Workflow Steps and Code Snippets
2 tagged steps and code snippets that match keyword illuminaHumanv3.db
Code used for the manuscript 'Network reconstruction for trans acting genetic loci using multi-omics data and prior information' by Hawe et al., 2022 in Genome Medicine
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 | log <- file(snakemake@log[[1]], open="wt") sink(log) sink(log, type="message") # ------------------------------------------------------------------------------ # load packages, source scripts # ------------------------------------------------------------------------------ library(GenomicRanges) library(GenomicFeatures) library(FDb.InfiniumMethylation.hg19) library(data.table) library(illuminaHumanv3.db) library(rtracklayer) library(graph) library(RBGL) # for shortest paths library(Matrix) source("scripts/lib.R") source("scripts/collect_ranges_methods.R") # ------------------------------------------------------------------------------ # Get snakemake params # ------------------------------------------------------------------------------ fcosmo <- snakemake@input$tcosmo fmeqtl <- snakemake@input$meqtl fppi_db <- snakemake@input$ppi_db fprio_tab <- snakemake@input$priorization fgene_annot <- snakemake@input$gene_annot # TODO: create this file from scratch! fcpgcontext <- snakemake@input$cpgcontext ofile <- snakemake@output[[1]] sentinel <- snakemake@wildcards$sentinel # ------------------------------------------------------------------------------ # Load and preprocess data # ------------------------------------------------------------------------------ print("Loading data.") gene_annot <- load_gene_annotation(fgene_annot) gene_annot$ids <- probes.from.symbols(gene_annot$SYMBOL, as_list=T) ppi_db <- readRDS(fppi_db) # load trans-meQTL table trans_meQTL = read.csv(fmeqtl, sep="\t", stringsAsFactors=F) # load trans-cosmo information cosmo <- readRDS(fcosmo) # load priorization table prio <- read.table(fprio_tab, sep="\t", header=T, stringsAsFactors = F) # get trans-genes which should be used for shortest path extraction prio <- prio[prio$sentinel == sentinel,,drop=F] if(nrow(prio) > 0) { best_trans <- unique(prio$trans.gene) } else { best_trans <- NULL } # ------------------------------------------------------------------------------ # Collect and save ranges # ------------------------------------------------------------------------------ # ------------------------------------------------------------------------------ print("Collecting SNP and CpG ranges.") # ------------------------------------------------------------------------------ pairs = which(trans_meQTL[,"sentinel.snp"] == sentinel) # get sentinel idx sentinel_idx <- which(cosmo$snp==sentinel)[1] # the large interval range for the sentinel chr <- paste0("chr", trans_meQTL[pairs,"chr.snp"][1]) start <- trans_meQTL[pairs,"interval.start.snp"][1] end <- trans_meQTL[pairs,"interval.end.snp"][1] sentinel_extrange <- GRanges(chr, IRanges(start,end)) sentinel_range <- with(cosmo[sentinel_idx,], GRanges(paste0("chr", snp.chr), IRanges(snp.pos, width=1))) names(sentinel_range) <- names(sentinel_extrange) <- sentinel # get cosmo subset idxs <- get.trans.cpgs(sentinel, trans_meQTL, cosmo) # get related genes, i.e. genes near meQTL loci (snp+cpg) # extend cpgs cosmosub <- cosmo[idxs,] croi <- with(cosmosub, GRanges(paste0("chr", cpg.chr), IRanges(cpg.pos,width=2))) names(croi) <- as.character(cosmosub[,"cpg"]) croi <- unique(croi) # extended sentinel region sroi <- sentinel_extrange names(sroi) <- sentinel # ------------------------------------------------------------------------------ print("Retrieving SNP and CpG genes.") # ------------------------------------------------------------------------------ # get the relevant