Workflow Steps and Code Snippets
18 tagged steps and code snippets that match keyword org.Hs.eg.db
Easy Copy Number Analysis (EaCoN) Pipeline
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 | renv::activate() library(EaCoN) library(data.table) library(qs) library(GenomicRanges) library(TxDb.Hsapiens.UCSC.hg19.knownGene) library(org.Hs.eg.db) library(BiocParallel) library(RaggedExperiment) # -- 0.2 Parse snakemake parameters input <- snakemake@input params <- snakemake@params output <- snakemake@output # -- 0.3 Load utity functions source(file.path("scripts", "utils.R")) # -- 1. Load the optimal gamma for each sample best_fits <- fread(input[[1]]) # -- 2. Find the .RDS files associated with the best fits best_fit_files <- Map( function(x, y) grep(pattern=y, list.files(x, recursive=TRUE, full.names=TRUE), value=TRUE), x=file.path(params$out_dir, best_fits$sample_name), y=paste0(".*gamma", sprintf("%.2f", best_fits$gamma), "/.*RDS$") ) l2r_files <- Map( function(x, y) grep(pattern=y, list.files(x, recursive=TRUE, full.names=TRUE), value=TRUE), x=file.path(params$out_dir, best_fits$sample_name), y=".*L2R/.*RDS$" ) # -- 3. Load the best fit ASCN and L2R data and build GRanges objects .build_granges_from_cnv <- function(ascn, l2r) { ascn_data <- readRDS(ascn) l2r_data <- readRDS(l2r) buildGRangesFromASCNAndL2R(ascn_data, l2r_data) } BPPARAM <- BiocParallel::bpparam() BiocParallel::bpworkers(BPPARAM) <- params$nthreads gr_list <- BiocParallel::bpmapply(.build_granges_from_cnv, best_fit_files, l2r_files, SIMPLIFY=FALSE, USE.NAMES=TRUE, BPPARAM=BPPARAM ) # removing directory paths names(gr_list) <- basename(names(gr_list)) # -- 4. Construct a RaggedExperiment object ragged_exp <- as(GRangesList(gr_list), "RaggedExperiment") # include annotated bins to summarize the RaggedExperiment with txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene genome_bins <- binReferenceGenome() annotated_bins <- annotateGRangesWithTxDB(genome_bins, txdb=txdb) # include annotated genes to summarized RaggedExperiment with gene_granges <- genes(txdb) annotated_genes <- annotateGRangesWithTxDB(gene_granges, txdb=txdb) metadata(ragged_exp) <- list( annotated_genome_bins=annotated_bins, annotated_genes=annotated_genes, simplifyReduce=function(scores, ranges, qranges) { if (is.numeric(scores)) { x <- mean(scores, na.rm=TRUE) } else { count_list <- as.list(table(scores)) x <- paste0( paste0(names(count_list), ":", unlist(count_list)), collapse="," ) } return(x) } ) # -- Save files to disk qsave(ragged_exp, file=output[[1]], nthreads=params$nthread) |
cluster_rnaseq: RNA-seq pipeline.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 | log <- file(snakemake@log[[1]], open = "wt") sink(log) sink(log, type = "message") suppressMessages(library("DESeq2")) suppressMessages(library("openxlsx")) suppressMessages(library("org.Hs.eg.db")) suppressMessages(library("AnnotationDbi")) ## PARALLELIZATION ## parallel <- FALSE if (snakemake@threads > 1) { suppressMessages(library("BiocParallel")) register(MulticoreParam(snakemake@threads)) parallel <- TRUE } ## SNAKEMAKE I/O ## dds <- snakemake@input[["dds"]] ## SNAKEMAKE PARAMS ## condition <- snakemake@params[["condition"]] levels <- snakemake@params[["levels"]] ## CODE ## # Get dds dds <- readRDS(dds) # Get results res <- results(dds, contrast = c(condition, levels), alpha=0.05, parallel = parallel) # Annotate the GeneSymbol and complete GeneName from the ENSEMBL Gene ID. ensg_res <- rownames(res) ensemblGene_DEA <- gsub("\\.