Workflow Steps and Code Snippets
4 tagged steps and code snippets that match keyword TxDb.Mmusculus.UCSC.mm10.knownGene
Code for the manuscript "Machine learning reveals STAT motifs as predictors for GR-mediated gene repression"
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 | suppressPackageStartupMessages(library(optparse, warn.conflicts=F, quietly=T)) option_list <- list( make_option(c( "--ABC_DexLPS_all"), type="character", help="Path to file with all ABC predictions passing 0.02 (in DexLPS condition)"), make_option(c("--ABC_LPS_all"), type="character", help="Path to file with all ABC predictions passing 0.02 (in LPS condition)"), make_option(c("--contrast_DexVSDexLPS"), type="character", help="Path to annotated tsv file of DeSeq2 contrast of DexLPS vs LPS"), make_option(c("--chipseq_summits"), type="character", help="Path to summit file of IDR peaks"), make_option(c("--igv"), type="character", help="Path to IGV snapshot of genomic locus (created manually)") ) opt <- parse_args(OptionParser(option_list=option_list)) options(stringsAsFactors = FALSE) suppressPackageStartupMessages(library(dplyr, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(org.Mm.eg.db, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(DESeq2, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(ggplot2, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(ComplexHeatmap, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(TxDb.Mmusculus.UCSC.mm10.knownGene, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(topGO, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(ggExtra, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(plyr, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(here, warn.conflicts=F, quietly=T)) #set defaults for ggplot2 figures theme_update(panel.background = element_rect(fill = "transparent", colour = NA), plot.background = element_rect(fill = "transparent", colour = NA), legend.background = element_rect(fill = "transparent", colour = NA), legend.key = element_rect(fill = "transparent", colour = NA), text=element_text(size=8, family = "ArialMT", colour="black"), title=element_text(size=10, family="ArialMT", colour="black"), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), axis.text = element_text(size=8, family="ArialMT", colour="black"), axis.line = element_line(colour="black"), axis.ticks = element_line(colour="black")) #---------------------------------------------------------------------- ##--NOTE: example code for additional plots can be found in abc_visualizations.Rmd #---------------------------------------------------------------------- #---------------------------------------------------------------------- ##----------- load data #---------------------------------------------------------------------- chipseq_summits <- rtracklayer::import.bed(opt$chipseq_summits) contrast_DexLPSvLPS <- read.delim(opt$contrast_DexVSDexLPS) # rename first column for merge later colnames(contrast_DexLPSvLPS)[1] <- "EnsemblID" ABC_DexLPS_all <- read.delim(opt$ABC_DexLPS_all) ABC_LPS_all <- read.delim(opt$ABC_LPS_all) # remove version number from ensembl IDs ABC_DexLPS_all$TargetGene = gsub("\\.[0-9]*$","",ABC_DexLPS_all$TargetGene) ABC_LPS_all$TargetGene = gsub("\\.[0-9]*$","",ABC_LPS_all$TargetGene) #---------------------------------------------------------------------- ##----------- data exploration #---------------------------------------------------------------------- # What do the distributions of ABC scores look like ggplot()+ geom_density(data=ABC_DexLPS_all %>% filter(!class=="promoter"), aes(x=ABC.Score, colour="DexLPS"))+ geom_density(data=ABC_LPS_all %>% filter(!class=="promoter"), aes(x=ABC.Score, colour="LPS"))+ scale_colour_manual("", breaks = c("DexLPS", "LPS"), values = c("#339966", "#0066CC")) # How do the ABC scores of promoters compare to those of enhancers? ggplot()+ geom_density(data=ABC_DexLPS_all %>% filter(class=="promoter"), aes(x=ABC.Score, colour="promoter"))+ geom_density(data=ABC_DexLPS_all %>% filter(class=="genic"), aes(x=ABC.Score, colour="genic"))+ geom_density(data=ABC_DexLPS_all %>% filter(class=="intergenic"), aes(x=ABC.Score, colour="intergenic"))+ scale_colour_manual("", breaks = c("promoter", "genic", "intergenic"), values = c("red", "green", "blue")) # What distance is used to define sth as promoter? ggplot()+ geom_density(data=ABC_DexLPS_all, aes(x=distance, colour=class))+ scale_x_continuous(trans = "log10")+ scale_colour_manual("", breaks = c("promoter", "genic", "intergenic"), values = c("red", "green", "blue")) ggplot()+ geom_density(data=ABC_DexLPS_all %>% filter(class=="promoter"), aes(x=distance, colour=isSelfPromoter))+ scale_x_continuous(trans = "log10")+ scale_colour_manual("isSelfPromoter", breaks = c("True", "False"), values = c("red", "blue"))+ labs(title="All promoter regions, split by whether they're promoters for their target gene")+ theme( plot.title = element_text(size=12) ) #---------------------------------------------------------------------- # ------ ------ Number of enhancers per gene #---------------------------------------------------------------------- # Are most genes regulated by a single enhancer region or by multiple? How many does the ABC model assign per gene? plot_enhancers_per_gene <- function(){ DexLPS_TargetGeneCounts <- plyr::count(ABC_DexLPS_all %>% filter(!class=="promoter"), vars="TargetGene") LPS_TargetGeneCounts <- plyr::count(ABC_LPS_all %>% filter(!class=="promoter"), vars="TargetGene") gg <- ggplot()+ geom_histogram(data=DexLPS_TargetGeneCounts, aes(x=freq, fill="DexLPS", colour="DexLPS"), binwidth = 1, alpha=0.2)+ geom_histogram(data=LPS_TargetGeneCounts, aes(x=freq, fill="LPS", colour="LPS"), binwidth = 1, alpha=0.2)+ scale_fill_manual("", breaks = c("DexLPS", "LPS"), values = c("#339966", "#0066CC")) + scale_colour_manual("", breaks = c("DexLPS", "LPS"), values = c("#339966", "#0066CC")) + guides(color = "none")+ theme(legend.position = c(0.8,0.8))+ labs(title=" ", x="# of enhancers per gene", y="counts") return(gg) } gg_enh_per_gene <- plot_enhancers_per_gene() gg_enh_per_gene print("We find an average of") plyr::count(ABC_DexLPS_all %>% filter(!class=="promoter"), vars="TargetGene") %>% pull(freq) %>% mean() print("enhancers per gene for the DexLPS condition and") plyr::count(ABC_LPS_all %>% filter(!class=="promoter"), vars="TargetGene") %>% pull(freq) %>% mean() print("in LPS.") #---------------------------------------------------------------------- # ------ ------ Number of genes per enhancer #---------------------------------------------------------------------- # ABC allows for multiple assignments (an individual enhancer assigned to more than one promoter) plot_genes_per_enhancer <- function(){ DexLPS_EnhancerCounts <- plyr::count(ABC_DexLPS_all %>% filter(!class=="promoter"),vars="name") LPS_EnhancerCounts <- plyr::count(ABC_LPS_all %>% filter(!class=="promoter"),vars="name") gg_full <- ggplot()+ geom_histogram(data=DexLPS_EnhancerCounts, aes(x=freq, fill="DexLPS",colour="DexLPS"), binwidth = 1, alpha=0.2)+ geom_histogram(data=LPS_EnhancerCounts, aes(x=freq, fill="LPS",colour="LPS"), binwidth = 1, alpha=0.2)+ scale_fill_manual("", breaks = c("DexLPS", "LPS"), values = c("#339966", "#0066CC")) + scale_colour_manual("", breaks = c("DexLPS", "LPS"), values = c("#339966", "#0066CC")) + guides(color = FALSE)+ labs(title="Number of genes an individual enhancer is assigned to", x="# of genes per enhancer", y="counts") plot(gg_full) gg_zoom <- ggplot()+ geom_histogram(data=DexLPS_EnhancerCounts, aes(x=freq, fill="DexLPS",colour="DexLPS"), binwidth = 1, alpha=0.2)+ geom_histogram(data=LPS_EnhancerCounts, aes(x=freq, fill="LPS",colour="LPS"), binwidth = 1, alpha=0.2)+ scale_fill_manual("", breaks = c("DexLPS", "LPS"), values = c("#339966", "#0066CC")) + scale_colour_manual("", breaks = c("DexLPS", "LPS"), values = c("#339966", "#0066CC")) + xlim(c(0,8))+ guides(color = FALSE)+ theme(legend.position = c(0.8,0.8))+ labs(title=" ", x="# of genes per enhancer", y="counts") plot(gg_zoom) print("We find an average of") DexLPS_EnhancerCounts %>% pull(freq) %>% mean() %>% print() print("genes per enhancer in the DexLPS condition and") LPS_EnhancerCounts %>% pull(freq) %>% mean() %>% print() print("in LPS.") return(gg_zoom) } gg_genes_per_enhancer_zoom <- plot_genes_per_enhancer() #---------------------------------------------------------------------- # ------ Comparing ABC Scores (including promoter regions) between the conditions #---------------------------------------------------------------------- # merge regions from both conditions but also keep those that are only in one # # add info no whether the target genes are DE or now and what direction they're changed LPS_GR<- plyranges::as_granges(ABC_LPS_all, seqnames=chr) DexLPS_GR <- plyranges::as_granges(ABC_DexLPS_all, seqnames=chr) #---------------------------------------------------------------------- merge_LPSandDexLPS_ABCdata <- function(ABC_LPS_all_GR, ABC_DexLPS_all_GR){ ABC_LPS_all_unique <- unique(ABC_LPS_all_GR) ABC_DexLPS_all_unique <- unique(ABC_DexLPS_all_GR) # and then figure out which ones overlap with one another overlap_ABC_all_unique <- ChIPpeakAnno::findOverlapsOfPeaks (ABC_LPS_all_unique, ABC_DexLPS_all_unique, connectedPeaks = "keepAll", ignore.strand = TRUE) # we coerce the info of overlapping regions into a dataframe overlap_ABC_all_unique_df <- as.data.frame(overlap_ABC_all_unique$overlappingPeaks) # and clean up column names colnames(overlap_ABC_all_unique_df)<- gsub("ABC_LPS_all_unique...ABC_DexLPS_all_unique.","", colnames(overlap_ABC_all_unique_df)) colnames(overlap_ABC_all_unique_df)<- gsub(".1", "", colnames(overlap_ABC_all_unique_df)) colnames(overlap_ABC_all_unique_df)<- paste( c(rep("LPS_",27),rep("DexLPS_",27),rep("",2)), colnames(overlap_ABC_all_unique_df), sep="") # we use this overlap to define a new variable that holds the info of which regions of the conditions form a pair overlap_ABC_all_unique_df$pairID <- paste("pair", seq(1, nrow(overlap_ABC_all_unique_df)), sep="" ) #-----------------for DexLPS------------------- # merge the pairID onto the original dataframes ABC_DexLPS_all_wpairID <- merge(ABC_DexLPS_all, overlap_ABC_all_unique_df[,c("DexLPS_name","pairID")], by.x="name", by.y="DexLPS_name", all.x=TRUE) # for those that don't correspond to a pair, we assign condition and name as pairID ABC_DexLPS_all_wpairID <- ABC_DexLPS_all_wpairID %>% mutate(pairID = case_when(is.na(pairID) ~ paste("DexLPS",name, sep="_"), TRUE ~ pairID) ) # combination of pairID and gene they're assigned to forms the assignment variable. # we will use this later to plot values from the 2 conditions, that have the same assignment ABC_DexLPS_all_wpairID$assignment <- paste(ABC_DexLPS_all_wpairID$pairID, ABC_DexLPS_all_wpairID$TargetGene, sep="_") #-----------------for LPS------------------- # merge the pairID onto the original dataframes ABC_LPS_all_wpairID <- merge(ABC_LPS_all, overlap_ABC_all_unique_df[,c("LPS_name","pairID")], by.x="name", by.y="LPS_name", all.x=TRUE) # for those that don't correspond to a pair, we assign condition and name as pairID ABC_LPS_all_wpairID <- ABC_LPS_all_wpairID %>% mutate(pairID = case_when(is.na(pairID) ~ paste("LPS",name, sep="_"), TRUE ~ pairID) ) ABC_LPS_all_wpairID$assignment <- paste(ABC_LPS_all_wpairID$pairID, ABC_LPS_all_wpairID$TargetGene, sep="_") merged_conditions <- merge(ABC_DexLPS_all_wpairID, ABC_LPS_all_wpairID, by="assignment", all=TRUE, suffixes = c(".DexLPS", ".LPS")) merged_conditions <- merged_conditions %>% mutate(TargetGene = case_when(TargetGene.DexLPS==TargetGene.LPS ~ TargetGene.DexLPS, is.na(TargetGene.DexLPS) ~ TargetGene.LPS, is.na(TargetGene.LPS) ~ TargetGene.DexLPS, TRUE ~ NA_character_) ) return(merged_conditions) } merged_conditions_ABC <- merge_LPSandDexLPS_ABCdata(LPS_GR,DexLPS_GR) #---------------------------------------------------------------------- # ------ merge on gene expression results #---------------------------------------------------------------------- # merge the RNAseq results to use as colour later merged_conditions_ABC <- merge(merged_conditions_ABC, contrast_DexLPSvLPS, by.x="TargetGene", by.y="EnsemblID") merged_conditions_ABC <- merged_conditions_ABC %>% mutate(change=case_when(padj<0.05 & log2FoldChange>0.58 ~ "up", padj<0.05 & log2FoldChange<(-0.58) ~ "down", TRUE ~ "no change")) # replace the na with 0 merged_conditions_ABCnomissing <- merged_conditions_ABC %>% mutate(ABC.Score.DexLPS = case_when(is.na(ABC.Score.DexLPS) ~ 0, TRUE ~ ABC.Score.DexLPS) ) %>% mutate(ABC.Score.LPS = case_when(is.na(ABC.Score.LPS) ~ 0, TRUE ~ ABC.Score.LPS) ) cor_ABCscores <- cor(merged_conditions_ABCnomissing$ABC.Score.DexLPS, merged_conditions_ABCnomissing$ABC.Score.LPS) gg_merged_conditions_ABCnomissing <- ggplot(merged_conditions_ABCnomissing)+ geom_point(aes(x=ABC.Score.DexLPS, y=ABC.Score.LPS, fill=log2FoldChange), alpha=0.2, size=1, stroke = 0, shape=21)+ scale_fill_gradient(low="blue", high="red")+ ylim(c(0,0.8))+ xlim(c(0,0.8))+ geom_text(x=0.2, y=0.75, label=paste("r = ",format(cor_ABCscores, digits = 2)))+ labs(fill="log2FC", x="ABC score Dex+LPS", y="ABC score LPS")+ theme(legend.position = "top") gg_merged_conditions_ABCnomissing #---------------------------------------------------------------------- # ------ plot foldchange in ABC score vs foldchange in expression #---------------------------------------------------------------------- cor_ABCdiff_log2FC <- with(merged_conditions_ABCnomissing %>% filter(change!