Workflow Steps and Code Snippets

3 tagged steps and code snippets that match keyword SNPlocs.Hsapiens.dbSNP144.GRCh37

MPRA GWAS Builder: snakemake workflow

 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
save.image("logs/clean_index_snps.RData")

log <- file(snakemake@log[[1]], open="wt")
sink(log, type = "message")
sink(log, type = "output")


library(SNPlocs.Hsapiens.dbSNP144.GRCh37)
library(SNPlocs.Hsapiens.dbSNP151.GRCh38)
library(XtraSNPlocs.Hsapiens.dbSNP141.GRCh38)
library(TxDb.Hsapiens.UCSC.hg38.knownGene)
library(magrittr)
library(tidyverse)

source("lib/helpers.R")


hg19_to_hg38_chain <- import.chain("assets/hg19ToHg38.over.chain")

# threads <- 4

# if (threads > 1) {
#     library(doMC)
#     registerDoMC(cores = threads)
#     do_parallel <- T
# } else {
#     do_parallel <- F
# }

index_snp_table <- read_tsv(snakemake@input$gwas,
                            col_types = cols(.default = col_character()), quote = "")
# index_snps <- read_tsv("./data/raw/lib3_design/skin_disease_index_snps.txt")

all(str_detect(index_snp_table$SNPS, "^rs\\d+$") |
        str_detect(index_snp_table$SNPS, "^chr[0-9XY]+:\\d+$"))


index_snps <- index_snp_table %>%
    select(disease = Disease, gwas_snp = SNPS, chr = CHR_ID, pos = CHR_POS,
           pubmed = PUBMEDID, sample = `INITIAL SAMPLE SIZE`) %>%
    mutate(coord_b38 = ifelse(is.na(chr), NA, paste0("chr", chr, ":", pos))) %>%
    mutate(coord_b38 = ifelse(is.na(coord_b38) & str_detect(gwas_snp, "chr.+:\\d+"), gwas_snp, coord_b38))


index_snps_gr <- index_snps %>%
    filter(!is.na(coord_b38)) %>%
    extract(coord_b38, c("chr", "pos"), "chr([0-9XY]+):([0-9]+)") %>%
    mutate(start = pos, end = pos) %>%
    makeGRangesFromDataFrame(keep.extra.columns = T)

snps_find_rsid_b37 <- snpsByOverlaps(SNPlocs.Hsapiens.dbSNP144.GRCh37, index_snps_gr)
snps_find_rsid_b38 <- snpsByOverlaps(SNPlocs.Hsapiens.dbSNP151.GRCh38, index_snps_gr)
snps_find_rsid_b38_xtra <- snpsByOverlaps(XtraSNPlocs.Hsapiens.dbSNP141.GRCh38,
                                          `seqlevelsStyle<-`(index_snps_gr, "dbSNP")) %>%
    `seqlevelsStyle<-`("NCBI")



snps_find_rsid_b37_tbl <-
   as.data.frame(snps_find_rsid_b37) %>%
    mutate(coord_b37 = paste0("chr", seqnames, ":", pos)) %>%
    select(rs_id_rescue_b37 = RefSNP_id, coord_b37)

snps_find_rsid_b38_tbl <-
    bind_rows(as.data.frame(snps_find_rsid_b38) %>%
                  mutate(coord_b38 = paste0("chr", seqnames, ":", pos)),
              as.data.frame(snps_find_rsid_b38_xtra) %>%
                  mutate(coord_b38 = paste0("chr", seqnames, ":", start))) %>%
    select(rs_id_rescue = RefSNP_id, coord_b38)
# snps_find_rsid_b38_tbl <- snps_find_rsid_b38 %>% as.data.frame() %>%
#     mutate(coord_b38 = paste0("chr", seqnames, ":", pos)) %>%
#     select(rs_id_rescue = RefSNP_id, coord_b38)

