Workflow Steps and Code Snippets
2 tagged steps and code snippets that match keyword FDb.InfiniumMethylation.hg19
Code used for the manuscript 'Network reconstruction for trans acting genetic loci using multi-omics data and prior information' by Hawe et al., 2022 in Genome Medicine
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | log <- file(snakemake@log[[1]], open="wt") sink(log) sink(log, type="message") # ------------------------------------------------------------------------------ # load packages, source scripts # ------------------------------------------------------------------------------ library(GenomicRanges) library(GenomicFeatures) library(FDb.InfiniumMethylation.hg19) library(data.table) library(illuminaHumanv3.db) library(rtracklayer) library(graph) library(RBGL) # for shortest paths library(Matrix) source("scripts/lib.R") source("scripts/collect_ranges_methods.R") # ------------------------------------------------------------------------------ # Get snakemake params # ------------------------------------------------------------------------------ fcosmo <- snakemake@input$tcosmo fmeqtl <- snakemake@input$meqtl fppi_db <- snakemake@input$ppi_db fprio_tab <- snakemake@input$priorization fgene_annot <- snakemake@input$gene_annot # TODO: create this file from scratch! fcpgcontext <- snakemake@input$cpgcontext ofile <- snakemake@output[[1]] sentinel <- snakemake@wildcards$sentinel # ------------------------------------------------------------------------------ # Load and preprocess data # ------------------------------------------------------------------------------ print("Loading data.") gene_annot <- load_gene_annotation(fgene_annot) gene_annot$ids <- probes.from.symbols(gene_annot$SYMBOL, as_list=T) ppi_db <- readRDS(fppi_db) # load trans-meQTL table trans_meQTL = read.csv(fmeqtl, sep="\t", stringsAsFactors=F) # load trans-cosmo information cosmo <- readRDS(fcosmo) # load priorization table prio <- read.table(fprio_tab, sep="\t", header=T, stringsAsFactors = F) # get trans-genes which should be used for shortest path extraction prio <- prio[prio$sentinel == sentinel,,drop=F] if(nrow(prio) > 0) { best_trans <- unique(prio$trans.gene) } else { best_trans <- NULL } # ------------------------------------------------------------------------------ # Collect and save ranges # ------------------------------------------------------------------------------ # ------------------------------------------------------------------------------ print("Collecting SNP and CpG ranges.") # ------------------------------------------------------------------------------ pairs = which(trans_meQTL[,"sentinel.snp"] == sentinel) # get sentinel idx sentinel_idx <- which(cosmo$snp==sentinel)[1] # the large interval range for the sentinel chr <- paste0("chr", trans_meQTL[pairs,"chr.snp"][1]) start <- trans_meQTL[pairs,"interval.start.snp"][1] end <- trans_meQTL[pairs,"interval.end.snp"][1] sentinel_extrange <- GRanges(chr, IRanges(start,end)) sentinel_range <- with(cosmo[sentinel_idx,], GRanges(paste0("chr", snp.chr), IRanges(snp.pos, width=1))) names(sentinel_range) <- names(sentinel_extrange) <- sentinel # get cosmo subset idxs <- get.trans.cpgs(sentinel, trans_meQTL, cosmo) # get related genes, i.e. genes near meQTL loci (snp+cpg) # extend cpgs cosmosub <- cosmo[idxs,] croi <- with(cosmosub, GRanges(paste0("chr", cpg.chr), IRanges(cpg.pos,width=2))) names(croi) <- as.character(cosmosub[,"cpg"]) croi <- unique(croi) # extended sentinel region sroi <- sentinel_extrange names(sroi) <- sentinel # ------------------------------------------------------------------------------ print("Retrieving SNP and CpG genes.") # ------------------------------------------------------------------------------ # get the relevant snp genes by overlapping with our sentinel region genes_sroi <- subsetByOverlaps(gene_annot, sroi, ignore.strand=T) # get genes near our cpg regions genes_by_cpg <- get.nearby.ranges(croi, promoters(gene_annot)) names(genes_by_cpg) <- names(croi) # get original ranges (not promoters) genes_by_cpg <- lapply(names(genes_by_cpg), function(cg) { gs <- genes_by_cpg[[cg]] gene_annot[gs$hit_idx] }) names(genes_by_cpg) <- names(croi) # get single list of all cpg genes genes_croi <- unique(unlist(GRangesList(unlist(genes_by_cpg)))) # ------------------------------------------------------------------------------ print("Collecting TFs and shortest path genes.") # ------------------------------------------------------------------------------ tfs <- NULL sp <- NULL # get cpg ids and SNP gene symbols cpgs <- names(croi) snp_genes <- unique(genes_sroi$SYMBOL) # modify ppi_db to contain our CpGs # load the cpg-tf context tfbs_ann <- get_tfbs_context(names(croi), fcpgcontext) cpgs_with_tfbs <- cpgs[cpgs %in% rownames(tfbs_ann[rowSums(tfbs_ann)>0,])] snp_genes_in_string <- snp_genes[snp_genes %in% nodes(ppi_db)] # get locus graph locus_graph <- add.to.graphs(list(ppi_db), sentinel, snp_genes, cpgs_with_tfbs, tfbs_ann)[[1]] # get tfs connected to cpgs tf_syms = unique(unlist(adj(locus_graph, cpgs_with_tfbs))) print(paste0("Annotated TFs: ", paste(tf_syms, collapse=", "))) if(length(tf_syms) < 1 | length(snp_genes_in_string) < 1) { warning(paste0("No TFs or none of the SNP genes are in PPI DB. ", "Skipping shortest paths calculation.")) # still, we want to keep the available TFs if there are no SNP genes # within the PPI DB (would get adjusted using shortest paths below) if(length(snp_genes_in_string) >= 1) { tfs <- gene_annot[gene_annot$SYMBOL %in% tf_syms] } } else { # the nodes we want to keep # in the original meQTL paper we removed KAP1 from the TF symbols nodeset <- c(nodes(ppi_db), tf_syms, snp_genes_in_string, cpgs_with_tfbs) locus_graph <- subGraph(intersect(nodes(locus_graph), nodeset), locus_graph) shortest_paths <- get_shortest_paths(cis = cpgs_with_tfbs, trans=unique(c(snp_genes_in_string, tf_syms)), snp_genes=snp_genes_in_string, locus_graph, tf_syms, best_trans) non_tf_sp <- shortest_paths$non_tf_sp tf_sp <- shortest_paths$tf_sp if(length(non_tf_sp) < 1){ warning("No shortest path genes.") } else { sp <- gene_annot[gene_annot$SYMBOL %in% non_tf_sp] } if(length(tf_sp) < 1) { # This should not happen -> sanity check stop("No TFs on shortest paths!") } else { tfs <- gene_annot[gene_annot$SYMBOL %in% tf_sp] } } print(paste0("Annotated TFs after shortest path calculations: ", paste(tfs$SYMBOL, collapse=", "))) # ------------------------------------------------------------------------------ print("Finalizing and saving results.") # ------------------------------------------------------------------------------ result <- list(cpgs=croi,sentinel=sentinel_range, sentinel_ext_range=sentinel_extrange, snp_genes=genes_sroi, cpg_genes=genes_croi, cpg_genes_by_cpg=genes_by_cpg) if(!is.null(sp)){ result$spath <- sp } if(!is.null(tfs)){ result$tfs <- tfs } # set seed name result$seed <- "meqtl" saveRDS(file=ofile, result) # ------------------------------------------------------------------------------ print("SessionInfo:") # ------------------------------------------------------------------------------ sessionInfo() |