snp genes by overlapping with our sentinel region genes_sroi <- subsetByOverlaps(gene_annot, sroi, ignore.strand=T) # get genes near our cpg regions genes_by_cpg <- get.nearby.ranges(croi, promoters(gene_annot)) names(genes_by_cpg) <- names(croi) # get original ranges (not promoters) genes_by_cpg <- lapply(names(genes_by_cpg), function(cg) { gs <- genes_by_cpg[[cg]] gene_annot[gs$hit_idx] }) names(genes_by_cpg) <- names(croi) # get single list of all cpg genes genes_croi <- unique(unlist(GRangesList(unlist(genes_by_cpg)))) # ------------------------------------------------------------------------------ print("Collecting TFs and shortest path genes.") # ------------------------------------------------------------------------------ tfs <- NULL sp <- NULL # get cpg ids and SNP gene symbols cpgs <- names(croi) snp_genes <- unique(genes_sroi$SYMBOL) # modify ppi_db to contain our CpGs # load the cpg-tf context tfbs_ann <- get_tfbs_context(names(croi), fcpgcontext) cpgs_with_tfbs <- cpgs[cpgs %in% rownames(tfbs_ann[rowSums(tfbs_ann)>0,])] snp_genes_in_string <- snp_genes[snp_genes %in% nodes(ppi_db)] # get locus graph locus_graph <- add.to.graphs(list(ppi_db), sentinel, snp_genes, cpgs_with_tfbs, tfbs_ann)[[1]] # get tfs connected to cpgs tf_syms = unique(unlist(adj(locus_graph, cpgs_with_tfbs))) print(paste0("Annotated TFs: ", paste(tf_syms, collapse=", "))) if(length(tf_syms) < 1 | length(snp_genes_in_string) < 1) { warning(paste0("No TFs or none of the SNP genes are in PPI DB. ", "Skipping shortest paths calculation.")) # still, we want to keep the available TFs if there are no SNP genes # within the PPI DB (would get adjusted using shortest paths below) if(length(snp_genes_in_string) >= 1) { tfs <- gene_annot[gene_annot$SYMBOL %in% tf_syms] } } else { # the nodes we want to keep # in the original meQTL paper we removed KAP1 from the TF symbols nodeset <- c(nodes(ppi_db), tf_syms, snp_genes_in_string, cpgs_with_tfbs) locus_graph <- subGraph(intersect(nodes(locus_graph), nodeset), locus_graph) shortest_paths <- get_shortest_paths(cis = cpgs_with_tfbs, trans=unique(c(snp_genes_in_string, tf_syms)), snp_genes=snp_genes_in_string, locus_graph, tf_syms, best_trans) non_tf_sp <- shortest_paths$non_tf_sp tf_sp <- shortest_paths$tf_sp if(length(non_tf_sp) < 1){ warning("No shortest path genes.") } else { sp <- gene_annot[gene_annot$SYMBOL %in% non_tf_sp] } if(length(tf_sp) < 1) { # This should not happen -> sanity check stop("No TFs on shortest paths!") } else { tfs <- gene_annot[gene_annot$SYMBOL %in% tf_sp] } } print(paste0("Annotated TFs after shortest path calculations: ", paste(tfs$SYMBOL, collapse=", "))) # ------------------------------------------------------------------------------ print("Finalizing and saving results.") # ------------------------------------------------------------------------------ result <- list(cpgs=croi,sentinel=sentinel_range, sentinel_ext_range=sentinel_extrange, snp_genes=genes_sroi, cpg_genes=genes_croi, cpg_genes_by_cpg=genes_by_cpg) if(!is.null(sp)){ result$spath <- sp } if(!is.null(tfs)){ result$tfs <- tfs } # set seed name result$seed <- "meqtl" saveRDS(file=ofile, result) # ------------------------------------------------------------------------------ print("SessionInfo:") # ------------------------------------------------------------------------------ sessionInfo() |