[0-9]*$", "", ensg_res) ensg_symbol <- as.data.frame(mapIds(org.Hs.eg.db, keys = ensemblGene_DEA, column = "SYMBOL", keytype = "ENSEMBL")) colnames(ensg_symbol) <- "GeneSymbol" ensg_genename <- as.data.frame(mapIds(org.Hs.eg.db, keys = ensemblGene_DEA, column = "GENENAME", keytype = "ENSEMBL")) colnames(ensg_genename) <- "GeneName" annot <- merge(ensg_symbol, ensg_genename, by = "row.names", all = TRUE) rownames(res) <- ensemblGene_DEA res <- merge(as.data.frame(res), annot, by.x = "row.names", by.y = 1, all = TRUE) ENSG_res_list <- as.list(ensg_res) names(ENSG_res_list) <- ensemblGene_DEA rownames(res) <- ENSG_res_list[res$Row.names] col_order <- c("GeneSymbol", "GeneName", "baseMean", "log2FoldChange", "lfcSE", "stat", "pvalue", "padj") res <- res[, col_order] # Sort by adjusted p-value res <- res[order(res$padj, decreasing = FALSE), ] # Save tsv write.table(res, file = snakemake@output[["tsv"]], sep = "\t", quote = FALSE, col.names = NA) # Add Name column res$EnsemblGeneID <- rownames(res) res <- res[c("EnsemblGeneID", colnames(res)[1:(ncol(res)-1)])] # Green and red styles for formatting excel redStyle <- createStyle(fontColour = "#FF1F00", bgFill = "#F6F600") redPlainStyle <- createStyle(fontColour = "#FF1F00") greenStyle <- createStyle(fontColour = "#008000", bgFill = "#F6F600") greenPlainStyle <- createStyle(fontColour = "#008000") boldStyle <- createStyle(textDecoration = c("BOLD")) # Excel file wb <- createWorkbook() sheet <- "Sheet1" addWorksheet(wb, sheet) # Legend legend <- t(data.frame(paste("Upregulated in", levels[1]), paste("Downregulated in", levels[1]), "FDR=0.05")) writeData(wb, sheet, legend[, 1]) addStyle(wb, sheet, cols = 1, rows = 1, style = createStyle(fontColour = "#FF1F00", fgFill = "#F6F600")) addStyle(wb, sheet, cols = 1, rows = 2, style = createStyle(fontColour = "#008000", fgFill = "#F6F600")) addStyle(wb, sheet, cols = 1, rows = 3, style = boldStyle) invisible(sapply(1:3, function(i) mergeCells(wb, sheet, cols = 1:3, rows = i))) # Reorder genes according to adjusted p-value writeData(wb, sheet, res, startRow = 6) addStyle(wb, sheet, cols = 1:ncol(res), rows = 6, style = boldStyle, gridExpand = TRUE) conditionalFormatting(wb, sheet, cols = 1:ncol(res), rows = 7:(nrow(res)+6), rule = "AND($E7>0, $I7<0.05, NOT(ISBLANK($I7)))", style = redStyle) conditionalFormatting(wb, sheet, cols = 1:ncol(res), rows = 7:(nrow(res)+6), rule = "AND($E7>0, OR($I7>0.05, ISBLANK($I7)))", style = redPlainStyle) conditionalFormatting(wb, sheet, cols = 1:ncol(res), rows = 7:(nrow(res)+6), rule = "AND($E7<0, $I7<0.05, NOT(ISBLANK($I7)))", style = greenStyle) conditionalFormatting(wb, sheet, cols = 1:ncol(res), rows = 7:(nrow(res)+6), rule = "AND($E7<0, OR($I7>0.05, ISBLANK($I7)))", style = greenPlainStyle) setColWidths(wb, sheet, 1:ncol(res), widths = 13) # Save excel saveWorkbook(wb, file = snakemake@output[["xlsx"]], overwrite = TRUE) # GET SHRUNKEN LOG FOLD CHANGES. coef <- paste0(c(condition, levels[1], "vs", levels[2]), collapse = "_") res_shrink <- lfcShrink(dds, coef=coef, type="apeglm") # Annotate the GeneSymbol and complete GeneName from the ENSEMBL Gene ID. ensg_res <- rownames(res_shrink) ensemblGene_DEA <- gsub("\\.[0-9]*$", "", ensg_res) ensg_symbol <- as.data.frame(mapIds(org.Hs.eg.db, keys = ensemblGene_DEA, column = "SYMBOL", keytype = "ENSEMBL")) colnames(ensg_symbol) <- "GeneSymbol" ensg_genename <- as.data.frame(mapIds(org.Hs.eg.db, keys = ensemblGene_DEA, column = "GENENAME", keytype = "ENSEMBL")) colnames(ensg_genename) <- "GeneName" annot <- merge(ensg_symbol, ensg_genename, by = "row.names", all = TRUE) rownames(res_shrink) <- ensemblGene_DEA res_shrink <- merge(as.data.frame(res_shrink), annot, by.x = "row.names", by.y = 1, all = TRUE) ENSG_res_list <- as.list(ensg_res) names(ENSG_res_list) <- ensemblGene_DEA rownames(res_shrink) <- ENSG_res_list[res_shrink$Row.names] col_order <- c("GeneSymbol", "GeneName", "baseMean", "log2FoldChange", "lfcSE", "pvalue", "padj") res_shrink <- res_shrink[, col_order] # Sort by adjusted p-value res_shrink <- res_shrink[order(res_shrink$padj, decreasing = FALSE), ] # Save tsv write.table(res_shrink, file = snakemake@output[["tsv_lfcShrink"]], sep = "\t", quote = FALSE, col.names = NA) # Add Name column res_shrink$EnsemblGeneID <- rownames(res_shrink) res_shrink <- res_shrink[c("EnsemblGeneID", colnames(res_shrink)[1:(ncol(res_shrink)-1)])] # Green and red styles for formatting excel redStyle <- createStyle(fontColour = "#FF1F00", bgFill = "#F6F600") redPlainStyle <- createStyle(fontColour = "#FF1F00") greenStyle <- createStyle(fontColour = "#008000", bgFill = "#F6F600") greenPlainStyle <- createStyle(fontColour = "#008000") boldStyle <- createStyle(textDecoration = c("BOLD")) # Excel file wb <- createWorkbook() sheet <- "Sheet1" addWorksheet(wb, sheet) # Legend legend <- t(data.frame(paste("Upregulated in", levels[1]), paste("Downregulated in", levels[1]), "FDR=0.05")) writeData(wb, sheet, legend[, 1]) addStyle(wb, sheet, cols = 1, rows = 1, style = createStyle(fontColour = "#FF1F00", fgFill = "#F6F600")) addStyle(wb, sheet, cols = 1, rows = 2, style = createStyle(fontColour = "#008000", fgFill = "#F6F600")) addStyle(wb, sheet, cols = 1, rows = 3, style = boldStyle) invisible(sapply(1:3, function(i) mergeCells(wb, sheet, cols = 1:3, rows = i))) # Reorder genes according to adjusted p-value writeData(wb, sheet, res_shrink, startRow = 6) addStyle(wb, sheet, cols = 1:ncol(res_shrink), rows = 6, style = boldStyle, gridExpand = TRUE) conditionalFormatting(wb, sheet, cols = 1:ncol(res_shrink), rows = 7:(nrow(res_shrink)+6), rule = "AND($E7>0, $H7<0.05, NOT(ISBLANK($H7)))", style = redStyle) conditionalFormatting(wb, sheet, cols = 1:ncol(res_shrink), rows = 7:(nrow(res_shrink)+6), rule = "AND($E7>0, OR($H7>0.05, ISBLANK($H7)))", style = redPlainStyle) conditionalFormatting(wb, sheet, cols = 1:ncol(res_shrink), rows = 7:(nrow(res_shrink)+6), rule = "AND($E7<0, $H7<0.05, NOT(ISBLANK($H7)))", style = greenStyle) conditionalFormatting(wb, sheet, cols = 1:ncol(res_shrink), rows = 7:(nrow(res_shrink)+6), rule = "AND($E7<0, OR($H7>0.05, ISBLANK($H7)))", style = greenPlainStyle) setColWidths(wb, sheet, 1:ncol(res_shrink), widths = 13) # Save excel saveWorkbook(wb, file = snakemake@output[["xlsx_lfcShrink"]], overwrite = TRUE) |
A pipeline to connect GWAS Variant-to-Gene-to-Program (V2G2P) Approach
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 | library(conflicted) conflict_prefer("combine", "dplyr") conflict_prefer("select","dplyr") # multiple packages have select(), prioritize dplyr conflict_prefer("melt", "reshape2") conflict_prefer("slice", "dplyr") conflict_prefer("Position", "ggplot2") conflict_prefer("first", "dplyr") conflict_prefer("select","dplyr") # multiple packages have select(), prioritize dplyr conflict_prefer("melt", "reshape2") conflict_prefer("slice", "dplyr") conflict_prefer("summarize", "dplyr") conflict_prefer("filter", "dplyr") conflict_prefer("list", "base") conflict_prefer("desc", "dplyr") conflict_prefer("rename", "dplyr") suppressPackageStartupMessages({ library(optparse) library(dplyr) library(tidyr) library(reshape2) library(ggplot2) library(ggpubr) ## ggarrange library(gplots) ## heatmap.2 library(ggrepel) library(readxl) library(xlsx) ## might not need this package library(writexl) library(org.Hs.eg.db) }) option.list <- list( make_option("--sampleName", type="character", default="2kG.library", help="Name of the sample"), make_option("--outdir", type="character", default="/oak/stanford/groups/engreitz/Users/kangh/TeloHAEC_Perturb-seq_2kG/211206_ctrl_only_snakemake/analysis/all_genes/2kG.library.ctrl.only/K25/threshold_0_2/", help="Output directory"), make_option("--scratch.outdir", type="character", default="", help="Scratch space for temporary files"), make_option("--K.val", type="numeric", default=60, help="K value to analyze"), make_option("--density.thr", type="character", default="0.2", help="concensus cluster threshold, 2 for no filtering"), ## make_option("--cell.count.thr", type="numeric", default=2, help="filter threshold for number of cells per guide (greater than the input number)"), ## make_option("--guide.count.thr", type="numeric", default=1, help="filter threshold for number of guide per perturbation (greater than the input number)"), make_option("--perturbSeq", type="logical", default=TRUE, help="Whether this is a Perturb-seq experiment") ) opt <- parse_args(OptionParser(option_list=option.list)) ## ## K562 gwps 2k overdispersed genes ## ## opt$figdir <- "/oak/stanford/groups/engreitz/Users/kangh/TeloHAEC_Perturb-seq_2kG/230104_snakemake_WeissmanLabData/figures/top2000VariableGenes/WeissmanK562gwps/K90/" ## opt$outdir <- "/oak/stanford/groups/engreitz/Users/kangh/TeloHAEC_Perturb-seq_2kG/230104_snakemake_WeissmanLabData/analysis/top2000VariableGenes/WeissmanK562gwps/K90/threshold_0_2/" ## opt$K.val <- 90 ## opt$sampleName <- "WeissmanK562gwps" ## opt$perturbSeq <- TRUE ## opt$scratch.outdir <- "/scratch/groups/engreitz/Users/kangh/Perturb-seq_CAD/230104_snakemake_WeissmanLabData/top2000VariableGenes/K90/analysis/comprehensive_program_summary/" ## opt$barcodeDir <- "/oak/stanford/groups/engreitz/Users/kangh/TeloHAEC_Perturb-seq_2kG/230104_snakemake_WeissmanLabData/data/K562_gwps_raw_singlecell_01_metadata.txt" ## OUTDIR <- "/oak/stanford/groups/engreitz/Users/kangh/TeloHAEC_Perturb-seq_2kG/220316_regulator_topic_definition_table/outputs/" ## FIGDIR <- "/oak/stanford/groups/engreitz/Users/kangh/TeloHAEC_Perturb-seq_2kG/220316_regulator_topic_definition_table/figures/" ## SCRATCHOUTDIR <- "/scratch/groups/engreitz/Users/kangh/TeloHAEC_Perturb-seq_2kG/220316_regulator_topic_definition_table/outputs/" OUTDIR <- opt$outdir SCRATCHOUTDIR <- opt$scratch.outidr check.dir <- c(OUTDIR, SCRATCHOUTDIR) invisible(lapply(check.dir, function(x) { if(!dir.exists(x)) dir.create(x, recursive=T) })) mytheme <- theme_classic() + theme(axis.text = element_text(size = 12), axis.title = element_text(size = 16), plot.title = element_text(hjust = 0.5, face = "bold")) palette = colorRampPalette(c("#38b4f7", "white", "red"))(n = 100) ## parameters ## OUTDIRSAMPLE <- "/oak/stanford/groups/engreitz/Users/kangh/TeloHAEC_Perturb-seq_2kG/210707_snakemake_maxParallel/analysis/2kG.library/all_genes/2kG.library/K60/threshold_0_2/" OUTDIRSAMPLE <- opt$outdir k <- opt$K.val SAMPLE <- opt$sampleName DENSITY.THRESHOLD <- gsub("\\.","_", opt$density.thr) ## SUBSCRIPT=paste0("k_", k,".dt_",DENSITY.THRESHOLD,".minGuidePerPtb_",opt$guide.count.thr,".minCellPerGuide_", opt$cell.count.thr) SUBSCRIPT.SHORT=paste0("k_", k, ".dt_", DENSITY.THRESHOLD) ## ## load ref table (for Perturbation distance to GWAS loci annotation in Perturb_plus column) ## ref.table <- read.delim(file="/oak/stanford/groups/engreitz/Users/kangh/TeloHAEC_Perturb-seq_2kG/data/ref.table.txt", header=T, check.names=F, stringsAsFactors=F) ## ## load test results ## all.test.combined.df <- read.delim(paste0("/oak/stanford/groups/engreitz/Users/kangh/TeloHAEC_Perturb-seq_2kG/220312_compare_statistical_test/outputs/all.test.combined.df.txt"), stringsAsFactors=F) ## all.test.MAST.df <- all.test.combined.df %>% subset(test.type == "batch.correction") ## MAST.df.4n.input <- read.delim(paste0("/oak/stanford/groups/engreitz/Users/kangh/TeloHAEC_Perturb-seq_2kG/220217_MAST/2kG.library4n3.99x_MAST.txt"), stringsAsFactors=F, check.names=F) ## MAST.df.4n <- MAST.df.4n.input %>% ## remove multiTarget entries ## subset(!grepl("multiTarget", perturbation)) %>% ## group_by(zlm.model.name) %>% ## mutate(fdr.across.ptb = p.adjust(`Pr(>Chisq)`, method="fdr")) %>% ## ungroup() %>% ## subset(zlm.model.name == "batch.correction") %>% ## select(-zlm.model.name) %>% ## as.data.frame ## colnames(MAST.df.4n) <- c("Topic", "p.value", "log2FC", "log2FC.ci.hi", "log2fc.ci.lo", "fdr", "Perturbation", "fdr.across.ptb") ## Load Regulator Data if(opt$perturbSeq) { MAST.file.name <- paste0(OUTDIR, "/", SAMPLE, "_MAST_DEtopics.txt") message(paste0("loading ", MAST.file.name)) MAST.df <- read.delim(MAST.file.name, stringsAsFactors=F, check.names=F) %>% rename("Perturbation" = "perturbation") %>% rename("log2FC" = "coef", "log2FC.ci.hi" = ci.hi, "log2FC.ci.lo" = ci.lo, "p.value" = "Pr(>Chisq)") if(grepl("topic", MAST.df$primerid) %>% sum > 0) MAST.df <- MAST.df %>% mutate(ProgramID = paste0("K", k, "_", gsub("topic_", "", primerid))) %>% as.data.frame } ## ## 2n MAST ## file.name <- paste0("/oak/stanford/groups/engreitz/Users/kangh/TeloHAEC_Perturb-seq_2kG/211116_snakemake_dup4_cells/analysis/all_genes//Perturb_2kG_dup4/acrossK/aggregated.outputs.findK.perturb-seq.RData") ## load(file.name) ## MAST.df.2n <- MAST.df %>% ## filter(K == 