index_snps_cleaned <- left_join(index_snps, snps_find_rsid_b38_tbl) %>%
    mutate(index_snp = ifelse(str_detect(gwas_snp, "^rs\\d+"), gwas_snp,
                              ifelse(!is.na(rs_id_rescue), rs_id_rescue, NA))) %>%
    left_join(snps_find_rsid_b37_tbl, by = c("coord_b38" = "coord_b37")) %>%
    mutate(coord_b37 = ifelse(is.na(index_snp) & !is.na(rs_id_rescue_b37), coord_b38, NA),
           coord_b38 = ifelse(is.na(index_snp) & !is.na(rs_id_rescue_b37), NA, coord_b38),
           index_snp = ifelse(is.na(index_snp) & !is.na(rs_id_rescue_b37), rs_id_rescue_b37, index_snp)) %>%
    mutate(index_snp = ifelse(is.na(index_snp), gwas_snp, index_snp)) %>%
    select(disease, gwas_snp, index_snp, coord_b38, coord_b37, pubmed, sample)


write_csv(index_snps_cleaned, snakemake@output$index_snps)
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
readRenviron(".Renviron")

save.image("logs/get_snps_in_ld.RData")

log <- file(snakemake@log[[1]], open="wt")
sink(log, type = "message")
sink(log, type = "output")

if (! "haploR" %in% rownames(installed.packages())) {
    options(repos = list(CRAN="http://cran.rstudio.com/"))
    install.packages("haploR")
}

library(SNPlocs.Hsapiens.dbSNP144.GRCh37)
library(SNPlocs.Hsapiens.dbSNP151.GRCh38)
library(XtraSNPlocs.Hsapiens.dbSNP141.GRCh38)
library(TxDb.Hsapiens.UCSC.hg38.knownGene)
library(LDlinkR)
library(haploR)
library(VariantAnnotation)
library(magrittr)
library(tidyverse)

source("lib/helpers.R")

set.seed(snakemake@config$seed)

hg19_to_hg38_chain <- import.chain("assets/hg19ToHg38.over.chain")

# threads <- 4

# if (threads > 1) {
#     library(doMC)
#     registerDoMC(cores = threads)
#     do_parallel <- T
# } else {
#     do_parallel <- F
# }

index_snps_cleaned <- read_csv(snakemake@input$index_snps)
# index_snps <- read_tsv("./data/raw/lib3_design/skin_disease_index_snps.txt")

r2_threshold <- snakemake@config$r2_threshold
r2_threshold_pop_specific <- snakemake@config$r2_threshold_pop_spec


pops <- snakemake@config$pops
# pops <- c("EUR", "AFR", "AMR", "EAS", "SAS", "ALL")

if (!is.null(snakemake@config$gwas_pop_key)) {
    gwas_pop_key <- read_tsv(snakemake@config$gwas_pop_key)

    sample_types <- c("individuals?",
                      "cases?",
                      "controls?",
                      "men",
                      "women",
                      "boys?",
                      "girls?",
                      "adults?",
                      "adolescents?",
                      "children and adolescents",
                      "children",
                      "infants?",
                      "neonates?",
                      "mothers?",
                      "fathers?",
                      "parents?",
                      "males?",
                      "females?",
                      "users?",
                      "non-users?",
                      "families",
                      "trios?",
                      "responders?",
                      "non-responders?",
                      "attempters?",
                      "nonattempters?",
                      "alcohol drinkers?",
                      "drinkers?",
                      "non-drinkers?",
                      "smokers?",
                      "non-smokers?",
                      "donors?",
                      "twin pairs?",
                      "twins?",
                      "child sibling pairs?",
                      "fetuses",
                      "offspring",
                      "early adolescents?",
                      "remitters?",
                      "non-remitters?",
                      "athletes?",
                      "Individuals?",
                      "indivduals?",
                      "triads?",
                      "patients?",
                      "pairs?",
                      "case-parent trios?",
                      "recipients?",
                      "affected child",
                      "long sleepers?",
                      "short sleepers?",
                      "unaffected relatives?",
                      "carriers?",
                      "non-carriers?",
                      "cell lines?",
                      "indiviudals?",
                      "referents?",
                      "individuuals?",
                      "duos?",
                      "indivdiuals?",
                      "inidividuals?")