="no change"), cor((ABC.Score.DexLPS - ABC.Score.LPS),log2FoldChange)) gg_ABCdiff_log2FC <- ggplot(merged_conditions_ABCnomissing %>% filter(change!="no change"), aes(x=(ABC.Score.DexLPS - ABC.Score.LPS), y=log2FoldChange)) + geom_hex(bins=70)+ viridis::scale_fill_viridis()+ geom_smooth(method = "lm", colour="black")+ geom_text(x=0.6, y=5, label=paste("r = ",format(cor_ABCdiff_log2FC, digits = 2)))+ labs(x="ABC score Dex+LPS - ABC score LPS", y="expression log2FC(Dex+LPS / LPS)")+ theme(legend.position = "top") #---------------------------------------------------------------------- # ------ ABC score by peak presence #---------------------------------------------------------------------- plot_ABC_with_marginals <- function(whatchange){ gg <- ggplot(data= merged_conditions_ABCnomissing %>% filter(change==whatchange) , aes(x=ABC.Score.DexLPS, y=ABC.Score.LPS ) )+ geom_point( aes( fill=whatchange) , size=1, alpha=1,stroke = 0, shape=21) + geom_abline(slope = 1)+ ylim(c(0,0.8))+ xlim(c(0,0.8))+ labs(x="ABC score Dex+LPS", y="ABC score LPS")+ scale_fill_manual( breaks=c("up","no change","down"), values=c("red","black","blue") )+ theme(legend.position = "none") gg_marg <- ggExtra::ggMarginal(gg, type="histogram", size=2, xparams = list(bins=85), yparams = list(bins=85)) return(gg_marg) } ggplot_ABC_with_marginals_up <- plot_ABC_with_marginals("up") ggplot_ABC_with_marginals_up ggplot_ABC_with_marginals_down <-plot_ABC_with_marginals("down") ggplot_ABC_with_marginals_down #---------------------------------------------------------------------- # ------ show marginals as bar plot #---------------------------------------------------------------------- gg_marginals_dexlps <- ggplot()+ geom_histogram(data=merged_conditions_ABCnomissing %>% filter(change=="up"), aes(x=ABC.Score.DexLPS, fill="up"), alpha=0.2, bins=85)+ geom_histogram(data=merged_conditions_ABCnomissing %>% filter(change=="down"), aes(x=ABC.Score.DexLPS, fill="down"), alpha=0.2, bins=85)+ scale_fill_manual( breaks=c("up","down"), values=c("red","blue") )+ xlim(c(NA,0.3))+ labs(fill="gene expression change",x="ABC score DexLPS", y="ABC score LPS")+ theme(legend.position = c(0.7,0.7)) gg_marginals_lps <- ggplot()+ geom_histogram(data=merged_conditions_ABCnomissing %>% filter(change=="up"), aes(x=ABC.Score.LPS, fill="up"), alpha=0.2, bins=85)+ geom_histogram(data=merged_conditions_ABCnomissing %>% filter(change=="down"), aes(x=ABC.Score.LPS, fill="down"), alpha=0.2, bins=85)+ scale_fill_manual( breaks=c("up","down"), values=c("red","blue") )+ xlim(c(NA,0.3))+ labs(fill="gene expression change",x="ABC score DexLPS", y="ABC score LPS")+ theme(legend.position = c(0.7,0.7)) #---------------------------------------------------------------------- # ------ ABC score by peak presence #---------------------------------------------------------------------- # Is there a difference in ABC score between the enhancers overlapping with a GR summit vs the ones that don't? DexLPS_GR_summits_overlap <- IRanges::findOverlaps(DexLPS_GR,chipseq_summits) #(query,subject) DexLPS_GR$haspeakID <- FALSE DexLPS_GR$haspeakID[queryHits(DexLPS_GR_summits_overlap)] <- TRUE plot_ABCscore_ofDEgenes_byGRoverlap <- function(){ DE_ENSEMBL <- contrast_DexLPSvLPS %>% filter(padj<0.05 & abs(log2FoldChange)>0.58 ) %>% pull(EnsemblID) DexLPS_enhancers_DEsubset <- as.data.frame(DexLPS_GR) %>% filter(TargetGene %in% DE_ENSEMBL) %>% filter(!class=="promoter") DexLPS_enhancers_DEsubset %>% filter(haspeakID==TRUE) %>% dplyr::pull(ABC.Score) %>% mean() %>% print() DexLPS_enhancers_DEsubset %>% filter(haspeakID==FALSE) %>% dplyr::pull(ABC.Score) %>% mean() %>% print() # show distribution for the two groups gg1 <- ggplot()+ geom_density(data=DexLPS_enhancers_DEsubset %>% filter(haspeakID==TRUE), aes(x=ABC.Score, colour="haspeakID", fill="haspeakID"), alpha=0.3)+ geom_density(data=DexLPS_enhancers_DEsubset %>% filter(haspeakID==FALSE), aes(x=ABC.Score, colour="nopeakID", fill="nopeakID"), alpha=0.3)+ scale_x_continuous(trans = "log2")+ scale_colour_manual("", labels = c("has GR peak", "no GR peak"), breaks = c("haspeakID", "nopeakID"), values = c("darkmagenta", "cadetblue"))+ scale_fill_manual("", labels = c("has GR peak", "no GR peak"), breaks = c("haspeakID", "nopeakID"), values = c("darkmagenta", "cadetblue"))+ guides(colour="none")+ #xlim(c(-3,0))+ labs(title=" ", x="ABC score Dex+LPS", y="density")+ theme( axis.text = element_text(size=12, family="ArialMT", colour="black"), axis.title = element_text(size=12, family="ArialMT", colour="black"), axis.text.x = element_text(angle = 45, vjust = 1, hjust=1), legend.position = c(0.8,0.8) ) plot(gg1) gg2 <- DexLPS_enhancers_DEsubset %>% ggplot( aes(x=hic_contact_pl_scaled_adj, y=log2(activity_base))) + geom_hex()+ facet_wrap(~haspeakID, labeller="label_both")+ viridis::scale_fill_viridis()+ labs(title = " ", x="Hi-C contact", y="log2(base activity)") plot(gg2) all_plots=list() all_plots[[1]] <- gg1 all_plots[[2]] <- gg2 return(all_plots) } gg_ABCscore_ofDEgenes_byGRoverlap <- plot_ABCscore_ofDEgenes_byGRoverlap() #---------------------------------------------------------------------- # ------ load IGV plot #---------------------------------------------------------------------- igv <- png::readPNG( opt$igv ) gg_igv <- ggplot() + ggpubr::background_image(igv) + # so it doesn't get squished #coord_fixed()+ # This ensures that the image leaves some space at the edges theme(plot.margin = margin(t=0, l=0, r=0, b=0, unit = "cm"), axis.line = element_blank()) #---------------------------------------------------------------------- # ------ put figure panel together #---------------------------------------------------------------------- # save giant files separately ggsave(here("./results/current/Figures/Figure_abcresults_3B.bmp"), gg_merged_conditions_ABCnomissing, width=75, height=100, units="mm", bg="white") ggsave(here("./results/current/Figures/Figure_abcresults_3B.png"), gg_merged_conditions_ABCnomissing, width=75, height=100, units="mm", bg="white") gg_placeholder <- ggplot() + theme(plot.margin = margin(t=0, l=0, r=0, b=0, unit = "cm"), axis.line = element_blank()) # first row gg_r1c1 <- ggpubr::ggarrange(gg_enh_per_gene, gg_genes_per_enhancer_zoom, labels = c("A", NA), ncol = 1, nrow = 2, heights = c(1,1)) gg_r1c2 <- ggpubr::ggarrange(gg_placeholder, ggplot_ABC_with_marginals_up, ggplot_ABC_with_marginals_down, labels = c("B", "C", NA), ncol = 3, nrow=1, widths=c(1,1,1)) gg_r1 <- ggpubr::ggarrange(gg_r1c1, gg_r1c2, labels = c(NA, NA), ncol = 2, nrow=1, widths=c(1,3)) # second row gg_r2 <- ggpubr::ggarrange(gg_ABCdiff_log2FC, gg_ABCscore_ofDEgenes_byGRoverlap[[1]], gg_ABCscore_ofDEgenes_byGRoverlap[[2]], labels = c("D","E", "F"), ncol = 3, nrow=1, widths=c(1,1,1.5)) gg_tophalf <- ggpubr::ggarrange(gg_r1, gg_r2, nrow=2, heights =c(1,1)) gg_tophalf full_panel <- ggpubr::ggarrange(gg_tophalf, gg_igv, labels=c(NA,"G"), nrow=2, heights = c(1.8,1)) #full_panel ggsave(here("./results/current/Figures/Figure_abcresults.png"), full_panel, width=300, height=300, units="mm", bg="white") ggsave(here("./results/current/Figures/Figure_abcresults.pdf"), full_panel, width=300, height=300, units="mm", bg="white") |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 | suppressPackageStartupMessages(library(optparse, warn.conflicts=F, quietly=T)) option_list <- list( make_option(c("--log2fcthresh"), type="numeric", help="Log2FC threshold used in addition to adj.pval to define significant genes"), make_option(c("--chipseq_summits"), type="character", help="Path to summit file of IDR peaks"), make_option(c("--genekey"), type="character", help="Path to biomart genekey that mapps ensembl geeneIDs to MGI symbols"), make_option(c("--contrast_DexVSDexLPS"), type="character", help="Path to annotated tsv file of DeSeq2 contrast of DexLPS vs LPS"), make_option(c("--meme_db_path"), type="character", help="Path to JASPAR motif db file"), make_option(c( "--rna_nascent_fpkm"), type="character", help="FPKM matrix of 4sU experiment"), make_option(c("-o", "--outdir"), type="character", help="Path to output directory")) opt <- parse_args(OptionParser(option_list=option_list)) # set output for logfile to retrieve stats for plot later sink(file=paste0(opt$outdir,"figure_proxanno_prepdata.out")) suppressPackageStartupMessages(library(memes, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(universalmotif, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(biomaRt, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(TxDb.Mmusculus.UCSC.mm10.knownGene, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(BSgenome.Mmusculus.UCSC.mm10, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(dplyr, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(ChIPseeker, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(stringr, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(plyranges, warn.conflicts=F, quietly=T)) #------------------------------- ## Import references #------------------------------- # for gene annotation txdb <- TxDb.Mmusculus.UCSC.mm10.knownGene # for the sequence # either use masked or unmasked (the mask does NOT seem to be for repeats though) mm.genome <- BSgenome.Mmusculus.UCSC.mm10 #------------------------------- ### Determine expressed genes #------------------------------- rna_nascent <- read.table(opt$rna_nascent_fpkm, header=TRUE) print("Determine expressed genes using 4sU data") # what does the read count distribution look like? # compute median per gene and plot it as histogram rna_nascent$median_genecounts <- apply(rna_nascent[,-1], 1, FUN=median) # lots of medians that are below 1 hist(log10(rna_nascent$median_genecounts)) # filter based on expression expressed_genes <- rna_nascent %>% dplyr::filter(median_genecounts > 0) #------------------------------- ### Load genekey to annotate ensembl to mgi #------------------------------- geneKey <- read.delim(opt$genekey) #merge gene annotations to results table expressed_genes <- merge(expressed_genes, geneKey, by.x="Geneid", by.y="ensembl_gene_id") #------------------------------- ## Getting the sequences #------------------------------- # import summit of ChIPseq peaks ChIPseq_summits <- read.table(opt$chipseq_summits) ChIPseq_ranges <- GRanges(seqnames = ChIPseq_summits[,c("V1")], ranges = IRanges(start=ChIPseq_summits[,c("V2")], end=ChIPseq_summits[,c("V3")]-1)) # to make up for 0 vs 1 encoding ChIPseq_ranges$id <- c(1:length(ChIPseq_ranges)) # NOTE: if we only want to annotate to genes that are expressed, we could use ChIPpeakAnno and a filtered annoDB object instead # annotate it to genes print("Annotate ChIPseq summit to closest gene (using genomic reference)") summitAnno <- annotatePeak(ChIPseq_ranges, tssRegion=c(-3000, 3000), TxDb=txdb, annoDb = "org.Mm.eg.db") summitAnno_df <- summitAnno %>% as.data.frame() # see which ones are DE genes and add that info to GRanges as column "directionchange" print("Add info on which genes are DE to the annotated summits") DE_4sU <- read.delim(opt$contrast_DexVSDexLPS) summitAnno_df <- left_join(summitAnno_df, DE_4sU[,c("mgi_symbol","padj","log2FoldChange")], by = c("SYMBOL" = "mgi_symbol")) summitAnno_df <- summitAnno_df %>% mutate(change = case_when(padj<0.05 & log2FoldChange > opt$log2fcthresh ~ "up", padj<0.05& log2FoldChange < -opt$log2fcthresh ~"down", TRUE ~ "ns") ) # save info on gene annotation ChIPseq_ranges$mgi_symbol[match(summitAnno_df$id, ChIPseq_ranges$id )] <- summitAnno_df$SYMBOL # assign directionchange as metadata column ChIPseq_ranges$directionchange[match(summitAnno_df$id, ChIPseq_ranges$id )] <- summitAnno_df$change # ass distance to TSS ChIPseq_ranges$distanceToTSS[match(summitAnno_df$id, ChIPseq_ranges$id )] <- summitAnno_df$distanceToTSS #------------------------------- ## Prefilter motifdb to motifs that are expressed in celltype #------------------------------- print("Prefilter meme_db for those motifs expressed in our 4sU data") meme_db <- read_meme(opt$meme_db_path) %>% to_df() meme_db_expressed <- meme_db %>% # the altname slot of meme_db contains the gene symbol (this is database-specific) # avoid mismatches cased by casing and keep motif if at least one part of composite is expressed tidyr::separate(altname, into=c("tf1", "tf2"), sep="::",remove=FALSE) %>% filter( str_to_upper(tf1) %in% str_to_upper(expressed_genes$mgi_symbol) | str_to_upper(tf2) %in% str_to_upper(expressed_genes$mgi_symbol)) %>% # we don't need the split TF info downstream dplyr::select(!c("tf1","tf2")) print("Number of motifs pre-filtering: ") nrow(meme_db) print("Number of motifs post-filter: ") nrow(meme_db_expressed) #------------------------------- ## OPTIONAL: only run with motifs of interest #------------------------------- meme_motifsOI <- meme_db_expressed %>% filter( grepl("STAT", str_to_upper(altname)) | grepl("NR3C", str_to_upper(altname)) ) #------------------------------- ## FIGURES on peak gene annotation #------------------------------- # filter peaks for those annotated to genes that are expressed summitAnno_expr <- subset(summitAnno, summitAnno@anno$SYMBOL %in% expressed_genes$mgi_symbol) # filter the df version in the same fashion summitAnno_df_expr <- summitAnno_df %>% filter(SYMBOL %in% expressed_genes$mgi_symbol) #--------------------------------- # --- some stats #--------------------------------- distbygene <- summitAnno_df_expr %>% group_by(SYMBOL, change) %>% summarise(min_dist=min(abs(distanceToTSS)), mean_dist=mean(abs(distanceToTSS))) %>% ungroup() %>% mutate(logmindist=log2(min_dist+1)) # why 30kb cutoff distbygene_allDE <- distbygene %>% filter(!change=="ns") %>% mutate(change=factor(change,levels=c("down","up"))) print("We need to justify why we picked a cutoff of 30kb.") print("From a genecentric perspective, we want to include the peak regions that most likely have a regulating function on the gene.") print("With a cutoff of 30kb, how many genes DONT have at least one peak within that range?") tbl <- table(distbygene_allDE$min_dist > 30000) tbl[2]/(tbl[1]+tbl[2]) print("How many genes do we lose of both sets by using that cutoff?") print("In the upregulated fraction:") table( (distbygene %>% filter(change=="up"))$min_dist > 30000) print("In the downregulated fraction:") table( (distbygene %>% filter(change=="down"))$min_dist > 30000) print("Min and mean dist for the genes with log2FC >", opt$log2fcthresh) distbygene %>% filter(change=="up") %>% summarise_all(mean) %>% print() print("Min and mean dist for the genes with log2FC <", opt$log2fcthresh ) distbygene %>% filter(change=="down") %>% summarise_all(mean) %>% print() print("How many peaks per UPregulated gene:") summitAnno_df_expr %>% filter(change=="up")%>% filter(abs(distanceToTSS)<30000) %>% group_by(SYMBOL) %>% summarise(count=n()) %>% pull(count) %>% mean() print("How many peaks per DOWNregulated gene:") summitAnno_df_expr %>% filter(change=="down")%>% filter(abs(distanceToTSS)<30000) %>% group_by(SYMBOL) %>% summarise(count=n()) %>% pull(count) %>% mean() print("The distances between the peaks mapping to the same gene.") print("returns NA if only one 1 peak is annotated to the gene - those are excluded") print("For upregulated genes:") summitAnno_df_expr %>% filter(change=="up")%>% filter(abs(distanceToTSS)<30000) %>% group_by(SYMBOL) %>% summarise(meanpeakdist = mean(dist(distanceToTSS))) %>% # filter(!is.na(meanpeakdist)) %>% pull(meanpeakdist) %>% mean() print("For downregulated genes:") summitAnno_df_expr %>% filter(change=="down")%>% filter(abs(distanceToTSS)<30000) %>% group_by(SYMBOL) %>% summarise(meanpeakdist = mean(dist(distanceToTSS))) %>% filter(!is.na(meanpeakdist)) %>% pull(meanpeakdist) %>% mean() #-------------------------------------- #- permutations #-------------------------------------- # Difference in means groupdiff <- diff(tapply(distbygene_allDE$min_dist, distbygene_allDE$change, mean)) print("The mean minimum distance is smaller for the upregulated set") print(paste("The group difference is: ",groupdiff)) print("Permutation test to see if this difference between the groups is meaningful") #Permutation test permutation.test <- function(group, outcome, n, reference){ distribution=c() result=0 for(i in 1:n){ distribution[i]=diff(by(outcome, sample(group, length(group), FALSE), mean)) } result=sum(abs(distribution) >= abs(groupdiff))/(n) return(list(result, distribution, groupdiff)) } permtest_res <- permutation.test(distbygene_allDE$change, distbygene_allDE$min_dist, 100000, groupdiff) #-------------------------------------- #- export objects #-------------------------------------- #--------------------------------- # --- export results of the permutation test saveRDS(permtest_res, file=paste0(opt$outdir,"permtest_res.rds")) #--------------------------------- # --- export up and downregulated summitfraction for deeptools table(ChIPseq_ranges$directionchange) dir.create(paste0(opt$outdir,"peaks_annot2DEgenes_30kb_log2FC0.58/")) export.bed(ChIPseq_ranges %>% filter(directionchange == "up") %>% filter(abs(distanceToTSS)<30000) , con=paste0(opt$outdir,"peaks_annot2DEgenes_30kb_log2FC0.58/UP_summit_unmerged.bed")) export.bed(ChIPseq_ranges %>% filter(directionchange == "down") %>% filter(abs(distanceToTSS)<30000) , con=paste0(opt$outdir,"peaks_annot2DEgenes_30kb_log2FC0.58/DOWN_summit_unmerged.bed")) #------------------------------- ## export objects to run memes afterwards saveRDS(ChIPseq_ranges, file=paste0(opt$outdir,"../memes_bioc/ChIPseq_summit_Granges.rds")) saveRDS(meme_db_expressed, file=paste0(opt$outdir,"../memes_bioc/meme_db_4sUexpressed.rds")) #------------------------------- ## export objects for ggplot figures saveRDS(summitAnno, file=paste0(opt$outdir,"summitAnno.rds")) saveRDS(summitAnno_expr, file=paste0(opt$outdir,"summitAnno_expr.rds")) saveRDS(summitAnno_df_expr, file=paste0(opt$outdir,"summitAnno_df_expr.rds")) sink() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 | suppressPackageStartupMessages(library(optparse, warn.conflicts=F, quietly=T)) option_list <- list( make_option(c("--ctss_pool1"), type="character", help="Path for ctss file from FANTOM5 of pool 1"), make_option(c("--ctss_pool2"), type="character", help="Path for ctss file from FANTOM5 of pool 