60) %>% ## select(-K) %>% ## select(-zlm.model.name) ## colnames(MAST.df.2n) <- c("Topic", "p.value", "log2FC", "log2FC.ci.hi", "log2fc.ci.lo", "fdr", "Perturbation", "fdr.across.ptb") ## load gene annotations (Refseq + Uniprot) gene.summaries.path <- "/oak/stanford/groups/engreitz/Users/kangh/TeloHAEC_Perturb-seq_2kG/data/combined.gene.summaries.txt" gene.summary <- read.delim(gene.summaries.path, stringsAsFactors=F) ## load topic model results cNMF.result.file <- paste0(OUTDIRSAMPLE,"/cNMF_results.",SUBSCRIPT.SHORT, ".RData") print(cNMF.result.file) if(file.exists(cNMF.result.file)) { print("loading cNMF result file") load(cNMF.result.file) } ## modify theta.zscore if Gene is in ENSGID db <- ifelse(grepl("mouse", SAMPLE), "org.Mm.eg.db", "org.Hs.eg.db") gene.ary <- theta.zscore %>% rownames if(grepl("^ENSG", gene.ary) %>% as.numeric %>% sum == nrow(theta.zscore)) { GeneSymbol.ary <- mapIds(get(db), keys=gene.ary, keytype = "ENSEMBL", column = "SYMBOL") GeneSymbol.ary[is.na(GeneSymbol.ary)] <- row.names(theta.zscore)[is.na(GeneSymbol.ary)] rownames(theta.zscore) <- GeneSymbol.ary } ## omega.4n <- omega ## theta.zscore.4n <- theta.zscore ## theta.raw.4n <- theta.raw meta_data <- read.delim(opt$barcodeDir, stringsAsFactors=F) ## ## batch topics ## batch.topics.4n <- read.delim(file=paste0(OUTDIRSAMPLE, "/batch.topics.txt"), stringsAsFactors=F) %>% as.matrix %>% as.character ann.omega <- merge(meta_data, omega, by.x="CBC", by.y=0, all.T) ########################################################################################## ## create table create_topic_definition_table <- function(theta.zscore, t) { out <- theta.zscore[,t] %>% as.data.frame %>% `colnames<-`(c("zscore")) %>% mutate(Perturbation = rownames(theta.zscore), .before="zscore") %>% merge(gene.summary, by.x="Perturbation", by.y="Gene", all.x=T) %>% arrange(desc(zscore)) %>% mutate(Rank = 1:n(), .before="Perturbation") %>% mutate(ProgramID = paste0("K", k, "_", t), .before="zscore") %>% arrange(Rank) %>% mutate(My_summary = "", .after = "zscore") %>% select(Rank, ProgramID, Perturbation, zscore, My_summary, FullName, Summary) } create_topic_regulator_table <- function(all.test, program.here, fdr.thr = 0.1) { out <- MAST.df %>% subset(ProgramID == program.here & fdr.across.ptb < fdr.thr) %>% select(Perturbation, fdr.across.ptb, log2FC, log2FC.ci.hi, log2FC.ci.lo, fdr, p.value) %>% merge(gene.summary, by.x="Perturbation", by.y="Gene", all.x=T) %>% arrange(fdr.across.ptb, desc(log2FC)) %>% mutate(Rank = 1:n(), .before="Perturbation") %>% mutate(My_summary = "", .after="Perturbation") %>% mutate(ProgramID = program.here, .after="Rank") %>% ## merge(., ref.table %>% select("Symbol", "TSS.dist.to.SNP", "GWAS.classification"), by.x="Perturbation", by.y="Symbol", all.x=T) %>% ## mutate(EC_ctrl_text = ifelse(.$GWAS.classification == "EC_ctrls", "(+)", "")) %>% ## mutate(GWAS.class.text = ifelse(grepl("CAD", GWAS.classification), paste0("_", floor(TSS.dist.to.SNP/1000),"kb"), ## ifelse(grepl("IBD", GWAS.classification), paste0("_", floor(TSS.dist.to.SNP/1000),"kb_IBD"), ""))) %>% ## mutate(Perturb_plus = paste0(Perturbation, GWAS.class.text, EC_ctrl_text)) %>% select(Rank, ProgramID, Perturbation, fdr.across.ptb, log2FC, My_summary, FullName, Summary, log2FC.ci.hi, log2FC.ci.lo, fdr, p.value) %>% ## removed Perturb_plus arrange(Rank) } create_summary_table <- function(ann.omega, theta.zscore, all.test, meta_data) { df.list <- vector("list", k) for (t in 1:k) { program.here <- paste0("K", k, "_", t) ## topic defining genes ann.theta.zscore <- theta.zscore %>% create_topic_definition_table(t) ann.top.theta.zscore <- ann.theta.zscore %>% subset(Rank <= 100) ## select the top 100 topic defining genes to output ## regulators if(opt$perturbSeq) regulator.MAST.df <- all.test %>% create_topic_regulator_table(program.here, 0.3) ## write table to scratch dir file.name <- paste0(SCRATCHOUTDIR, program.here, "_table.csv") sink(file=file.name) ## open the document ## cat("Author,PERTURBATIONS SUMMARIES\n\"\n\"\n\"\n\"\n\"\n\"\n\"\n\n\n\nAuthor,TOPIC SUMMARIES\n\"\n\"\n\"\n\"\n\"\n\"\n\"\n\nAuthor,TESTABLE HYPOTHESIS