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 | log <- file(snakemake@log[[1]], open = "wt") sink(log) sink(log, type = "message") # ------------------------------------------------------------------------------ # Load libraries and source scripts # ------------------------------------------------------------------------------ suppressPackageStartupMessages(library(qvalue)) suppressPackageStartupMessages(library(data.table)) suppressPackageStartupMessages(library(graph)) suppressPackageStartupMessages(library(parallel)) suppressPackageStartupMessages(library(fdrtool)) suppressPackageStartupMessages(library(Homo.sapiens)) suppressPackageStartupMessages(library(rtracklayer)) suppressPackageStartupMessages(library(FDb.InfiniumMethylation.hg19)) source("scripts/lib.R") source("scripts/priors.R") # ------------------------------------------------------------------------------ # Get snakemake params # ------------------------------------------------------------------------------ # inputs feqtl <- snakemake@input[["eqtl"]] fsnpinfo <- snakemake@input[["snpinfo"]] fexpr <- snakemake@input[["expr"]] fsampleinfo <- snakemake@input[["sampleinfo"]] fpheno <- snakemake@input[["pheno"]] fppi <- snakemake@input[["ppi"]] dplots <- snakemake@params$plot_dir # outputs fout_gene_priors <- snakemake@output$gene_priors fout_eqtl_priors <- snakemake@output$eqtl_priors # ------------------------------------------------------------------------------ # Start processing # ------------------------------------------------------------------------------ print("Loading PPI db.") ppi_db <- readRDS(fppi) # simply delegate create_priors( feqtl, fsnpinfo, fexpr, fsampleinfo, fpheno, dplots, ppi_db, fout_gene_priors, fout_eqtl_priors ) if (FALSE) { # ------------------------------------------------------------------------------ print("Prepare the Banovich based priors, i.e. TF-CpG priors.") # ------------------------------------------------------------------------------ # methylation data meth <- fread("data/current/banovich-2017/methylation/full_matrix.txt", data.table = F) rownames(meth) <- meth$V1 meth$V1 <- NULL cpgs <- features(FDb.InfiniumMethylation.hg19) cpgs <- cpgs[rownames(meth)] # expression data expr <- read.table( "data/current/banovich-2017/xun_lan/allTFexp.withHeader", header = T, sep = "\t", stringsAsFactors = F ) # apparently the table contains duplicated entries, remove them expr <- expr[!duplicated(expr), ] rownames(expr) <- unique(expr[, 1]) samples <- intersect(colnames(expr), colnames(meth)) expr <- t(expr[, samples]) meth <- t(meth[, samples]) # ------------------------------------------------------------------------------ print("Get (our) chip-seq context for the cpgs.") # ------------------------------------------------------------------------------ tfbs_ann <- get_tfbs_context(names(cpgs), fcpgcontext) # ------------------------------------------------------------------------------ print("For each TF, get the correlation to each of the CpGs it is bound nearby") # ------------------------------------------------------------------------------ pairs <- lapply(colnames(expr), function(tf) { # get columns for tf sub <- tfbs_ann[, grepl(tf, colnames(tfbs_ann), ignore.case = T), drop = F] rs <- rowSums(sub) bound_cpgs <- names(rs[rs > 0]) assoc <- unlist(mclapply(bound_cpgs, function(c) { cor.test(expr[, tf], meth[, c], method = "pearson")$p.value }, mc.cores = threads)) cbind.data.frame( TF = rep(tf, length(assoc)), CpG = bound_cpgs, rho = assoc, stringsAsFactors = F ) }) # ------------------------------------------------------------------------------ print("Collect and finalize results.") # ------------------------------------------------------------------------------ tab <- do.call(rbind, pairs) colnames(tab) <- c("TF", "CpG", "pval") tab$qval <- qvalue(tab$pval)$lfdr tab$prior <- 1 - tab$qval head(tab) write.table( file = "results/current/tf-cpg-prior.txt", sep = "\t", col.names = NA, row.names = T, quote = F, tab ) } # ------------------------------------------------------------------------------ print("Session info:") # ------------------------------------------------------------------------------ sessionInfo() |
data / bioconductor
FDb.InfiniumMethylation.hg19
Annotation package for Illumina Infinium DNA methylation probes: Compiled HumanMethylation27 and HumanMethylation450 annotations