="bed") rtracklayer::export.bed(as.data.frame(dominant_ctss), paste0(outdir, "mac_cage_dominant_ctss.bed"), format="bed") rtracklayer::export.bed(mac_cage_maxscore, paste0(outdir,"mac_cage_maxscore.bed"), format="bed") |
data / bioconductor
BSgenome.Mmusculus.UCSC.mm9
Full genome sequences for Mus musculus (UCSC version mm9): Full genome sequences for Mus musculus (Mouse) as provided by UCSC (mm9, Jul. 2007) and stored in Biostrings objects.