IDEAS:\n\"\n\"\n\"\n\"\n\"\n\"\n\"\n\nAuthor,OTHER THOUGHTS:\n\"\n\"\n\"\n\"\n\"\n\"\n\"\n\nTOPIC DEFINING GENES (TOP 100),\n") ## headers cat("Author,PERTURBATIONS SUMMARIES,,,,,,,,,,,\n\"\n\"\n\"\n\"\n\"\n\"\n\"\n\"\nAuthor,TOPIC SUMMARIES\n\"\n\"\n\"\n\"\n\"\n\"\n\"\n\"\nAuthor,TESTABLE HYPOTHESIS IDEAS:\n\"\n\"\n\"\n\"\n\"\n\"\n\"\n\"\nAuthor,OTHER THOUGHTS:\n\"\n\"\n\"\n\"\n\"\n\"\n\"\n\"\n\nTOPIC DEFINING GENES (TOP 100),\n") ## headers write.csv(ann.top.theta.zscore, row.names=F) ## topic defining genes cat("\n\"\n\"\nPERTURBATIONS REGULATING TOPIC AT FDR < 0.3 (most significant on top),,,,,,,,,,,\n") ## headers if(opt$perturbSeq) write.csv(regulator.MAST.df, row.names=F) ## regulators sink() ## close the document ## read the assembled table to save to list df.list[[t]] <- read.delim(file.name, stringsAsFactors=F, check.names=F, sep=",") } ## output to xlsx names(df.list) <- paste0("Program ", 1:k) write_xlsx(df.list, paste0(OUTDIR, "/", SAMPLE, "_k_", k, ".dt_", DENSITY.THRESHOLD, "_ComprehensiveProgramSummary.xlsx")) return(df.list) } if(opt$perturbSeq == "F") MAST.df <- data.frame() df <- create_summary_table(ann.omega, theta.zscore, MAST.df, meta_data) |
A Snakemake based modular Workflow that facilitates RNA-Seq analyses with a special focus on splicing
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | library("BiocParallel") # Load data library("tximeta") # Import transcript quantification data from Salmon library("tximport") # Import transcript-level quantification data from Kaleidoscope, Sailfish, Salmon, Kallisto, RSEM, featureCounts, and HTSeq library("rhdf5") library("SummarizedExperiment") library("magrittr") # Pipe operator library("DESeq2") # Differential gene expression analysis # Plotting libraries library("pheatmap") library("RColorBrewer") library("ggplot2") # Mixed library("PoiClaClu") library("glmpca") library("apeglm") library("genefilter") library("AnnotationDbi") library("org.Hs.eg.db") # ---------------- Loading read/fragment quantification data from Salmon output ---------------- load_in_salmon_generated_counts <- function(annotation_table_file) { # ----------------- 1. Load annotation ----------------- # Columns: 1. names, 2. files, 3. condition, 4. additional information annotation_table <- read.csv(file=annotation_table_file, sep="\t") annotation_data <- data.frame( names=annotation_table[,"sample_name"], files=file.path(annotation_table[,"salmon_results_file"]), condition=annotation_table[,"condition"], add_info=annotation_table[,"additional_comment"] ) # Replace None in condition column with "Control" annotation_data$condition[annotation_data$condition=="None"] <- "Control" annotation_data$condition[annotation_data$condition==""] <- "Control" # ----------------- 2. Load into Bioconductor experiment objects ----------------- # Summarized experiment: Imports quantifications & metadata from all samples -> Each row is a transcript se <- tximeta(annotation_data) # Summarize transcript-level quantifications to the gene level -> reduces row number: Each row is a gene # Includes 3 matrices: # 1. counts: Estimated fragment counts per gene & sample # 2. abundance: Estimated transcript abundance in TPM # 3. length: Effective Length of each gene (including biases as well as transcript usage) gse <- summarizeToGene(se) # ----------------- 3. Load experiments into DESeq2 object ----------------- # SummarizedExperiment # assayNames(gse) # Get all assays -> counts, abundance, length, ... # head(assay(gse), 3) # Get count results for first 3 genes # colSums(assay(gse)) # Compute sums of mapped fragments # rowRanges(gse) # Print rowRanges: Ranges of individual genes # seqinfo(rowRanges(gse)) # Metadata of sequences (chromosomes in our case) gse$condition <- as.factor(gse$condition) gse$add_info <- as.factor(gse$add_info) # Use relevel to make sure untreated is listed first gse$condition %<>% relevel("Control") # Concise way of saying: gse$condition <- relevel(gse$condition, "Control") # Construct DESeqDataSet from gse if (gse$add_info %>% unique %>% length >1) { # Add info column