Workflow Steps and Code Snippets
6 tagged steps and code snippets that match keyword TxDb.Hsapiens.UCSC.hg38.knownGene
MPRA GWAS Builder: snakemake workflow
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 | save.image("logs/clean_index_snps.RData") log <- file(snakemake@log[[1]], open="wt") sink(log, type = "message") sink(log, type = "output") library(SNPlocs.Hsapiens.dbSNP144.GRCh37) library(SNPlocs.Hsapiens.dbSNP151.GRCh38) library(XtraSNPlocs.Hsapiens.dbSNP141.GRCh38) library(TxDb.Hsapiens.UCSC.hg38.knownGene) library(magrittr) library(tidyverse) source("lib/helpers.R") hg19_to_hg38_chain <- import.chain("assets/hg19ToHg38.over.chain") # threads <- 4 # if (threads > 1) { # library(doMC) # registerDoMC(cores = threads) # do_parallel <- T # } else { # do_parallel <- F # } index_snp_table <- read_tsv(snakemake@input$gwas, col_types = cols(.default = col_character()), quote = "") # index_snps <- read_tsv("./data/raw/lib3_design/skin_disease_index_snps.txt") all(str_detect(index_snp_table$SNPS, "^rs\\d+$") | str_detect(index_snp_table$SNPS, "^chr[0-9XY]+:\\d+$")) index_snps <- index_snp_table %>% select(disease = Disease, gwas_snp = SNPS, chr = CHR_ID, pos = CHR_POS, pubmed = PUBMEDID, sample = `INITIAL SAMPLE SIZE`) %>% mutate(coord_b38 = ifelse(is.na(chr), NA, paste0("chr", chr, ":", pos))) %>% mutate(coord_b38 = ifelse(is.na(coord_b38) & str_detect(gwas_snp, "chr.+:\\d+"), gwas_snp, coord_b38)) index_snps_gr <- index_snps %>% filter(!is.na(coord_b38)) %>% extract(coord_b38, c("chr", "pos"), "chr([0-9XY]+):([0-9]+)") %>% mutate(start = pos, end = pos) %>% makeGRangesFromDataFrame(keep.extra.columns = T) snps_find_rsid_b37 <- snpsByOverlaps(SNPlocs.Hsapiens.dbSNP144.GRCh37, index_snps_gr) snps_find_rsid_b38 <- snpsByOverlaps(SNPlocs.Hsapiens.dbSNP151.GRCh38, index_snps_gr) snps_find_rsid_b38_xtra <- snpsByOverlaps(XtraSNPlocs.Hsapiens.dbSNP141.GRCh38, `seqlevelsStyle<-`(index_snps_gr, "dbSNP")) %>% `seqlevelsStyle<-`("NCBI") snps_find_rsid_b37_tbl <- as.data.frame(snps_find_rsid_b37) %>% mutate(coord_b37 = paste0("chr", seqnames, ":", pos)) %>% select(rs_id_rescue_b37 = RefSNP_id, coord_b37) snps_find_rsid_b38_tbl <- bind_rows(as.data.frame(snps_find_rsid_b38) %>% mutate(coord_b38 = paste0("chr", seqnames, ":", pos)), as.data.frame(snps_find_rsid_b38_xtra) %>% mutate(coord_b38 = paste0("chr", seqnames, ":", start))) %>% select(rs_id_rescue = RefSNP_id, coord_b38) # snps_find_rsid_b38_tbl <- snps_find_rsid_b38 %>% as.data.frame() %>% # mutate(coord_b38 = paste0("chr", seqnames, ":", pos)) %>% # select(rs_id_rescue = RefSNP_id, coord_b38) index_snps_cleaned <- left_join(index_snps, snps_find_rsid_b38_tbl) %>% mutate(index_snp = ifelse(str_detect(gwas_snp, "^rs\\d+"), gwas_snp, ifelse(!is.na(rs_id_rescue), rs_id_rescue, NA))) %>% left_join(snps_find_rsid_b37_tbl, by = c("coord_b38" = "coord_b37")) %>% mutate(coord_b37 = ifelse(is.na(index_snp) & !is.na(rs_id_rescue_b37), coord_b38, NA), coord_b38 = ifelse(is.na(index_snp) & !is.na(rs_id_rescue_b37), NA, coord_b38), index_snp = ifelse(is.na(index_snp) & !is.na(rs_id_rescue_b37), rs_id_rescue_b37, index_snp)) %>% mutate(index_snp = ifelse(is.na(index_snp), gwas_snp, index_snp)) %>% select(disease, gwas_snp, index_snp, coord_b38, coord_b37, pubmed, sample) write_csv(index_snps_cleaned, snakemake@output$index_snps) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 | readRenviron(".Renviron") save.image("logs/get_snps_in_ld.RData") log <- file(snakemake@log[[1]], open="wt") sink(log, type = "message") sink(log, type = "output") if (! "haploR" %in% rownames(installed.packages())) { options(repos = list(CRAN="http://cran.rstudio.com/")) install.packages("haploR") } library(SNPlocs.Hsapiens.dbSNP144.GRCh37) library(SNPlocs.Hsapiens.dbSNP151.GRCh38) library(XtraSNPlocs.Hsapiens.dbSNP141.GRCh38) library(TxDb.Hsapiens.UCSC.hg38.knownGene) library(LDlinkR) library(haploR) library(VariantAnnotation) library(magrittr) library(tidyverse) source("lib/helpers.R") set.seed(snakemake@config$seed) hg19_to_hg38_chain <- import.chain("assets/hg19ToHg38.over.chain") # threads <- 4 # if (threads > 1) { # library(doMC) # registerDoMC(cores = threads) # do_parallel <- T # } else { # do_parallel <- F # } index_snps_cleaned <- read_csv(snakemake@input$index_snps) # index_snps <- read_tsv("./data/raw/lib3_design/skin_disease_index_snps.txt") r2_threshold <- snakemake@config$r2_threshold r2_threshold_pop_specific <- snakemake@config$r2_threshold_pop_spec pops <- snakemake@config$pops # pops <- c("EUR", "AFR", "AMR", "EAS", "SAS", "ALL") if (!is.null(snakemake@config$gwas_pop_key)) { gwas_pop_key <- read_tsv(snakemake@config$gwas_pop_key) sample_types <- c("individuals?", "cases?", "controls?", "men", "women", "boys?", "girls?", "adults?", "adolescents?", "children and adolescents", "children", "infants?", "neonates?", "mothers?", "fathers?", "parents?", "males?", "females?", "users?", "non-users?", "families", "trios?", "responders?", "non-responders?", "attempters?", "nonattempters?", "alcohol drinkers?", "drinkers?", "non-drinkers?", "smokers?", "non-smokers?", "donors?", "twin pairs?", "twins?", "child sibling pairs?", "fetuses", "offspring", "early adolescents?", "remitters?", "non-remitters?", "athletes?", "Individuals?", "indivduals?", "triads?", "patients?", "pairs?", "case-parent trios?", "recipients?", "affected child", "long sleepers?", "short sleepers?", "unaffected relatives?", "carriers?", "non-carriers?", "cell lines?", "indiviudals?", "referents?", "individuuals?", "duos?", "indivdiuals?", "inidividuals?") number_regex <- "(?:(?<=(?:\\s|\\b))\\d+(?:\\,\\d+)*(?=\\s))" type_regex <- paste0("(?:", paste0(sample_types, collapse = "|"), ")") full_regex <- paste0( "(", number_regex, ")", # greedy match first number "\\s*((?:(?!.*", type_regex, ").*)|(?:.*?))\\s*", # Greedy match rest if no sample type in lookahead, or passive match "(", type_regex, "?(?!.*", type_regex, "))") # Match last sample type by ensuring no sample type in lookahead # split_regex <- "(?<!\\d)(,[\\s\\,]*| and )(?=[\\sA-Aa-z]*[0-9]+[,0-9]*[0-9]+\\s)" split_regex <- paste0("((?:,+[,\\s]*\\s+)|(?:and ))(?=[\\sA-Aa-z]*", number_regex, ")") sample_terms <- index_snps_cleaned %>% distinct(pubmed, sample) %>% mutate(split_sample = str_split(sample, split_regex)) %>% unnest(split_sample) full_matches <- bind_cols(sample_terms, str_match(sample_terms$split_sample, full_regex) %>% set_colnames(c("match", "number", "capture", "type")) %>% as_tibble()) study_key_table <- full_matches %>% distinct(pubmed, sample, split_sample, capture) %>% rename(term = capture) %>% left_join(gwas_pop_key) %>% filter(!is.na(code)) index_snps_pop_match <- index_snps_cleaned %>% left_join(study_key_table) %>% distinct() %>% group_by(disease, gwas_snp, index_snp, coord_b38, coord_b37, pubmed, sample) %>% summarise(pops = paste0(sort(unique(unlist(str_split(code, ",")))), collapse = ",")) %>% ungroup() write_tsv(index_snps_pop_match, "outs/gwas_study_index_snps_matched_populations.tsv") index_snps_pop_match %>% group_by(disease, pubmed, sample, pops) %>% summarise(n_snps = n_distinct(index_snp, na.rm = T)) %>% write_tsv("outs/gwas_study_matched_populations.tsv") } else { index_snps_pop_match <- tibble(disease = character(), pubmed = character(), sample = character(), index_snp = character(), pops = character()) } max_pops <- snakemake@config$max_pops index_snps_pop_match_filtered <- index_snps_pop_match %>% filter(!is.na(pops) & pops != "") %>% filter(map_lgl(str_split(pops, ","), ~ length(.) <= max_pops)) index_snps_pop_all <- crossing(index_snp = unique(index_snps_cleaned$index_snp), pop = pops) %>% bind_rows(index_snps_pop_match_filtered %>% mutate(pop = str_split(pops, ",")) %>% unnest(pop) %>% distinct(index_snp, pop)) snps_to_query <- index_snps_pop_all %>% filter(str_detect(index_snp, "rs\\d+"), !is.na(pop) & pop != "") %>% mutate(r2_threshold = ifelse(is.null(r2_threshold_pop_specific) | pop == "ALL", r2_threshold, r2_threshold_pop_specific)) out_dir <- "outs/SNPS_LDlink" dir.create(out_dir, showWarnings = F, recursive = T) ldlink_results <- snps_to_query %>% mutate(ldlink_results = pmap(list(index_snp, pop, r2_threshold), ~ query_ldlink(snp = ..1, pop = ..2, r2 = ..3, out_dir = out_dir, retry_errors = snakemake@config$retry_errors))) ldlink_results_table <- ldlink_results %>% unnest(ldlink_results) %>% filter(R2 >= r2_threshold) write_tsv(ldlink_results_table, "outs/ldlink_full_results.txt") haploreg_pops <- c("AFR" = "AFR", "AMR" = "AMR", "EAS" = "ASN", "EUR" = "EUR", "SAS" = "ASN") out_dir_haploreg <- "outs/SNPS_HaploReg" dir.create(out_dir_haploreg, showWarnings = F, recursive = T) haploreg_results <- snps_to_query %>% filter(pop %in% names(haploreg_pops)) %>% mutate(pop = haploreg_pops[pop]) %>% group_by(pop, r2_threshold) %>% summarise(index_snps = list(sort(index_snp))) %>% mutate(haploreg_results = pmap(list(index_snps, pop, r2_threshold), ~ query_haploreg(snps = ..1, pop = ..2, r2 = ..3, force = T, out_dir = out_dir_haploreg))) %>% ungroup() if (nrow(haploreg_results) > 0) { haploreg_results_table <- haploreg_results %>% select(pop, r2_threshold, haploreg_results) %>% unnest(haploreg_results) %>% select(index_snp = query_snp_rsid, everything()) %>% filter(r2 >= r2_threshold) } else { haploreg_results_table <- tibble( index_snp = character(), pop = character(), chr = character(), pos_hg38 = character(), r2 = double(), D = double(), is_query_snp = double(), rsID = character(), ref = character(), alt = character() ) } write_tsv(haploreg_results_table, "outs/haploreg_full_results.txt") # Harmonize rsIDs and genomic coordinates for all LD SNPs from both sources # ldlink_results_table <- read_tsv("./data/raw/lib3_design/ldlink_full_results.txt") # haploreg_results_table <- read_tsv("./data/raw/lib3_design/haploreg_full_results.txt") ## LDlink data is in hg19 coordinates ldlink_snps <- ldlink_results_table %>% extract(Alleles, c("ref", "alt"), "([ACGT-]+)\\/([ACGT-]+)", remove = F) %>% filter(!is.na(ref), !is.na(alt)) ldlink_snps_b38 <- ldlink_snps %>% extract(Coord, c("chr", "start"), "(chr[0-9XY]+):(\\d+)", remove = F) %>% mutate(end = start) %>% select(seqnames = chr, start, end, snp = RS_Number, index_snp, coord_b37 = Coord, ref, alt) %>% makeGRangesFromDataFrame(keep.extra.columns = T) %>% liftOver(hg19_to_hg38_chain) %>% unlist %>% as_tibble() %>% mutate(coord_b38 = paste0(seqnames, ":", start), snp = ifelse(is.na(snp) | !str_detect(snp, "^rs\\d+"), coord_b38, snp)) %>% select(snp, coord_b38, ref, alt, index_snp, coord_b37) %>% distinct() ## HaploReg data is in hg38 coordinates, but not all snps returned have genome coordinates haploreg_snps <- haploreg_results_table %>% mutate(coord_b38 = ifelse(is.na(chr), NA, paste0("chr", chr, ":", pos_hg38))) %>% select(snp = rsID, coord_b38, ref, alt, index_snp) haploreg_snps_no_coord <- haploreg_snps %>% filter(is.na(coord_b38)) %>% pull(snp) %>% unique() ## Try to rescue location data from SNPlocs packages and GTEx variant info haploreg_snps_find_locs_b38 <- snpsById(SNPlocs.Hsapiens.dbSNP151.GRCh38, haploreg_snps_no_coord, ifnotfound = "drop") %>% GRanges() %>% as_tibble() %>% mutate(chr = str_replace(as.character(seqnames), "^(chr|ch)", "")) %>% select(chr, pos_b38 = start, snp = RefSNP_id) haploreg_snps_find_locs_b38_xtra <- snpsById(XtraSNPlocs.Hsapiens.dbSNP141.GRCh38, haploreg_snps_no_coord, ifnotfound = "drop") %>% GRanges() %>% as_tibble() %>% mutate(chr = str_replace(as.character(seqnames), "^(chr|ch)", "")) %>% select(chr, pos_b38 = start, snp = RefSNP_id) if (!is.null(snakemake@config$gtex_table)) { gtex_var_map <- read_tsv(snakemake@config$gtex_table, col_types = "c-----cc") %>% dplyr::rename(rs_id = "rs_id_dbSNP151_GRCh38p7") haploreg_snps_find_locs_gtex <- gtex_var_map %>% filter(rs_id %in% haploreg_snps_no_coord) %>% extract(variant_id, c("chr", "pos_b38"), "^chr([0-9XY]+)_(\\d+)") %>% mutate(pos_b38 = as.numeric(pos_b38)) %>% select(chr, pos_b38, snp = rs_id) } else { haploreg_snps_find_locs_gtex <- tibble() } haploreg_snps_find_locs_combined <- bind_rows( haploreg_snps_find_locs_b38, haploreg_snps_find_locs_b38_xtra, haploreg_snps_find_locs_gtex ) %>% distinct %>% mutate(coord_b38_rescue = paste0("chr", chr, ":", pos_b38)) %>% select(snp, coord_b38_rescue) haploreg_snps_b38 <- haploreg_snps %>% left_join(haploreg_snps_find_locs_combined) %>% mutate(coord_b38 = as.character(ifelse(is.na(coord_b38), coord_b38_rescue, coord_b38))) %>% select(-coord_b38_rescue) %>% distinct() ## Combine LD SNPs ld_snps_b38 <- bind_rows( ldlink_snps_b38 %>% mutate(source = "LDlink"), haploreg_snps_b38 %>% mutate(source = "HaploReg") ) ## Get TxDb annotations ld_snps_b38_gr <- ld_snps_b38 %>% extract(coord_b38, c("seqnames", "start"), "(.+):(\\d+)") %>% filter(!is.na(seqnames), !is.na(start)) %>% mutate(end = start) %>% select(seqnames, start, end, snp) %>% makeGRangesFromDataFrame(keep.extra.columns = T) ld_snps_txdb_loc <- locateVariants(ld_snps_b38_gr, TxDb.Hsapiens.UCSC.hg38.knownGene, AllVariants()) ld_snps_txdb_loc_df <- as_tibble(ld_snps_txdb_loc) %>% transmute(coord_b38 = paste0(seqnames, ":", start), txdb_annot = LOCATION) %>% distinct() %>% group_by(coord_b38) %>% summarise(txdb_annot = paste0(txdb_annot, collapse = ";")) ld_snps_b38_annot <- left_join(ld_snps_b38, ld_snps_txdb_loc_df, by = "coord_b38") write_tsv(ld_snps_b38_annot, snakemake@output$ld_snps) |
A snakemake workflow to process ATAC-seq data
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 | myargs <- commandArgs(trailingOnly=TRUE) bamfile <- myargs[1] species <- myargs[2] print("loading packages (ATACseqQC, ggplot, etc)...") suppressPackageStartupMessages(library(ggplot2, quietly=TRUE)) suppressPackageStartupMessages(library(Rsamtools, quietly=TRUE)) suppressPackageStartupMessages(library(ATACseqQC, quietly=TRUE)) suppressPackageStartupMessages(library(ChIPpeakAnno, quietly=TRUE)) suppressPackageStartupMessages(library("GenomicAlignments", quietly=TRUE)) if (species == "mm") { suppressPackageStartupMessages(library(TxDb.Mmusculus.UCSC.mm10.knownGene, quietly=TRUE)) suppressPackageStartupMessages(library(BSgenome.Mmusculus.UCSC.mm10, quietly=TRUE)) txdb <- TxDb.Mmusculus.UCSC.mm10.knownGene bsgenome <- BSgenome.Mmusculus.UCSC.mm10 genome <- Mmusculus print("species is 'mm' using mm10 for analysis") ### Note: Everything below is deprecated until I can figure out a way to port a ### static/local package with snakemake # Note: phastCons60way was manually curated from GenomicAlignments, built, and installed as an R package # score was obtained according to: https://support.bioconductor.org/p/96226/ # package was built and installed according to: https://www.bioconductor.org/packages/devel/bioc/vignettes/GenomicScores/inst/doc/GenomicScores.html # (section 5.1: Building an annotation package from a GScores object) #suppressWarnings(suppressPackageStartupMessages(library(GenomicScores, lib.loc="/users/dia6sx/snakeATAC/scripts/", quietly=TRUE))) #suppressWarnings(suppressPackageStartupMessages(library(phastCons60way.UCSC.mm10, lib.loc="/users/dia6sx/snakeATAC/scripts/", quietly=TRUE))) } else if (species == "hs") { suppressPackageStartupMessages(library(TxDb.Hsapiens.UCSC.hg38.knownGene, quietly=TRUE)) suppressPackageStartupMessages(library(BSgenome.Hsapiens.UCSC.hg38, quietly=TRUE)) txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene bsgenome <- BSgenome.Hsapiens.UCSC.hg38 genome <- Hsapiens print("species is 'hs' using hg38 for analysis") } else { print(paste("params ERROR: ATACseqQC is not configured to use species =", species)) print("exiting...") quit(status=1) } doATACseqQC <- function(bamfile, txdb, bsgenome, genome) { # Fragment size distribution print(paste("generating output for ",strsplit(basename(bamfile),split='\\.')