    number_regex <- "(?:(?<=(?:\\s|\\b))\\d+(?:\\,\\d+)*(?=\\s))"
    type_regex <- paste0("(?:", paste0(sample_types, collapse = "|"), ")")


    full_regex <- paste0(
        "(", number_regex, ")", # greedy match first number
        "\\s*((?:(?!.*", type_regex, ").*)|(?:.*?))\\s*", # Greedy match rest if no sample type in lookahead, or passive match
        "(", type_regex,  "?(?!.*", type_regex, "))") # Match last sample type by ensuring no sample type in lookahead

    # split_regex <- "(?<!\\d)(,[\\s\\,]*| and )(?=[\\sA-Aa-z]*[0-9]+[,0-9]*[0-9]+\\s)"
    split_regex <- paste0("((?:,+[,\\s]*\\s+)|(?:and ))(?=[\\sA-Aa-z]*", number_regex, ")")


    sample_terms <- index_snps_cleaned %>%
        distinct(pubmed, sample) %>%
        mutate(split_sample = str_split(sample, split_regex)) %>%
        unnest(split_sample)


    full_matches <- bind_cols(sample_terms,
                              str_match(sample_terms$split_sample, full_regex) %>%
                                  set_colnames(c("match", "number", "capture", "type")) %>%
                                  as_tibble())

    study_key_table <- full_matches %>%
        distinct(pubmed, sample, split_sample, capture) %>%
        rename(term = capture) %>%
        left_join(gwas_pop_key) %>%
        filter(!is.na(code))

    index_snps_pop_match <- index_snps_cleaned %>%
        left_join(study_key_table) %>%
        distinct() %>%
        group_by(disease, gwas_snp, index_snp, coord_b38, coord_b37, pubmed, sample) %>%
        summarise(pops = paste0(sort(unique(unlist(str_split(code, ",")))), collapse = ",")) %>%
        ungroup()


    write_tsv(index_snps_pop_match, "outs/gwas_study_index_snps_matched_populations.tsv")

    index_snps_pop_match %>%
        group_by(disease, pubmed, sample, pops) %>%
        summarise(n_snps = n_distinct(index_snp, na.rm = T)) %>%
        write_tsv("outs/gwas_study_matched_populations.tsv")


} else {
    index_snps_pop_match <- tibble(disease = character(),
                                   pubmed = character(),
                                   sample = character(),
                                   index_snp = character(),
                                   pops = character())
}

max_pops <- snakemake@config$max_pops


index_snps_pop_match_filtered <- index_snps_pop_match %>%
    filter(!is.na(pops) & pops != "") %>%
    filter(map_lgl(str_split(pops, ","), ~ length(.) <= max_pops))


index_snps_pop_all <- crossing(index_snp = unique(index_snps_cleaned$index_snp),
                               pop = pops) %>%
    bind_rows(index_snps_pop_match_filtered %>%
                  mutate(pop = str_split(pops, ",")) %>%
                  unnest(pop) %>%
                  distinct(index_snp, pop))


snps_to_query <- index_snps_pop_all %>%
    filter(str_detect(index_snp, "rs\\d+"),
           !is.na(pop) & pop != "") %>%
    mutate(r2_threshold = ifelse(is.null(r2_threshold_pop_specific) | pop == "ALL",
                                 r2_threshold, r2_threshold_pop_specific))

out_dir <- "outs/SNPS_LDlink"

dir.create(out_dir, showWarnings = F, recursive = T)

ldlink_results <- snps_to_query %>%
    mutate(ldlink_results = pmap(list(index_snp, pop, r2_threshold),
        ~ query_ldlink(snp = ..1, pop = ..2, r2 = ..3, out_dir = out_dir, retry_errors = snakemake@config$retry_errors)))

ldlink_results_table <- ldlink_results %>%
    unnest(ldlink_results) %>%
    filter(R2 >= r2_threshold)

write_tsv(ldlink_results_table, "outs/ldlink_full_results.txt")

haploreg_pops <- c("AFR" = "AFR",
                   "AMR" = "AMR",
                   "EAS" = "ASN",
                   "EUR" = "EUR",
                   "SAS" = "ASN")

out_dir_haploreg <- "outs/SNPS_HaploReg"
dir.create(out_dir_haploreg, showWarnings = F, recursive = T)