with more than 1 unique value print("More than 1 unique value in add_info column") # TODO Need to make sure to avoid: # the model matrix is not full rank, so the model cannot be fit as specified. # One or more variables or interaction terms in the design formula are linear # combinations of the others and must be removed. # dds <- DESeqDataSet(gse, design = ~condition + add_info) print("However, simple DESeq2 analysis will be performed without add_info column") dds <- DESeqDataSet(gse, design = ~condition) } else { print("Only 1 unique value in add_info column") dds <- DESeqDataSet(gse, design = ~condition) } return(dds) } # ---------------- Loading read/fragment quantification data from RSEM output ---------------- load_in_rsem_generated_counts <- function(annotation_table_file) { # ----------------- 1. Load annotation ----------------- annotation_table <- read.csv(file=annotation_table_file, sep="\t") files <- file.path(annotation_table[,"rsem_results_file"]) # For sample.genes.results: txIn= FALSE & txOut= FALSE # For sample.isoforms.results: txIn= TRUE & txOut= TRUE # Check: https://bioconductor.org/packages/devel/bioc/vignettes/tximport/inst/doc/tximport.html txi.rsem <- tximport(files, type = "rsem", txIn = FALSE, txOut = FALSE) annotation_data <- data.frame(condition=factor(annotation_table[,"condition"]), add_info=factor(annotation_table[,"additional_comment"]) ) rownames(annotation_data) <- annotation_table[,"sample_name"] # Construct DESeqDataSet from tximport if (annotation_data$add_info %>% unique %>% length >1) { # Add info column with more than 1 unique value # dds <- DESeqDataSetFromTximport(txi.rsem, annotation_data, ~condition + add_info) dds <- DESeqDataSetFromTximport(txi.rsem, annotation_data, ~condition) } else { dds <- DESeqDataSetFromTximport(txi.rsem, annotation_data, ~condition) } return(dds) } load_in_kallisto_generated_counts <- function(annotation_table_file) { # ----------------- 1. Load annotation ----------------- annotation_table <- read.csv(file=annotation_table_file, sep="\t") files <- file.path(annotation_table[,"kallisto_results_file"]) txi.kallisto <- tximport(files, type = "kallisto", txOut = TRUE) annotation_data <- data.frame(condition=factor(annotation_table[,"condition"]), add_info=factor(annotation_table[,"additional_comment"]) ) rownames(annotation_data) <- annotation_table[,"sample_name"] # Construct DESeqDataSet from tximport if (annotation_data$add_info %>% unique %>% length >1) { # Add info column with more than 1 unique value # dds <- DESeqDataSetFromTximport(txi.kallisto, annotation_data, ~condition + add_info) dds <- DESeqDataSetFromTximport(txi.kallisto, annotation_data, ~condition) } else { dds <- DESeqDataSetFromTximport(txi.kallisto, annotation_data, ~condition) } return(dds) } # ----------------- Main function ----------------- main_function <- function(){ threads <- snakemake@threads[[1]] register(MulticoreParam(workers=threads)) # Snakemake variables annotation_table_file <- snakemake@input[["annotation_table_file"]] output_file <- snakemake@output[["deseq_dataset_r_obj"]] count_algorithm <- snakemake@params[["count_algorithm"]] # Load annotation table & Salmon data into a DESeq2 object if (count_algorithm == "salmon") { dds <- load_in_salmon_generated_counts(annotation_table_file) } else if (count_algorithm == "kallisto") { dds <- load_in_kallisto_generated_counts(annotation_table_file) } else if (count_algorithm == "rsem") { dds <- load_in_rsem_generated_counts(annotation_table_file) } else { stop("Count algorithm not supported!") } # Remove rows that have no or nearly no information about the amount of gene expression print(paste(c("Number of rows before filtering out counts with values <1", nrow(dds)))) keep <- rowSums(counts(dds)) > 1 # Counts have to be greater than 1 dds <- dds[keep,] print(paste(c("Number of rows after filtering out counts with values <1", nrow(dds)))) # Save deseq dataset object saveRDS(dds, output_file) } # ----------------- Run main function ----------------- main_function() |