[[1]][1],"...",sep="")) print("calculating Fragment size distribution...") bamfile.labels <- gsub(".bam", "", basename(bamfile)) loc_to_save_figures <- paste(dirname(dirname(bamfile)),"/qc/ATACseqQC",sep="") if (file.exists(loc_to_save_figures)) { print("Warning: old figures will be overwritten") } else { dir.create(loc_to_save_figures) } png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_fragment_size_distribution.png",sep="") png(png_file) fragSizeDist(bamfile, bamfile.labels) dev.off() # Adjust the read start sites print("adjusting read start sites...") ## bamfile tags to be read in possibleTag <- list("integer"=c("AM", "AS", "CM", "CP", "FI", "H0", "H1", "H2", "HI", "IH", "MQ", "NH", "NM", "OP", "PQ", "SM", "TC", "UQ"), "character"=c("BC", "BQ", "BZ", "CB", "CC", "CO", "CQ", "CR", "CS", "CT", "CY", "E2", "FS", "LB", "MC", "MD", "MI", "OA", "OC", "OQ", "OX", "PG", "PT", "PU", "Q2", "QT", "QX", "R2", "RG", "RX", "SA", "TS", "U2")) bamTop100 <- scanBam(BamFile(bamfile, yieldSize = 100), param = ScanBamParam(tag=unlist(possibleTag)))[[1]]$tag tags <- names(bamTop100)[lengths(bamTop100)>0] ## files will be output into outPath ## shift the coordinates of 5'ends of alignments in the bam file outPath <- paste(dirname(dirname(bamfile)),"/alignments_shifted", sep="") seqinformation <- seqinfo(txdb) gal <- readBamFile(bamfile, tag=tags, asMates=TRUE, bigFile=TRUE) shiftedBamfile <- file.path(outPath, paste(bamfile.labels,"_shifted.bam",sep="")) # check if shifted Bam file exists from previous run if (file.exists(shiftedBamfile)) { print("Shifted Bamfile found.") print("Loading in...") gal <- readBamFile(shiftedBamfile, tag=tags, asMates=TRUE, bigFile=TRUE) ## This step is mostly for formating so splitBam can ## take in bamfile. Implementing shift of 0 bp on positive strand ## and 0 bp on negative strand because shifted Bamfile should ## already have these shifts gal1 <- shiftGAlignmentsList(gal, positive = 0L, negative = 0L) } else { # shifted bam file does not exist check if # old shifted alignments directory exists # if so remove and create new one if (file.exists(outPath)){ unlink(outPath,recursive=TRUE) } dir.create(outPath) print("*** creating shifted bam file ***") gal1 <- shiftGAlignmentsList(gal, outbam=shiftedBamfile) } # Promoter/Transcript body (PT) score print("calculating Promoter/Transcript body (PT) score...") txs <- transcripts(txdb) pt <- PTscore(gal1, txs) png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_ptscore.png",sep="") png(png_file) plot(pt$log2meanCoverage, pt$PT_score, xlab="log2 mean coverage", ylab="Promoter vs Transcript", main=paste(bamfile.labels,"PT score")) dev.off() # Nucleosome Free Regions (NFR) score print("calculating Nucleosome Free Regions (NFR) score") nfr <- NFRscore(gal1, txs) png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_nfrscore.png",sep="") png(png_file) plot(nfr$log2meanCoverage, nfr$NFR_score, xlab="log2 mean coverage", ylab="Nucleosome Free Regions score", main=paste(bamfile.labels,"\n","NFRscore for 200bp flanking TSSs",sep=""), xlim=c(-10, 0), ylim=c(-5, 5)) dev.off() # Transcription Start Site (TSS) Enrichment Score print("calculating Transcription Start Site (TSS) Enrichment score") tsse <- TSSEscore(gal1, txs) png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_tss_enrichment_score.png",sep="") png(png_file) plot(100*(-9:10-.5), tsse$values, type="b", xlab="distance to TSS", ylab="aggregate TSS score", main=paste(bamfile.labels,"\n","TSS Enrichment score",sep="")) dev.off() # Split reads, Heatmap and coverage curve for nucleosome positions print("splitting reads by fragment length...") genome <- genome outPath <- paste(dirname(dirname(bamfile)),"/alignments_split", sep="") TSS <- promoters(txs, upstream=0, downstream=1) TSS <- unique(TSS) ## estimate the library size for normalization librarySize <- estLibSize(bamfile) ## calculate the signals around TSSs. NTILE <- 101 dws <- ups <- 1010 splitBamfiles <- paste(outPath,"/",c("NucleosomeFree", "mononucleosome", "dinucleosome", "trinucleosome"),".bam",sep="") # check