haploreg_results <- snps_to_query %>%
    filter(pop %in% names(haploreg_pops)) %>%
    mutate(pop = haploreg_pops[pop]) %>%
    group_by(pop, r2_threshold) %>%
    summarise(index_snps = list(sort(index_snp))) %>%
    mutate(haploreg_results = pmap(list(index_snps, pop, r2_threshold),
        ~ query_haploreg(snps = ..1, pop = ..2, r2 = ..3,
                        force = T, out_dir = out_dir_haploreg))) %>%
    ungroup()

if (nrow(haploreg_results) > 0) {
    haploreg_results_table <- haploreg_results %>%
        select(pop, r2_threshold, haploreg_results) %>%
        unnest(haploreg_results) %>%
        select(index_snp = query_snp_rsid, everything()) %>%
        filter(r2 >= r2_threshold)
} else {
    haploreg_results_table <- tibble(
        index_snp = character(),
        pop = character(),
        chr = character(),
        pos_hg38 = character(),
        r2 = double(),
        D = double(),
        is_query_snp = double(),
        rsID = character(),
        ref = character(),
        alt = character()
    )
}

write_tsv(haploreg_results_table, "outs/haploreg_full_results.txt")



# Harmonize rsIDs and genomic coordinates for all LD SNPs from both sources

# ldlink_results_table <- read_tsv("./data/raw/lib3_design/ldlink_full_results.txt")
# haploreg_results_table <- read_tsv("./data/raw/lib3_design/haploreg_full_results.txt")

## LDlink data is in hg19 coordinates
ldlink_snps <- ldlink_results_table %>%
    extract(Alleles, c("ref", "alt"), "([ACGT-]+)\\/([ACGT-]+)", remove = F) %>%
    filter(!is.na(ref), !is.na(alt))

ldlink_snps_b38 <- ldlink_snps %>%
    extract(Coord, c("chr", "start"), "(chr[0-9XY]+):(\\d+)", remove = F) %>%
    mutate(end = start) %>%
    select(seqnames = chr, start, end, snp = RS_Number, index_snp, coord_b37 = Coord, ref, alt) %>%
    makeGRangesFromDataFrame(keep.extra.columns = T) %>%
    liftOver(hg19_to_hg38_chain) %>% unlist %>%
    as_tibble() %>%
    mutate(coord_b38 = paste0(seqnames, ":", start),
           snp = ifelse(is.na(snp) | !str_detect(snp, "^rs\\d+"), coord_b38, snp)) %>%
    select(snp, coord_b38, ref, alt, index_snp, coord_b37) %>%
    distinct()



## HaploReg data is in hg38 coordinates, but not all snps returned have genome coordinates

haploreg_snps <- haploreg_results_table %>%
    mutate(coord_b38 = ifelse(is.na(chr), NA, paste0("chr", chr, ":", pos_hg38))) %>%
    select(snp = rsID, coord_b38, ref, alt, index_snp)

haploreg_snps_no_coord <- haploreg_snps %>%
    filter(is.na(coord_b38)) %>% pull(snp) %>% unique()

## Try to rescue location data from SNPlocs packages and GTEx variant info

haploreg_snps_find_locs_b38 <- snpsById(SNPlocs.Hsapiens.dbSNP151.GRCh38, haploreg_snps_no_coord, ifnotfound = "drop") %>%
    GRanges() %>% as_tibble() %>%
    mutate(chr = str_replace(as.character(seqnames), "^(chr|ch)", "")) %>%    select(chr, pos_b38 = start, snp = RefSNP_id)
haploreg_snps_find_locs_b38_xtra <- snpsById(XtraSNPlocs.Hsapiens.dbSNP141.GRCh38, haploreg_snps_no_coord, ifnotfound = "drop") %>%
    GRanges() %>% as_tibble() %>%
    mutate(chr = str_replace(as.character(seqnames), "^(chr|ch)", "")) %>%
    select(chr, pos_b38 = start, snp = RefSNP_id)