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 | log <- file(snakemake@log[[1]], open="wt") sink(log) sink(log, type="message") # define easy concatenation operator `%+%` = paste0 # ------------------------------------------------------------------------------ print("Load libraries and source scripts.") # ------------------------------------------------------------------------------ library(BDgraph) library(igraph) library(graph) library(data.table) library(GenomicRanges) library(qvalue) library(illuminaHumanv3.db) library(ggplot2) library(parallel) library(reshape2) library(cowplot) source("scripts/go-enrichment.R") source("scripts/validation_methods.R") source("scripts/mediation_methods.R") source("scripts/lib.R") source("scripts/reg_net.R") source("scripts/reg_net_utils.R") # ------------------------------------------------------------------------------ print("Get snakemake parameters.") # ------------------------------------------------------------------------------ # inputs fkora_data <- snakemake@input[["kora_data"]] franges <- snakemake@input[["ranges"]] flolipop_data <- snakemake@input[["lolipop_data"]] fkora_fit <- snakemake@input[["kora_fit"]] flolipop_fit <- snakemake@input[["lolipop_fit"]] fgtex <- snakemake@input[["gtex"]] fgeo <- snakemake@input[["geo"]] fciseqtl_kora <- snakemake@input[["cis_kora"]] ftranseqtl_kora <- snakemake@input[["trans_kora"]] fbonder_eqtm <- snakemake@input[["bonder_eqtm"]] fciseqtl_joehanes <- snakemake@input[["cis_joehanes"]] ftranseqtl_joehanes <- snakemake@input[["trans_joehanes"]] fmediation_kora <- snakemake@input[["mediation_kora"]] fmediation_lolipop <- snakemake@input[["mediation_lolipop"]] # params threads <- snakemake@threads sentinel <- snakemake@wildcards$sentinel mediation_cutoff <- snakemake@params$mediation_cutoff cohort <- snakemake@wildcards$cohort # output # main outfile for validation results fout <- snakemake@output[[1]] # ------------------------------------------------------------------------------ print("Loading data.") # ------------------------------------------------------------------------------ print("Loading gene expression data.") # load GEO/ARCHS4 data geo <- fread(fgeo, header = T, sep = "\t") colnames(geo)[1] <- "symbol" setkey(geo, symbol) print("Loading Joehanes eQTL.") ceqtl <- fread(fciseqtl_joehanes, sep = ",") # get only cis eqtls defined in the paper ceqtl <- ceqtl[ceqtl$Is_Cis == 1] print(paste0("Loaded ", nrow(ceqtl), " cis-eQTL")) # trans eQTL teqtl <- fread(ftranseqtl_joehanes, sep = ",") print(paste0("Loaded ", nrow(teqtl), " trans-eQTL")) # load the bonder cis-eQTMs for cpg-gene validation eqtms <- fread(fbonder_eqtm, data.table = F) # ------------------------------------------------------------------------------ print("Loading cohort data.") # ------------------------------------------------------------------------------ kdata <- readRDS(fkora_data) ldata <- readRDS(flolipop_data) # remove (rare) all-NA cases. This can happen due to scaling of all-zero entities, # which can arise due to a very large number of cis-meQTLs which effects get # removed from the CpGs during data preprocessing. # NOTE: we could possibly handle this differently? Seems that these particular # cpgs are highly influenced by genetic effects? use <- apply(kdata,2,function(x) (sum(is.na(x)) / length(x)) < 1) kdata <- kdata[,use] use <- apply(ldata,2,function(x) (sum(is.na(x)) / length(x)) < 1) ldata <- ldata[,use] # load ranges ranges <- readRDS(franges) # ------------------------------------------------------------------------------ print("Loading GGM fits.") # ------------------------------------------------------------------------------ kfit <- readRDS(fkora_fit) lfit <- readRDS(flolipop_fit) fits <- list(kora = kfit, lolipop = lfit) # we get the according dataset on which to validate if ("lolipop" %in% cohort) { # ggm calculated on lolipop, validate on kora data_val <- kdata data_fit <- ldata cohort_val <- "kora" } else { # assume kora cohort, validate on lolipop data_val <- ldata data_fit <- kdata cohort_val <- "lolipop" } graph_types <- c("bdgraph", "bdgraph_no_priors", "genenet", "irafnet", "glasso", "glasso_no_priors", "genie3") # validate