if split Bam files exists from previous run if (all(file.exists(splitBamfiles))) { print("*** split bam files found! ***") print("Loading in...") sigs <- enrichedFragments(bamfiles=splitBamfiles, index=splitBamfiles, TSS=TSS, librarySize=librarySize, TSS.filter=0.5, n.tile = NTILE, upstream = ups, downstream = dws) } else { # split bam files do not exist check if # old split alignments directory exists # if so remove and create new one if (file.exists(outPath)){ unlink(outPath,recursive=TRUE) } print("*** creating split bam files ***") dir.create(outPath) ## split the reads into NucleosomeFree, mononucleosome, ## dinucleosome and trinucleosome. ## and save the binned alignments into bam files. objs <- splitGAlignmentsByCut(gal1, txs=txs, genome=genome, outPath = outPath) #objs <- splitBam(bamfile, tags=tags, outPath=outPath, # txs=txs, genome=genome, # conservation=phastCons60way.UCSC.mm10, # seqlev=paste0("chr", c(1:19, "X", "Y"))) sigs <- enrichedFragments(gal=objs[c("NucleosomeFree", "mononucleosome", "dinucleosome", "trinucleosome")], TSS=TSS, librarySize=librarySize, TSS.filter=0.5, n.tile = NTILE, upstream = ups, downstream = dws) } ## log2 transformed signals sigs.log2 <- lapply(sigs, function(.ele) log2(.ele+1)) ## plot heatmap png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_nucleosome_pos_heatmap.png",sep="") png(png_file) featureAlignedHeatmap(sigs.log2, reCenterPeaks(TSS, width=ups+dws), zeroAt=.5, n.tile=NTILE) dev.off() ## get signals normalized for nucleosome-free and nucleosome-bound regions. out <- featureAlignedDistribution(sigs, reCenterPeaks(TSS, width=ups+dws), zeroAt=.5, n.tile=NTILE, type="l", ylab="Averaged coverage") ## rescale the nucleosome-free and nucleosome signals to 0~1 range01 <- function(x){(x-min(x))/(max(x)-min(x))} out <- apply(out, 2, range01) png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_TSS_signal_distribution.png",sep="") png(png_file) matplot(out, type="l", xaxt="n", xlab="Position (bp)", ylab="Fraction of signal", main=paste(bamfile.labels,"\n","TSS signal distribution",sep="")) axis(1, at=seq(0, 100, by=10)+1, labels=c("-1K", seq(-800, 800, by=200), "1K"), las=2) abline(v=seq(0, 100, by=10)+1, lty=2, col="gray") dev.off() print("QC Finished.") print("Generated QC figures can be found in qc folder under ATACseQC") print(paste("*** removing temp files in",outPath,"***")) unlink(outPath,recursive=TRUE) outPath <- paste(dirname(dirname(bamfile)),"/alignments_shifted", sep="") print(paste("*** removing temp files in",outPath,"***")) unlink(outPath,recursive=TRUE) } doATACseqQC(bamfile, txdb, bsgenome, genome) |
Snakemake pipeline for Epicure analyses (0.14.1)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 | base::message("Loading libraries ... ") suppressPackageStartupMessages(library("ATACseqQC")) suppressPackageStartupMessages(library("TxDb.Hsapiens.UCSC.hg38.knownGene")) suppressPackageStartupMessages(library("BSgenome.Hsapiens.UCSC.hg38")) suppressPackageStartupMessages(library("phastCons100way.UCSC.hg38")) suppressPackageStartupMessages(library("MotifDb")) suppressPackageStartupMessages(library("ChIPpeakAnno")) suppressPackageStartupMessages(library("Rsamtools")) base::message("Libraries loaded.") # base::message("Setting sequence level style...") # seqlevelsStyle(TxDb.Hsapiens.UCSC.hg38.knownGene) <- "Ensembl" # seqlevelsStyle(BSgenome.Hsapiens.UCSC.hg38) <- "Ensembl" # base::message("Database chromosome renamed.") base::message("Acquiering bam file...") bamfile <- BamFile( file = base::as.character(x = snakemake@input[["bam"]]) ) name <- base::as.character(x = snakemake@params[["name"]]) base::print(bamfile) base::print(name) base::message("BamFiles identified") base::message("Reading bam tags...") possibleTag <- list( "integer" = c( "AM", "AS", "CM", "CP", "FI", "H0", "H1", "H2", "HI", "IH", "MQ", "NH", "NM", "OP", "PQ", "SM", "TC", "UQ" ), "character" = c( "BC", "BQ", "BZ", "CB", "CC", "CO", "CQ", "CR", "CS", "CT", "CY", "E2", "FS", "LB", "MC", "MD", "MI", "OA", "OC", "OQ", "OX", "PG", "PT", "PU", "Q2", "QT", "QX", "R2", "RG", "RX", "SA", "TS", "U2" ) ) bamTop100 <- scanBam( BamFile(bamfile$path, yieldSize = 100), param = ScanBamParam(tag=unlist(possibleTag)) )[[1]]$tag tags <- names(bamTop100)[lengths(bamTop100) > 0] base::print(tags) base::message("Tags Acquired") base::message("Retrieving sequence level informations...") seqlev <- as.vector( sapply(c(1:22, "X", "Y"), function(chrom) paste0("chr", chrom)) ) seqinformation <- seqinfo(TxDb.Hsapiens.UCSC.hg38.knownGene) which <- as(seqinformation[seqlev], "GRanges") base::print(which) base::message("Sequences retrived") base::message("Loading bam file...") bamdata <- readBamFile( bamFile = bamfile$path, bigFile = TRUE, asMates = TRUE, tags = tags, which = which, ) base::message("Bam file loaded") base::message("Shifting bam...") shiftedBamfile <- base::as.character(x = snakemake@output[["shifted"]]) shiftedBamdir <- base::dirname(shiftedBamfile) print(shiftedBamdir) base::dir.create( path = shiftedBamdir, recursive = TRUE ) bamdata <- shiftGAlignmentsList( gal = bamdata, outbam = shiftedBamfile ) print(bamdata) base::message("Shift OK") base::message("Acquiering motif...") motif_name <- base::as.character(x = snakemake@params[["motif"]]) motif <- query(MotifDb, c(motif_name)) motif <- as.list(motif) print(motif[[1]], digits = 2) base::message("Motif retrieved.") base::message("plot Footprints...") genome <- Hsapiens print(genome) png( filename = snakemake@output[["png"]], width = 1024, height = 768, units = "px" ) sigs <- factorFootprints( shiftedBamfile, pfm = motif[[1]], genome = genome, min.score = "90%", seqlev = c(1:22, "X", "Y"), upstream = 100, downstream = 100 ) dev.off() base::message("Done.") base::save.image(file = base::as.character(x = snakemake@output[["rda"]])) base::message("Process over") |
A Snakemake workflow to analyse and visualise Illumina Infinium Methylation arrays
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 | addAnno <- function(dmrs, outputLoc = "nearestLocation", featureLocForDistance="TSS", bindingRegion=c(-2000, 2000), organism = "hg38"){ library(GenomicRanges) library(ChIPpeakAnno) library(org.Hs.eg.db) dmrs = GRanges(dmrs) if(organism == "hg38"){ library(TxDb.Hsapiens.UCSC.hg38.knownGene) annoData <- toGRanges(TxDb.Hsapiens.UCSC.hg38.knownGene) } if(organism == "hg19"){ library(TxDb.Hsapiens.UCSC.hg19.knownGene) annoData <- toGRanges(TxDb.Hsapiens.UCSC.hg19.knownGene) } seqlevelsStyle(dmrs) <- seqlevelsStyle(annoData) anno_dmrs <- annotatePeakInBatch(dmrs, AnnotationData = annoData, output = outputLoc, FeatureLocForDistance = featureLocForDistance, bindingRegion = bindingRegion) anno_dmrs$symbol <- xget(anno_dmrs$feature, org.Hs.egSYMBOL) return(anno_dmrs) } main <- function(input, output, params, log) { # Log out <- file(log$out, open = "wt") err <- file(log$err, open = "wt") sink(out, type = "output") sink(err, type = "message") # Script library(minfi) library(DMRcate) library(rtracklayer) dmrs <- readRDS(input$rds) # params outputLoc <- params$output # "nearestLocation" featureLocForDistance <- params$featureLocForDistance # "TSS" bindingRegion <- params$bindingRegion # c(-2000, 2000) organism <- params$organism # output save <- output$csv # run annotation dmrs = addAnno(dmrs, outputLoc, featureLocForDistance, bindingRegion, organism) # save output write.csv(as.data.frame(dmrs), save) rtracklayer::export(dmrs, output$bed) saveRDS(dmrs, file = output$rds) } main(snakemake@input, snakemake@output, snakemake@params, snakemake@log) |