if (!is.null(snakemake@config$gtex_table)) {
    gtex_var_map <- read_tsv(snakemake@config$gtex_table,
                             col_types = "c-----cc") %>%
        dplyr::rename(rs_id = "rs_id_dbSNP151_GRCh38p7")

    haploreg_snps_find_locs_gtex <- gtex_var_map %>% filter(rs_id %in% haploreg_snps_no_coord) %>%
        extract(variant_id, c("chr", "pos_b38"), "^chr([0-9XY]+)_(\\d+)") %>%
        mutate(pos_b38 = as.numeric(pos_b38)) %>%
        select(chr, pos_b38, snp = rs_id)
} else {
    haploreg_snps_find_locs_gtex <- tibble()
}


haploreg_snps_find_locs_combined <- bind_rows(
    haploreg_snps_find_locs_b38,
    haploreg_snps_find_locs_b38_xtra,
    haploreg_snps_find_locs_gtex
) %>% distinct %>%
    mutate(coord_b38_rescue = paste0("chr", chr, ":", pos_b38)) %>%
    select(snp, coord_b38_rescue)


haploreg_snps_b38 <- haploreg_snps %>%
    left_join(haploreg_snps_find_locs_combined) %>%
    mutate(coord_b38 = as.character(ifelse(is.na(coord_b38), coord_b38_rescue, coord_b38))) %>%
    select(-coord_b38_rescue) %>%
    distinct()



## Combine LD SNPs


ld_snps_b38 <- bind_rows(
    ldlink_snps_b38 %>% mutate(source = "LDlink"),
    haploreg_snps_b38 %>% mutate(source = "HaploReg")
)



## Get TxDb annotations

ld_snps_b38_gr <- ld_snps_b38 %>%
    extract(coord_b38, c("seqnames", "start"), "(.+):(\\d+)") %>%
    filter(!is.na(seqnames), !is.na(start)) %>%
    mutate(end = start) %>%
    select(seqnames, start, end, snp) %>%
    makeGRangesFromDataFrame(keep.extra.columns = T)

ld_snps_txdb_loc <- locateVariants(ld_snps_b38_gr, TxDb.Hsapiens.UCSC.hg38.knownGene, AllVariants())

ld_snps_txdb_loc_df <- as_tibble(ld_snps_txdb_loc) %>%
    transmute(coord_b38 = paste0(seqnames, ":", start),
              txdb_annot = LOCATION) %>%
    distinct() %>%
    group_by(coord_b38) %>%
    summarise(txdb_annot = paste0(txdb_annot, collapse = ";"))

ld_snps_b38_annot <- left_join(ld_snps_b38,
                               ld_snps_txdb_loc_df, by = "coord_b38")


write_tsv(ld_snps_b38_annot, snakemake@output$ld_snps)
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
save.image("logs/intersect_epigenome.RData")


log <- file(snakemake@log[[1]], open="wt")
sink(log, type = "message")
sink(log, type = "output")

## Load packages
# library(SNPlocs.Hsapiens.dbSNP144.GRCh37)
# library(SNPlocs.Hsapiens.dbSNP151.GRCh38)
# library(BSgenome.Hsapiens.UCSC.hg19)
# library(TxDb.Hsapiens.UCSC.hg19.knownGene)
# library(VariantAnnotation)
# library(rtracklayer)
# library(plyranges)


## Set up project
# library(ProjectTemplate)
# load.project()

# str(snakemake@config$epigenome)

library(rtracklayer)
library(plyranges)
library(tidyverse)

set.seed(snakemake@config$seed)

## Load data
# ldlink_full_results <- read_tsv("./data/raw/lib3_design/ldlink_full_results.txt")
# haploreg_full_results <- read_tsv("./data/raw/lib3_design/haploreg_full_results.txt")

ld_snps <- read_tsv(snakemake@input$ld_snps)

hg19_to_hg38_chain <- import.chain("assets/hg19ToHg38.over.chain")

if ("epigenome_csv" %in% names(snakemake@config) && file.exists(snakemake@config$epigenome_csv)) {

    epigenome_csv <- read_csv(snakemake@config$epigenome_csv)
    epigenome_keys <- epigenome_csv$name
    epigenome_bed <- map2(epigenome_csv$bedfile, epigenome_csv$genome, function(bedfile, genome) {
        bed <- read_narrowpeaks(bedfile)
        if (genome == "hg19") {
            bed <- liftOver(bed, hg19_to_hg38_chain) %>% unlist
        }
        return(bed)
        })

