Workflow Steps and Code Snippets
2 tagged steps and code snippets that match keyword EnsDb.Hsapiens.v75
Supplementary material for the OLOGRAM-MODL paper
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 | this.dir = "./output/sc_atac_seq_pbmc_data/" setwd(this.dir) print(getwd()) ## Library if (!requireNamespace("BiocManager", quietly = TRUE)){ install.packages("BiocManager", repos="http://cran.us.r-project.org", dependencies = TRUE) } BiocManager::install() setRepositories(ind=1:5) # To automatically install Bioconductor dependencies # Install Signac if (!requireNamespace("Signac")){ BiocManager::install(c("GenomeInfoDbData", 'BSgenome.Hsapiens.UCSC.hg19', 'EnsDb.Hsapiens.v75','BSgenome.Hsapiens.UCSC.hg38', 'EnsDb.Hsapiens.v86')) BiocManager::install(c("ggbio","chromVAR","TFBSTools","motifmatchr")) install.packages("Signac", repos="http://cran.us.r-project.org", dependencies = TRUE) } library(Signac) library(Seurat) library(GenomeInfoDb) library(EnsDb.Hsapiens.v75) library(ggplot2) library(patchwork) library(parallel) set.seed(1234) ## Download and read the data from Signac PBMC vignette # Download all options(timeout = 3600) # Counts destfile = "atac_v1_pbmc_10k_filtered_peak_bc_matrix.h5" if (!file.exists(destfile)) { download.file("https://cf.10xgenomics.com/samples/cell-atac/1.0.1/atac_v1_pbmc_10k/atac_v1_pbmc_10k_filtered_peak_bc_matrix.h5", destfile = destfile) } counts <- Read10X_h5(filename = "atac_v1_pbmc_10k_filtered_peak_bc_matrix.h5") # From the vignette : each row of the matrix represents a region of the genome (a peak), that is predicted to represent a region of open chromatin. # Each value in the matrix represents the number of Tn5 integration sites for each single barcode (i.e. a cell) that map within each peak # Metadata destfile = "atac_v1_pbmc_10k_singlecell.csv" if (!file.exists(destfile)) { download.file("https://cf.10xgenomics.com/samples/cell-atac/1.0.1/atac_v1_pbmc_10k/atac_v1_pbmc_10k_singlecell.csv", destfile = destfile) } metadata <- read.csv(file = "atac_v1_pbmc_10k_singlecell.csv", header = TRUE, row.names = 1) # Fragment file and index destfile = "atac_v1_pbmc_10k_fragments.tsv.gz" if (!file.exists(destfile)) { download.file("https://cf.10xgenomics.com/samples/cell-atac/1.0.1/atac_v1_pbmc_10k/atac_v1_pbmc_10k_fragments.tsv.gz", destfile = destfile) } destfile = "atac_v1_pbmc_10k_fragments.tsv.gz.tbi" if (!file.exists(destfile)) { download.file("https://cf.10xgenomics.com/samples/cell-atac/1.0.1/atac_v1_pbmc_10k/atac_v1_pbmc_10k_fragments.tsv.gz.tbi", destfile = destfile) } # From the vignette : This represents a full list of all unique fragments across all single cells (not just those associated to peaks) destfile = "pbmc_10k_v3.rds" if (!file.exists(destfile)) { download.file("https://www.dropbox.com/s/zn6khirjafoyyxl/pbmc_10k_v3.rds?dl=1", destfile = destfile) } ## Create Signac objects chrom_assay <- CreateChromatinAssay( counts = counts, sep = c(":", "-"), genome = 'hg19', fragments = "atac_v1_pbmc_10k_fragments.tsv.gz", min.cells = 10, min.features = 200 ) pbmc <- CreateSeuratObject( counts = chrom_assay, assay = "peaks", meta.data = metadata ) # Add gene annotations annotations <- GetGRangesFromEnsDb(ensdb = EnsDb.Hsapiens.v75) seqlevelsStyle(annotations) <- 'UCSC' # change to UCSC style since the data was mapped to hg19 genome(annotations) <- "hg19" Annotation(pbmc) <- annotations # NOTE: to get the atackseq