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 | getTrackObj <- function(filter, anno = "hg38", array = "HM450", combine = "mean", by = "status"){ library(TxDb.Hsapiens.UCSC.hg38.knownGene) txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene manifest <- readRDS(paste0("resources/", array, ".", anno, ".manifest.rds")) # only keep cpgs which are in final filtered Genomic Ratio set keep <- names(manifest) %in% featureNames(filter) manifest <- manifest[keep,] # Get Beta table from GRSet beta <- getBeta(filter) # match order of beta table with manifest meta data beta <- beta[match(names(manifest), rownames(beta)),] # check rownames equal stopifnot(rownames(beta) == names(manifest)) # Add new colnames to beta table matching colData stopifnot(colnames(beta) == rownames(colData(filter))) colnames(beta) <- colData(filter)$Sample_Name # Add beta signal to tracks GRanges mcols instead of other data tracks <- manifest mcols(tracks) <- beta # Turn into list of separate GRanges objects if (is.null(combine)) { tracksList <- lapply(colnames(mcols(tracks)), function(x, tracks){tracks[, colnames(mcols(tracks)) == x] } , tracks = tracks) names(tracksList) = colnames(mcols(tracks)) tracksList <- lapply(tracksList, filterTrackOverlaps) } else { combine_by <- unique(colData(filter)[[by]]) tracksList <- lapply(combine_by, combineBeta, tracks = tracks, colData=colData(filter), by = by, combine = combine) names(tracksList) = combine_by } return(tracksList) } # Combine samples together based on colData col name and label into combined tracks combineBeta <- function(label, tracks, colData, by, combine = "mean", samplename = "Sample_Name"){ library(TxDb.Hsapiens.UCSC.hg38.knownGene) txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene samples_int <- colData[colData[[by]] %in% label,][[samplename]] if(combine == "mean"){ combineMeta <- rowMeans(as.data.frame(mcols(tracks[, colnames(mcols(tracks)) %in% samples_int]))) } if(combine == "median"){ combineMeta <- rowMedians(as.data.frame(mcols(tracks[, colnames(mcols(tracks)) %in% samples_int]))) } tracks_new <- tracks mcols(tracks_new) <- combineMeta tracks_new <- filterTrackOverlaps(tracks_new) return(tracks_new) } # Parse GRranges object to ensure ready for output # Ensures Beta col is labelled score # Removes indeterminate chrs (*) # Removes Cpg sites which overlap boundaries - this should not be the case with any CpG GRanges obj but rtracklayer also does not want them to share boundaries filterTrackOverlaps <- function(tracks){ library(TxDb.Hsapiens.UCSC.hg38.knownGene) txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene colnames(mcols(tracks)) <- "score" seqlevelsStyle(tracks) <- "UCSC" seqlevels(tracks) <- seqnames(seqinfo(tracks))[seqnames(seqinfo(tracks)) != "*"] seqinfo(tracks) <- seqinfo(txdb)[seqnames(seqinfo(tracks))[seqnames(seqinfo(tracks)) != "*"]] # take tracks which share boundaries and remove them tracks <- tracks[!tail(start(tracks), -1) <= head(end(tracks), -1)] # resort tracks <- sort(tracks) return(tracks) } # Save out track via rtracklayer saveTrack <- function(sample, tracks, fileExt = ".BigWig", location = "./"){ library(rtracklayer) track <- tracks[sample][[1]] rtracklayer::export(track, paste0(location, sample, fileExt)) } main <- function(input, output, params, log) { # Log out <- file(log$out, open = "wt") err <- file(log$err, open = "wt") sink(out, type = "output") sink(err, type = "message") # Script library(minfi) library(DMRcate) library(rtracklayer) filter <- readRDS(input$rds) # params anno <- params$anno # "hg38", "hg19" array <- params$array # "EPIC", "HM450" combine <- params$combine # "mean", "median" by <- params$by # "sample" # output save <- output$rds # run annotation tracks = getTrackObj(filter, anno, array, combine, by) # save output # Bigwig lapply(names(tracks), saveTrack, track = tracks, fileExt = ".BigWig", location = params$bwLocation ) # Bedgraph lapply(names(tracks), saveTrack, track = tracks, fileExt = ".bedGraph", location = params$bwLocation) # save out list of GRanges saveRDS(tracks, file = output$rds) } main(snakemake@input, snakemake@output, snakemake@params, snakemake@log) |
data / bioconductor
TxDb.Hsapiens.UCSC.hg38.knownGene
Annotation package for TxDb object(s): Exposes an annotation databases generated from UCSC by exposing these as TxDb objects