} else {

    epigenome_keys <- names(snakemake@config$epigenome)
    epigenome_bed <- map(snakemake@config$epigenome, function(epigenome) {
        bed <- read_narrowpeaks(epigenome$bedfile)
        if (epigenome$genome == "hg19") {
            bed <- liftOver(bed, hg19_to_hg38_chain) %>% unlist
        }
        return(bed)
        })
}

epigenome_df <- tibble(key = epigenome_keys,
                       bed = epigenome_bed) %>%
    mutate(key = str_replace_all(key, "[^A-Za-z0-9_]", "_")) %>%
    group_by(key) %>%
    summarise(bed = list(reduce(bed, union_ranges)))

epigenome_keys <- epigenome_df$key
epigenome_bed <- epigenome_df$bed %>% set_names(epigenome_df$key)

ld_snps_gr <- ld_snps %>%
    filter(!is.na(coord_b38)) %>%
    extract(coord_b38, c("chr", "pos"), "(chr[0-9XY]+):(\\d+)", remove = F) %>%
    mutate(start = pos, end = pos) %>%
    select(-pos) %>%
    makeGRangesFromDataFrame(keep.extra.columns = T)

epigenome_ranges <- map(epigenome_bed,
    ~ as_tibble(.) %>%
    mutate(range = paste0(seqnames, ":", start, "-", end)) %>%
    pull(range))

mcols(ld_snps_gr) <- cbind(mcols(ld_snps_gr),
    map2_dfc(epigenome_ranges, epigenome_bed, ~ .x[findOverlaps(ld_snps_gr, .y, maxgap = 0, select = "first")]))


if (!is.null(snakemake@config$eqtls)) {
    eqtls <-
        map_dfr(snakemake@config$eqtls,
            ~ read_tsv(.$file), .id = "tissue")

    eqtls <- eqtls %>%
        extract(variant_id, c("chr", "pos"), "^(chr[0-9XY]+)_(\\d+)", remove = F) %>%
        mutate(pos = as.integer(pos))
} else {
    eqtls <- tibble(chr = character(), pos = integer(), variant_id = character())
}




ld_snps_epigenome <- ld_snps_gr %>%
    as_tibble(.name_repair = "minimal") %>%
    select(-end, -width, -strand) %>%
    dplyr::rename(chr = seqnames,
                  pos = start) %>%
    mutate(across(all_of(epigenome_keys), ~ ifelse(!is.na(.), cur_column(), NA), .names = "{.col}_dummy")) %>%
    unite(Epigenome, ends_with("_dummy"), sep = ";", na.rm = T) %>%
    left_join(eqtls %>% distinct(chr, pos, eQTL = variant_id))


write_tsv(ld_snps_epigenome, snakemake@output$epigenome)


peak_stats <- tibble(peakset = epigenome_keys, bed = epigenome_bed) %>%
    mutate(peak_num = map_int(epigenome_bed, length),
           peak_width = map_int(epigenome_bed, ~ sum(width(.)))) %>%
    select(-bed)

write_csv(peak_stats, snakemake@output$peak_stats)
data / bioconductor

SNPlocs.Hsapiens.dbSNP144.GRCh37

SNP locations for Homo sapiens (dbSNP Build 144): SNP locations and alleles for Homo sapiens extracted from NCBI dbSNP Build 144. The source data files used for this package were created by NCBI on May 29-30, 2015, and contain SNPs mapped to reference genome GRCh37.p13. WARNING: Note that the GRCh37.p13 genome is a patched version of GRCh37. However the patch doesn't alter chromosomes 1-22, X, Y, MT. GRCh37 itself is the same as the hg19 genome from UCSC *except* for the mitochondrion chromosome. Therefore, the SNPs in this package can be "injected" in BSgenome.Hsapiens.UCSC.hg19 and they will land at the correct position but this injection will exclude chrM (i.e. nothing will be injected in that sequence).