2"), make_option(c("--liftoverchain"), type="character", help="Path to liftover chain file for mm9 to mm10"), make_option(c("--gencode_mm9_geneanno"), type="character", help="Path to genomic reference file for mm9"), make_option(c("--gencode_mm10_geneanno"), type="character", help="GENCODE genomic reference for assembly mm10, prefiltered for gene entries"), make_option(c("--outdir"), type="character", help="Output directory") ) opt <- parse_args(OptionParser(option_list=option_list)) suppressPackageStartupMessages(library(dplyr, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(BSgenome.Mmusculus.UCSC.mm9, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(ChIPseeker, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(CAGEr, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(rtracklayer, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(ggplot2, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(GenomicRanges, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(here, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(org.Mm.eg.db, warn.conflicts=F, quietly=T)) suppressPackageStartupMessages(library(TxDb.Mmusculus.UCSC.mm10.knownGene, warn.conflicts=F, quietly=T)) outdir <- here(opt$outdir) # Workflow is based on the CAGEr vignette # https://www.bioconductor.org/packages/release/bioc/vignettes/CAGEr/inst/doc/CAGEexp.html #---------------------- Import CAGE samples from BMDMs #------------------------------------------------------------------------------------ # get URL for public samples, download and read necessariy columns into ctss file (see snakemake workflow) # We want to import bone-marrow derived macrophage samples through CAGEr. # After looking at list of available datasets we can decide what samples best fit our needs. # Let's see what samples are available through FANTOM5 #data(FANTOM5mouseSamples) #head(FANTOM5mouseSamples) # The FANTOM5 dataframe holds descriptions of the samples and the url where they can be retrieved. # There's an easy way to import samples that match a certain term into a CAGEset object. #mac_samples <- FANTOM5mouseSamples[grep("macrophage, bone marrow derived", # FANTOM5mouseSamples[,"description"]),] print("NOTE: reference genome for the public CAGE files is mm9!") ce <- CAGEr::CAGEexp( genomeName = "BSgenome.Mmusculus.UCSC.mm9", inputFiles = c(opt$ctss_pool1 ,opt$ctss_pool2), inputFilesType = "ctss", sampleLabels = c("pool1","pool2") ) # To actually read in the data into the object we use getCTSS() function, that will add an experiment called tagCountMatrix to the CAGEexp object. ce <- CAGEr::getCTSS(ce) ce #------------------------------------------------------------------------------------ #---------------------- QC #------------------------------------------------------------------------------------ ncbim37_anno <- rtracklayer::import.gff(opt$gencode_mm9_geneanno) ce <- annotateCTSS(ce, ncbim37_anno) colData(ce)[,c("librarySizes", "promoter", "exon", "intron", "unknown")] plotAnnot(ce, "counts") corr.m <- plotCorrelation2( ce, samples = "all" , tagCountThreshold = 1, applyThresholdBoth = FALSE , method = "pearson") #------------------------------------------------------------------------------------ #---------------------- Get read clusters #------------------------------------------------------------------------------------ print("Merging samples") #Now we can merge them ce <- mergeSamples(ce, mergeIndex = c(1,1), mergedSampleLabels = c("BMDM")) # redo annotation since this gets reset during merging ce <- annotateCTSS(ce, ncbim37_anno) print("The total library size is:") print(librarySizes(ce)) # Check if data follows a power law distribution plotReverseCumulatives(ce, fitInRange = c(5, 3000), onePlot = TRUE) print("Normalizing reads") # Since we don't really care about making comparisons between different population we could prob just skip the normalization # The fit range is chosen from the plot. We take the alpha from the ref distribution and set T to a million to get the tag count per million (TPM) ce <- normalizeTagCount(ce, method = "powerLaw", fitInRange = c(5, 3000), alpha = 1.15, T = 1*10^6) #mac_CAGEset@tagCountMatrix print("Cluster the tags") # After normalization we can cluster the tags. # Clustering, only seems to work with the CAGEset object (due to some problems with the IRanges column) # From the CAGEr vignette: # "Transcription start sites are found in the promoter region of a gene and reflect the transcriptional activity of that promoter (Figure 5). TSSs in the close proximity of each other give rise to a functionally equivalent set of transcripts and are likely regulated by the same promoter elements. Thus, TSSs can be spatially clustered into larger transcriptional units, called tag clusters (TCs) that correspond to individual promoters. CAGEr supports three methods for spatial clustering of TSSs along the genome, two ab initio methods driven by the data itself, as well as assigning TSSs to predefined genomic regions:" ce <- clusterCTSS(ce, threshold=1, thresholdIsTpm = TRUE, nrPassThreshold = 1, method="distclu", maxDist=20, removeSingletons = TRUE, keepSingletonsAbove = 3) # Let's have a look what the result looks like head(tagClustersGR(ce, sample = "BMDM")) # calculate cumulative distribution for every tag cluster in each of the samples ce <- cumulativeCTSSdistribution(ce, clusters = "tagClusters", useMulticore = T) # determine the positions of selected quantiles ce <- quantilePositions(ce, clusters = "tagClusters", qLow = 0.1, qUp = 0.9) # How many tagclusters do we have in total? length(tagClustersGR(ce, sample = "BMDM")) # histogram of interquantile width plotInterquantileWidth(ce, clusters = "tagClusters", tpmThreshold = 3, qLow = 0.1, qUp = 0.9) print("Retrieving clusters as GenomicRanges") clusters_gr <- tagClustersGR(ce, sample="BMDM") #------------------------------------------------------------------------------------ #---------------------- Liftover coordinates to mm10 #------------------------------------------------------------------------------------ print("Liftover to mm10") # * Now we can lift over the intervals to mm10 # * Annotate them with peakanno # * pick the most highly expressed one for each gene liftover <- function(peaks_gr_mm9){ #input is a GenomicRanges object in mm9 coordinates #lift peak locations from mm9 to