all graph models # NOTE: although we used multi-threading before, it seems that this results in # problems when integrating the GO enrichment (cryptic database disk image errors) # Therefore we only use one thread for now, but run a lot of distinct jobs, this # seems to do the trick valid <- mclapply(graph_types, function(graph_type) { print(paste0("Validating ", cohort, " fit for '", graph_type , "' graph fit.")) row <- c(sentinel = sentinel, cohort = cohort, graph_type = graph_type) # ---------------------------------------------------------------------------- print("Preparing fit.") # ---------------------------------------------------------------------------- graph <- fits[[cohort]][[graph_type]] # dnodes -> full set of possible nodes dnodes <- colnames(data_val) # ---------------------------------------------------------------------------- print("Getting basic stats (number nodes, number edges, graph density)") # ---------------------------------------------------------------------------- nn <- numNodes(graph) ne <- numEdges(graph) gd <- (ne * 2) / (nn * (nn - 1)) row <- c(row, number_nodes=nn, number_edges=ne, graph_density=gd) # ---------------------------------------------------------------------------- print("Getting cluster information") # ---------------------------------------------------------------------------- # get all clusters in the graph ig = igraph::graph_from_graphnel(graph) cl = clusters(ig) ncluster <- cl$no scluster <- paste(cl$csize, collapse = ",") # remember snp membership snp_cluster <- NA snp_cluster_size <- NA if (sentinel %in% names(cl$membership)) { snp_cluster <- cl$membership[sentinel] snp_cluster_size <- cl$csize[snp_cluster] } row <- c(row, cluster=ncluster, cluster_sizes=scluster, snp_cluster=unname(snp_cluster), snp_cluster_size=snp_cluster_size) # ---------------------------------------------------------------------------- print("Getting largest CC for validation.") # ---------------------------------------------------------------------------- keep <- cl$membership == which.max(cl$csize) keep <- names(cl$membership[keep]) if(!is.null(keep)) { graph_maxcluster <- graph::subGraph(keep, graph) } # the nodes retained in the fitted graph model in the largest CC gnodes <- graph::nodes(graph_maxcluster) # ---------------------------------------------------------------------------- print("Calculating graph score.") # ---------------------------------------------------------------------------- # we use the (full) igraph object for this, will be filtered for the sentinel # cluster score <- get_graph_score(ig, sentinel, ranges, gd) row <- c(row, graph_score = score) # ---------------------------------------------------------------------------- print("Defining entity sets (selected / not selected)") # ---------------------------------------------------------------------------- # get names of all entities, total and selected by ggm snp <- sentinel data_val[, snp] <- as.integer(as.character(data_val[, snp])) data_fit[, snp] <- as.integer(as.character(data_fit[, snp])) if(ranges$seed == "meqtl") { trans_entities <- intersect(dnodes, names(ranges$cpgs)) } else { trans_entities <- intersect(dnodes, ranges$trans_genes$SYMBOL) } trans_entities_selected <- trans_entities[trans_entities %in% gnodes] all_genes <- dnodes[!grepl("^rs|^cg", dnodes)] sgenes <- intersect(dnodes, ranges$snp_genes$SYMBOL) if (snp %in% gnodes) { sgenes_selected <- sgenes[sgenes %in% unlist(adj(graph_maxcluster, snp))] # only proceed if we have at least one selected snp gene and trans entity if(length(sgenes_selected) > 0 & length(trans_entities_selected) > 0) { # collection of 'real' selected SNP genes (with path to one of the trans # entities) temp_genes <- c() # check