data, use `pbmc[['peaks']]` # To get the associated genomic ranges, use `granges(pbmc)` ## Quality control pbmc <- NucleosomeSignal(object = pbmc) # compute nucleosome signal score per cell pbmc <- TSSEnrichment(object = pbmc, fast = FALSE) # compute TSS enrichment score per cell # add blacklist ratio and fraction of reads in peaks pbmc$pct_reads_in_peaks <- pbmc$peak_region_fragments / pbmc$passed_filters * 100 pbmc$blacklist_ratio <- pbmc$blacklist_region_fragments / pbmc$peak_region_fragments pbmc$high.tss <- ifelse(pbmc$TSS.enrichment > 2, 'High', 'Low') pbmc$nucleosome_group <- ifelse(pbmc$nucleosome_signal > 4, 'NS > 4', 'NS < 4') # Remove outliers pbmc <- subset(x = pbmc, subset = peak_region_fragments > 3000 & peak_region_fragments < 20000 & pct_reads_in_peaks > 15 & blacklist_ratio < 0.05 & nucleosome_signal < 4 & TSS.enrichment > 2 ) ## Perform normalization+feature selection, and then UMAP cluster computation pbmc <- RunTFIDF(pbmc) pbmc <- FindTopFeatures(pbmc, min.cutoff = 'q0') pbmc <- RunSVD(pbmc) pbmc <- RunUMAP(object = pbmc, reduction = 'lsi', dims = 2:30) pbmc <- FindNeighbors(object = pbmc, reduction = 'lsi', dims = 2:30) pbmc <- FindClusters(object = pbmc, verbose = FALSE, algorithm = 3) #DimPlot(object = pbmc, label = TRUE) + NoLegend() # Gene activity matrix, using chromatin accessibility as proxy for activity gene.activities <- GeneActivity(pbmc) pbmc[['RNA']] <- CreateAssayObject(counts = gene.activities) pbmc <- NormalizeData(object = pbmc, assay = 'RNA', normalization.method = 'LogNormalize', scale.factor = median(pbmc$nCount_RNA) ) DefaultAssay(pbmc) <- 'RNA' ## Load names from transversal scRNA-Seq study pbmc_rna <- readRDS("pbmc_10k_v3.rds") # Load the pre-processed scRNA-seq data for PBMCs transfer.anchors <- FindTransferAnchors( reference = pbmc_rna, query = pbmc, reduction = 'cca' ) predicted.labels <- TransferData( anchorset = transfer.anchors, refdata = pbmc_rna$celltype, weight.reduction = pbmc[['lsi']], dims = 2:30 ) pbmc <- AddMetaData(object = pbmc, metadata = predicted.labels) #plot1 <- DimPlot( object = pbmc_rna, group.by = 'celltype',label = TRUE,repel = TRUE) + NoLegend() + ggtitle('scRNA-seq') #plot2 <- DimPlot( object = pbmc, group.by = 'predicted.labels',label = TRUE, repel = TRUE) + NoLegend() + ggtitle('scATAC-seq') #plot1 + plot2 # Change names pbmc <- subset(pbmc, idents = 14, invert = TRUE) pbmc <- RenameIdents( object = pbmc, '0' = 'CD14 Mono', '1' = 'CD4 Memory', '2' = 'CD8 Effector', '3' = 'CD4 Naive', '4' = 'CD14 Mono', '5' = 'DN T', '6' = 'CD8 Naive', '7' = 'NK CD56Dim', '8' = 'pre-B', '9' = 'CD16 Mono', '10' = 'pro-B', '11' = 'DC', '12' = 'NK CD56bright', '13' = 'pDC' ) DefaultAssay(pbmc) <- 'peaks' # Important, change back to working with peaks instead of gene activities ## Find differantially accessible peaks between clusters ## May be useful to create a restriction for shuffling # da_peaks <- FindMarkers( # object = pbmc, # ident.1 = "CD4 Naive", # ident.2 = "CD14 Mono", # min.pct = 0.2, # test.use = 'LR', # latent.vars = 'peak_region_fragments' # ) # Translation between peaks's column name and cell id + predicted type translation = data.frame(class = pbmc$predicted.id, id = pbmc$cell_id) write.table(translation, file="cell_to_class.tsv", sep = '\t') ## Convert to BED ifelse(!dir.exists("bed"), dir.create("bed"), FALSE) # Create directory # For each cell (ie. tag)... n_tags = ncol(pbmc[['peaks']]) #for (j in 1:n_tags) {} message_parallel <- function(...){ system(sprintf('echo "\n%s\n"', paste0(..., collapse=""))) } signal_to_bed = function(j){ # Get the vector of signal for this cell, giving the signal or absence thereof # at each candidate region signal_this_tag = data.frame( pbmc[['peaks']][1:nrow(pbmc[['peaks']]), j], check.names = FALSE ) # Get the tag's id and predicted class tag = colnames(signal_this_tag) tag_id = translation[tag,"id"] tag_class = translation[tag,"class"] tag_class = chartr(" ", "_", tag_class) # Open a BED file bed_dir = paste("bed/",tag_class,"/", sep = '') bedpath = paste(bed_dir,tag_id,".bed", sep = '') ifelse(!dir.exists(bed_dir), dir.create(bed_dir), FALSE) # For each region (row), write it to the BED file if detected in this cell for(i in 1:nrow(signal_this_tag)) { signal = signal_this_tag[i,1] # Since we work on the peaks matric and not on the fragments themselves, # I binarize the counts value if(signal > 0){ region = rownames(signal_this_tag)[i] region_list = strsplit(region, split='-', fixed=TRUE)[[1]] line = paste(region_list[1],'\t',region_list[2],'\t',region_list[3], sep = '') write(line, file = bedpath, append = TRUE) } } message_parallel("Cell tag ",j,"/",n_tags,"complete.") return(TRUE) } res = mclapply(1:n_tags, signal_to_bed, mc.cores = 4) # One BED file with all regions bedpath_all = "bed/allmerged.bed" all_regions = rownames(pbmc[['peaks']]) for (region in all_regions) { region_list = strsplit(region, split='-', fixed=TRUE)[[1]] line = paste(region_list[1],'\t',region_list[2],'\t',region_list[3], sep = '') write(line, file = bedpath_all, append = TRUE) } ## ------ Final step: random selection # Randomly select 50 cells from CD14, 25 from CD4 and 25 from CD8 ifelse(!dir.exists("bed_selected"), dir.create("bed_selected"), FALSE) draw_for_this_type = function(cell_type, size, randomize = FALSE){ # Get file list with full path dirpath = paste("bed/",cell_type, sep = "") files <- list.files(dirpath, full.names = TRUE) # Select the desired number of files by simple random sampling, # or just take the top N if `randomize` is False if (randomize) { randomize <- sample(seq(files)) files2analyse <- files[randomize] } else { files2analyse <- files } files2analyse <- files2analyse[(1:size)] # Move files for(i in seq(files2analyse)){ file.copy(from = files2analyse[i], to = "bed_selected/") } } draw_for_this_type("CD14+_Monocytes", 30, FALSE) draw_for_this_type("CD4_Naive", 15, FALSE) draw_for_this_type("CD8_Naive", 15, FALSE) draw_for_this_type("pre-B_cell", 15, FALSE) |
Code to reproduce analyses shown in the Signac paper
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 | library(Signac) library(EnsDb.Mmusculus.v79) library(EnsDb.Hsapiens.v75) library(GenomeInfoDb) # extract gene annotations from EnsDb annotations.mm <- GetGRangesFromEnsDb(ensdb = EnsDb.Mmusculus.v79) annotations.hg <- GetGRangesFromEnsDb(ensdb = EnsDb.Hsapiens.v75) # change to UCSC style since the data was mapped to hg19/mm10 seqlevelsStyle(annotations.hg) <- 'UCSC' genome(annotations.hg) <- "hg19" seqlevelsStyle(annotations.mm) <- 'UCSC' genome(annotations.mm) <- "mm10" # save saveRDS(object = annotations.mm, file = "data/biccn/annotations.rds") saveRDS(object = annotations.hg, file = "data/pbmc_atac/annotations.rds") |
data / bioconductor
EnsDb.Hsapiens.v75
Ensembl based annotation package: Exposes an annotation databases generated from Ensembl.