mm10 chain <- rtracklayer::import.chain(opt$liftoverchain) on.exit( close( file(opt$liftoverchain)) ) peaks_gr_mm10 <- rtracklayer::liftOver(peaks_gr_mm9, chain) peaks_gr_mm10 <- GenomicRanges::GRanges(unlist(peaks_gr_mm10)) return(peaks_gr_mm10) } mac_cage_mm10 <- liftover( clusters_gr ) ggplot(as.data.frame(mac_cage_mm10), aes(x=width)) + geom_histogram(bins = 100) # Liftover coordinates of dominant_ctss dominant_ctss <- liftover( GRanges( seqnames = seqnames(clusters_gr), ranges = IRanges(start = clusters_gr$dominant_ctss, end = clusters_gr$dominant_ctss), score=clusters_gr$score) ) #------------------------------------------------------------------------------------ #----------------- Annotate TSS clusters to reference gene coordinates #------------------------------------------------------------------------------------ print("Annotate TSS coordinates") # Use coordinates of the dominant ctss downstream mac_cage_anno <- ChIPseeker::annotatePeak(dominant_ctss, tssRegion=c(-1000, 1000), #more stringent than default level = "gene", TxDb=TxDb.Mmusculus.UCSC.mm10.knownGene, annoDb = "org.Mm.eg.db") # For those that are reasonably close to a TSS, # check for each gene, which position has the highest score. mac_cage_maxscore <- as.data.frame(mac_cage_anno) %>% filter(abs(distanceToTSS)<=30000) %>% mutate(SYMBOL=as.factor(SYMBOL)) %>% filter(SYMBOL!="") %>% group_by(SYMBOL)%>% filter(score == max(score))%>% filter(distanceToTSS == min(distanceToTSS )) # for tied score, use shorter distance nrow(mac_cage_maxscore) ggplot(mac_cage_maxscore, aes(x=distanceToTSS)) + geom_histogram(bins = 100) #------------------------------------------------------------------------------------ #---------- retrieve gene coordinates and promoterregion from reference #------------------------------------------------------------------------------------ gencode_mm10_geneanno <- rtracklayer::import.gff(opt$gencode_mm10_geneanno) genecoords <- as.data.frame(gencode_mm10_geneanno) %>% dplyr::select("seqnames","start","end","strand","gene_id") %>% mutate(score=0) %>% dplyr::mutate(gene_id=gsub("\\.[0-9]*$","",gene_id)) %>% dplyr::filter(!"gene_id"=="")%>% dplyr::select("seqnames","start","end","gene_id","score","strand") gencode_mm10_promoterregions <- promoters(gencode_mm10_geneanno) gencode_mm10_promoterregions <- as.data.frame(gencode_mm10_promoterregions) %>% dplyr::select("seqnames","start","end","strand","gene_id") %>% mutate(score=0) %>% dplyr::mutate(gene_id=gsub("\\.[0-9]*$","",gene_id)) %>% dplyr::filter(!"gene_id"=="")%>% dplyr::select("seqnames","start","end","gene_id","score","strand") #------------------------------------------------------------------------------------ #----------------- export files #------------------------------------------------------------------------------------ write.table(genecoords, file = paste0(outdir,"reference_genecoords.bed"), sep="\t", col.names = FALSE, quote=FALSE, row.names = FALSE) write.table(gencode_mm10_promoterregions, file = paste0(outdir,"reference_promoterregions.bed"), sep="\t", col.names = FALSE, quote=FALSE, row.names = FALSE) rtracklayer::export.bed(as.data.frame(mac_cage_mm10), paste0(outdir, "mac_cage_tssclusterregions.bed"), format="bed") rtracklayer::export.bed(as.data.frame(dominant_ctss), paste0(outdir, "mac_cage_dominant_ctss.bed"), format="bed") rtracklayer::export.bed(mac_cage_maxscore, paste0(outdir,"mac_cage_maxscore.bed"), format="bed") |
A snakemake workflow to process ATAC-seq data
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 | myargs <- commandArgs(trailingOnly=TRUE) bamfile <- myargs[1] species <- myargs[2] print("loading packages (ATACseqQC, ggplot, etc)...") suppressPackageStartupMessages(library(ggplot2, quietly=TRUE)) suppressPackageStartupMessages(library(Rsamtools, quietly=TRUE)) suppressPackageStartupMessages(library(ATACseqQC, quietly=TRUE)) suppressPackageStartupMessages(library(ChIPpeakAnno, quietly=TRUE)) suppressPackageStartupMessages(library("GenomicAlignments", quietly=TRUE)) if (species == "mm") { suppressPackageStartupMessages(library(TxDb.Mmusculus.UCSC.mm10.knownGene, quietly=TRUE)) suppressPackageStartupMessages(library(BSgenome.Mmusculus.UCSC.mm10, quietly=TRUE)) txdb <- TxDb.Mmusculus.UCSC.mm10.knownGene bsgenome <- BSgenome.Mmusculus.UCSC.mm10 genome <- Mmusculus print("species is 'mm' using mm10 for analysis") ### Note: Everything below is deprecated until I can figure out a way to port a ### static/local package with snakemake # Note: phastCons60way was manually curated from GenomicAlignments, built, and installed as an R package # score was obtained according to: https://support.bioconductor.org/p/96226/ # package was built and installed according to: https://www.bioconductor.org/packages/devel/bioc/vignettes/GenomicScores/inst/doc/GenomicScores.html # (section 5.1: Building an annotation package from a GScores object) #suppressWarnings(suppressPackageStartupMessages(library(GenomicScores, lib.loc="/users/dia6sx/snakeATAC/scripts/", quietly=TRUE))) #suppressWarnings(suppressPackageStartupMessages(library(phastCons60way.UCSC.mm10, lib.loc="/users/dia6sx/snakeATAC/scripts/", quietly=TRUE))) } else if (species == "hs") { suppressPackageStartupMessages(library(TxDb.Hsapiens.UCSC.hg38.knownGene, quietly=TRUE)) suppressPackageStartupMessages(library(BSgenome.Hsapiens.UCSC.hg38, quietly=TRUE)) txdb <- TxDb.Hsapiens.UCSC.hg38.knownGene bsgenome <- BSgenome.Hsapiens.UCSC.hg38 genome <- Hsapiens print("species is 'hs' using hg38 for analysis") } else { print(paste("params ERROR: ATACseqQC is not configured to use species =", species)) print("exiting...") quit(status=1) } doATACseqQC <- function(bamfile, txdb, bsgenome, genome) { # Fragment size distribution print(paste("generating output for ",strsplit(basename(bamfile),split='\\.')