each snp gene individually for(sg in sgenes_selected) { # snp genes have to be connected to trans entities without traversing # the snp itself and must not go via another snp gene # -> create subgraph without those entities sg_other <- setdiff(sgenes_selected, sg) graph_temp <- subGraph(setdiff(gnodes, c(snp, sg_other)), graph_maxcluster) igraph_temp <- igraph::graph_from_graphnel(graph_temp) # get paths paths <- suppressWarnings(get.shortest.paths(igraph_temp, sg, intersect(V(igraph_temp)$name, trans_entities_selected)))$vpath[[1]] # did we find a path with the current SNP gene? temp_genes <- unique(c(temp_genes, intersect(sg, paths$name))) } sgenes_selected <- temp_genes } else { sgenes_selected <- c() } } else { sgenes_selected <- c() } # cpg genes and TFs cgenes <- intersect(dnodes, ranges$cpg_genes$SYMBOL) # TODO also check TF to cpg-gene association.. tfs <- intersect(dnodes, ranges$tfs$SYMBOL) if(ranges$seed == "meqtl") { # selected cpg genes and TFs if (length(trans_entities_selected) > 0) { cgenes_selected <- cgenes[cgenes %in% unlist(adj(graph_maxcluster, trans_entities_selected))] } else { cgenes_selected <- c() } } else { cgenes_selected <- c() } if(length(trans_entities_selected) > 0) { tfs_selected <- tfs[tfs %in% unlist(adj(graph_maxcluster, trans_entities_selected))] } else { tfs_selected <- c() } # the shortest path genes spath <- ranges$spath$SYMBOL spath_selected <- spath[spath %in% gnodes] # collection of non snp genes which got selected non_snp_genes_selected <- c(tfs_selected, spath_selected) if(ranges$seed == "meqtl") { non_snp_genes_selected <- c(non_snp_genes_selected, cgenes_selected) } else { non_snp_genes_selected <- c(non_snp_genes_selected, trans_entities_selected) } non_snp_genes_selected <- unique(non_snp_genes_selected) # add to row row <- c( row, snp_genes=length(sgenes), snp_genes_selected=length(sgenes_selected), snp_genes.list=paste(sgenes, collapse = ";"), snp_genes_selected.list=paste(sgenes_selected, collapse = ";"), trans_entities = length(trans_entities), trans_entities_selected = length(trans_entities_selected), cpg_genes=length(cgenes), cpg_genes_selected=length(cgenes_selected), tfs=length(tfs), tfs_selected=length(tfs_selected), spath=length(spath), spath_selected=length(spath_selected), non_snp_genes_selected.list=paste0(non_snp_genes_selected, collapse=";"), tfs_per_trans=length(tfs)/length(trans_entities), tfs_per_trans_selected=length(tfs_selected)/length(trans_entities_selected) ) # ------------------------------------------------------------------------------ print("Using MCC to check how well graph replicated across cohorts.") # ------------------------------------------------------------------------------ # get graph fit on other cohort graph_val <- fits[[cohort_val]][[graph_type]] replication <- get_graph_replication_f1_mcc(graph, graph_val) if (!is.null(replication)) { f1 <- replication$F1 mcc <- replication$MCC print(paste0("MCC: ", format(mcc, digits = 3))) print(paste0("F1: ", format(f1, digits = 3))) # the fraction of nodes retained in the overlap w.r.t. to the # total number of possible nodes common_nodes <- replication$number_common_nodes mcc_frac <- common_nodes / ncol(data_val) row <- c(row, cross_cohort_f1=f1, cross_cohort_mcc=mcc, cross_cohort_mcc_frac=mcc_frac, common_nodes=common_nodes) } else { row <- c(row, cross_cohort_f1=NA, cross_cohort_mcc=NA, cross_cohort_mcc_frac=NA, common_nodes=NA) } # ------------------------------------------------------------------------------ print("Checking mediation.") # ------------------------------------------------------------------------------ if ("kora" %in% cohort) { med_val <- readRDS(fmediation_lolipop) med_fit <- readRDS(fmediation_kora) } else { med_val <- readRDS(fmediation_kora) med_fit <- readRDS(fmediation_lolipop) } row <- c(row, mediation.summary(med_val, sgenes, sgenes_selected, mediation_cutoff)) # we also check the correspondence of the correlation values for all genes med_comparison <- compare_mediation_results( sentinel, med_val, med_fit, sgenes_selected, mediation_cutoff ) row <- c( row, med_comparison ) # ---------------------------------------------------------------------------- print("Validating cis-eQTLs.") # ---------------------------------------------------------------------------- # filter ceqtl to be only related to our sentinel SNP # TODO use proxy/high ld snps to increase ceqtl number? ceqtlsub <- ceqtl[ceqtl$Rs_ID %in% snp] if (nrow(ceqtlsub) < 1) { warning("Sentinel " %+% sentinel %+% " not found in cis-eQTL data") # report NA in stats file row <- c(row, cisEqtl=NA) } else { ceqtl_sgenes <- sgenes[sgenes %in% unlist(strsplit(ceqtlsub$Transcript_GeneSymbol, "\\|"))] ceqtl_sgenes_selected <- intersect(ceqtl_sgenes, sgenes_selected) # create matrix for fisher test cont <- matrix( c( length(ceqtl_sgenes), length(ceqtl_sgenes_selected), length(sgenes), length(sgenes_selected) ), nrow = 2, ncol = 2, byrow = T ) rownames(cont) <- c("ceqtl", "no ceqtl") colnames(cont) <- c("not selected", "selected") row <- c(row, cisEqtl=fisher.test(cont)$p.value) } # ---------------------------------------------------------------------------- print("CpG-gene and TF-CpG validation.") # ---------------------------------------------------------------------------- # filter teqtl to be only related to our sentinel SNP # TODO use proxy/high ld snps to increase teqtl number? teqtlsub <- teqtl[teqtl$Rs_ID %in% snp]# & (teqtl$log10FDR) < (-2),,drop=F] if (nrow(teqtlsub) < 1) { warning("Sentinel " %+% sentinel %+% " not available in trans-eQTL data.") # report NA in stats file row <- c(row, transEqtl_tgenes=NA, transEqtl_tfs=NA) } else { if(ranges$seed == "meqtl") { row <- c(row, validate_trans_genes(teqtlsub, cgenes, tfs, cgenes_selected, tfs_selected)) } else { row <- c(row, validate_trans_genes(teqtlsub, trans_entities, tfs, trans_entities_selected, tfs_selected)) } } # we can also count how many of the identified cpg # genes are eQTMs in the bonder dataset # first convert bonder ensembl ids to symbols # (bonder results already filtered for sign. assoc.) bnd <- eqtms[, c("SNPName", "HGNCName")] bnd_symbol <- unique(bnd$HGNCName) row <- c(row, validate_cpggenes(bnd_symbol, cgenes, cgenes_selected)) # ---------------------------------------------------------------------------- print("Gene-Gene validation.") # ---------------------------------------------------------------------------- # load geo whole blood expression data geo_sym <- all_genes[all_genes %in% geo$symbol] geosub <- geo[geo_sym] geosub <- t(geosub[, -1, with = F]) colnames(geosub) <- geo_sym # list of all expr datasets expr.data <- list(geo = geosub, cohort = data_val[, all_genes, drop = F]) val_g2g <- validate_gene2gene(expr.data, graph_maxcluster, all_genes) names(val_g2g) <- c("geo_gene_gene", "cohort_gene_gene") row <- c(row, val_g2g) return(row) }, mc.cores=threads) # write output file valid <- do.call(rbind, valid) if(is.null(dim(valid)) || ncol(valid) < 2) { stop("Error: wrong result dimensions.") } write.table(file=fout, valid, col.names=T, row.names=F, quote=F, sep="\t") # ------------------------------------------------------------------------------ print("SessionInfo:") # ------------------------------------------------------------------------------ sessionInfo() sink() sink(type="message") |
data / bioconductor
illuminaHumanv3.db
Illumina HumanHT12v3 annotation data (chip illuminaHumanv3): Illumina HumanHT12v3 annotation data (chip illuminaHumanv3) assembled using data from public repositories