[[1]][1],"...",sep="")) print("calculating Fragment size distribution...") bamfile.labels <- gsub(".bam", "", basename(bamfile)) loc_to_save_figures <- paste(dirname(dirname(bamfile)),"/qc/ATACseqQC",sep="") if (file.exists(loc_to_save_figures)) { print("Warning: old figures will be overwritten") } else { dir.create(loc_to_save_figures) } png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_fragment_size_distribution.png",sep="") png(png_file) fragSizeDist(bamfile, bamfile.labels) dev.off() # Adjust the read start sites print("adjusting read start sites...") ## bamfile tags to be read in possibleTag <- list("integer"=c("AM", "AS", "CM", "CP", "FI", "H0", "H1", "H2", "HI", "IH", "MQ", "NH", "NM", "OP", "PQ", "SM", "TC", "UQ"), "character"=c("BC", "BQ", "BZ", "CB", "CC", "CO", "CQ", "CR", "CS", "CT", "CY", "E2", "FS", "LB", "MC", "MD", "MI", "OA", "OC", "OQ", "OX", "PG", "PT", "PU", "Q2", "QT", "QX", "R2", "RG", "RX", "SA", "TS", "U2")) bamTop100 <- scanBam(BamFile(bamfile, yieldSize = 100), param = ScanBamParam(tag=unlist(possibleTag)))[[1]]$tag tags <- names(bamTop100)[lengths(bamTop100)>0] ## files will be output into outPath ## shift the coordinates of 5'ends of alignments in the bam file outPath <- paste(dirname(dirname(bamfile)),"/alignments_shifted", sep="") seqinformation <- seqinfo(txdb) gal <- readBamFile(bamfile, tag=tags, asMates=TRUE, bigFile=TRUE) shiftedBamfile <- file.path(outPath, paste(bamfile.labels,"_shifted.bam",sep="")) # check if shifted Bam file exists from previous run if (file.exists(shiftedBamfile)) { print("Shifted Bamfile found.") print("Loading in...") gal <- readBamFile(shiftedBamfile, tag=tags, asMates=TRUE, bigFile=TRUE) ## This step is mostly for formating so splitBam can ## take in bamfile. Implementing shift of 0 bp on positive strand ## and 0 bp on negative strand because shifted Bamfile should ## already have these shifts gal1 <- shiftGAlignmentsList(gal, positive = 0L, negative = 0L) } else { # shifted bam file does not exist check if # old shifted alignments directory exists # if so remove and create new one if (file.exists(outPath)){ unlink(outPath,recursive=TRUE) } dir.create(outPath) print("*** creating shifted bam file ***") gal1 <- shiftGAlignmentsList(gal, outbam=shiftedBamfile) } # Promoter/Transcript body (PT) score print("calculating Promoter/Transcript body (PT) score...") txs <- transcripts(txdb) pt <- PTscore(gal1, txs) png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_ptscore.png",sep="") png(png_file) plot(pt$log2meanCoverage, pt$PT_score, xlab="log2 mean coverage", ylab="Promoter vs Transcript", main=paste(bamfile.labels,"PT score")) dev.off() # Nucleosome Free Regions (NFR) score print("calculating Nucleosome Free Regions (NFR) score") nfr <- NFRscore(gal1, txs) png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_nfrscore.png",sep="") png(png_file) plot(nfr$log2meanCoverage, nfr$NFR_score, xlab="log2 mean coverage", ylab="Nucleosome Free Regions score", main=paste(bamfile.labels,"\n","NFRscore for 200bp flanking TSSs",sep=""), xlim=c(-10, 0), ylim=c(-5, 5)) dev.off() # Transcription Start Site (TSS) Enrichment Score print("calculating Transcription Start Site (TSS) Enrichment score") tsse <- TSSEscore(gal1, txs) png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_tss_enrichment_score.png",sep="") png(png_file) plot(100*(-9:10-.5), tsse$values, type="b", xlab="distance to TSS", ylab="aggregate TSS score", main=paste(bamfile.labels,"\n","TSS Enrichment score",sep="")) dev.off() # Split reads, Heatmap and coverage curve for nucleosome positions print("splitting reads by fragment length...") genome <- genome outPath <- paste(dirname(dirname(bamfile)),"/alignments_split", sep="") TSS <- promoters(txs, upstream=0, downstream=1) TSS <- unique(TSS) ## estimate the library size for normalization librarySize <- estLibSize(bamfile) ## calculate the signals around TSSs. NTILE <- 101 dws <- ups <- 1010 splitBamfiles <- paste(outPath,"/",c("NucleosomeFree", "mononucleosome", "dinucleosome", "trinucleosome"),".bam",sep="") # check if split Bam files exists from previous run if (all(file.exists(splitBamfiles))) { print("*** split bam files found! ***") print("Loading in...") sigs <- enrichedFragments(bamfiles=splitBamfiles, index=splitBamfiles, TSS=TSS, librarySize=librarySize, TSS.filter=0.5, n.tile = NTILE, upstream = ups, downstream = dws) } else { # split bam files do not exist check if # old split alignments directory exists # if so remove and create new one if (file.exists(outPath)){ unlink(outPath,recursive=TRUE) } print("*** creating split bam files ***") dir.create(outPath) ## split the reads into NucleosomeFree, mononucleosome, ## dinucleosome and trinucleosome. ## and save the binned alignments into bam files. objs <- splitGAlignmentsByCut(gal1, txs=txs, genome=genome, outPath = outPath) #objs <- splitBam(bamfile, tags=tags, outPath=outPath, # txs=txs, genome=genome, # conservation=phastCons60way.UCSC.mm10, # seqlev=paste0("chr", c(1:19, "X", "Y"))) sigs <- enrichedFragments(gal=objs[c("NucleosomeFree", "mononucleosome", "dinucleosome", "trinucleosome")], TSS=TSS, librarySize=librarySize, TSS.filter=0.5, n.tile = NTILE, upstream = ups, downstream = dws) } ## log2 transformed signals sigs.log2 <- lapply(sigs, function(.ele) log2(.ele+1)) ## plot heatmap png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_nucleosome_pos_heatmap.png",sep="") png(png_file) featureAlignedHeatmap(sigs.log2, reCenterPeaks(TSS, width=ups+dws), zeroAt=.5, n.tile=NTILE) dev.off() ## get signals normalized for nucleosome-free and nucleosome-bound regions. out <- featureAlignedDistribution(sigs, reCenterPeaks(TSS, width=ups+dws), zeroAt=.5, n.tile=NTILE, type="l", ylab="Averaged coverage") ## rescale the nucleosome-free and nucleosome signals to 0~1 range01 <- function(x){(x-min(x))/(max(x)-min(x))} out <- apply(out, 2, range01) png_file <- paste(loc_to_save_figures,"/",bamfile.labels,"_TSS_signal_distribution.png",sep="") png(png_file) matplot(out, type="l", xaxt="n", xlab="Position (bp)", ylab="Fraction of signal", main=paste(bamfile.labels,"\n","TSS signal distribution",sep="")) axis(1, at=seq(0, 100, by=10)+1, labels=c("-1K", seq(-800, 800, by=200), "1K"), las=2) abline(v=seq(0, 100, by=10)+1, lty=2, col="gray") dev.off() print("QC Finished.") print("Generated QC figures can be found in qc folder under ATACseQC") print(paste("*** removing temp files in",outPath,"***")) unlink(outPath,recursive=TRUE) outPath <- paste(dirname(dirname(bamfile)),"/alignments_shifted", sep="") print(paste("*** removing temp files in",outPath,"***")) unlink(outPath,recursive=TRUE) } doATACseqQC(bamfile, txdb, bsgenome, genome) |
data / bioconductor
TxDb.Mmusculus.UCSC.mm10.knownGene
Annotation package for TxDb object(s): Exposes an annotation databases generated from UCSC by exposing these as TxDb objects