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 | library("BiocParallel") # Load data library("tximeta") # Import transcript quantification data from Salmon library("tximport") # Import transcript-level quantification data from Kaleidoscope, Sailfish, Salmon, Kallisto, RSEM, featureCounts, and HTSeq library("rhdf5") library("SummarizedExperiment") library("magrittr") # Pipe operator library("DESeq2") # Differential gene expression analysis # Plotting libraries library("pheatmap") library("RColorBrewer") library("ggplot2") # Mixed library("PoiClaClu") library("glmpca") library("apeglm") library("genefilter") library("AnnotationDbi") library("org.Hs.eg.db") # ---------------- DESeq2 explorative analysis ---------------- run_deseq2_explorative_analysis <- function(dds, output_files) { # ----------- 4.2 Variance stabilizing transformation and the rlog ------------- # Problem: PCA depends mostly on points with highest variance # -> For gene-counts: Genes with high expression values, and therefore high variance # are the ones the PCA is mostly depending on # Solution: Apply stabilizing transformation to variance # -> transform data, so it becomes more homoskedastic (expected amount of variance the same across different means) # 1. Variance stabilizing transformation: VST-function -> fast for large datasets (> 30n) # 2. Regularized-logarithm transformation or rlog -> Works well on small datasets (< 30n) # The transformed values are no longer counts, and are stored in the assay slot. # 1. VST # transformed_dds <- vst(dds, blind = FALSE) # head(assay(transformed_dds), 3) # 2. rlog transformed_dds <- rlog(dds, blind=FALSE) # ----------- A. Sample distances ------------- # ----------- A.1 Euclidian distances ------------- # Sample distances -> Assess overall similarity between samples # dist: takes samples as rows and genes as columns -> we need to transpose sampleDists <- dist(t(assay(transformed_dds))) # Heatmap of sample-to-sample distances using the transformed values # Uses euclidian distance between samples sampleDistMatrix <- as.matrix(sampleDists) rownames(sampleDistMatrix) <- paste(transformed_dds$names, transformed_dds$condition, sep = " - " ) colnames(sampleDistMatrix) <- paste(transformed_dds$names, transformed_dds$condition, sep = " - " ) colors <- colorRampPalette( rev(brewer.pal(9, "Blues")) )(255) jpeg(output_files[1], width=800, height=800) pheatmap(sampleDistMatrix, clustering_distance_rows = sampleDists, clustering_distance_cols = sampleDists, col = colors, main = "Heatmap of sample-to-sample distances (Euclidian) after normalization") dev.off() # ----------- A.2 Poisson distances ------------- # Use Poisson distance # -> takes the inherent variance structure of counts into consideration # The PoissonDistance function takes the original count matrix (not normalized) with samples as rows instead of # columns -> so we need to transpose the counts in dds. poisd <- PoissonDistance(t(counts(dds))) # heatmap samplePoisDistMatrix <- as.matrix(poisd$dd) rownames(samplePoisDistMatrix) <- paste(transformed_dds$names, transformed_dds$condition, sep=" - ") colnames(samplePoisDistMatrix) <- paste(transformed_dds$names, transformed_dds$condition, sep=" - ") jpeg(output_files[2], width=800, height=800) pheatmap(samplePoisDistMatrix, clustering_distance_rows = poisd$dd, clustering_distance_cols = poisd$dd, col = colors, main = "Heatmap of sample-to-sample distances (Poisson) without normalization") dev.off() # ------------ 4.4 PCA plot ------------------- # ----------------- 4.4.1 Custom PCA plot -------------- # Build own plot with ggplot -> to distinguish subgroups more clearly # Each unique combination of treatment and cell-line has unique color # Use function that is provided with DeSeq2 pcaData <- plotPCA(transformed_dds, intgroup = c("condition", "add_info"), returnData=TRUE) percentVar <- round(100 * attr(pcaData, "percentVar")) print("Creating custom PCA plot") jpeg(output_files[3], width=800, height=800) customPCAPlot <- ggplot(pcaData, aes(x=PC1, y=PC2, color=condition, shape=add_info, label=name)) + geom_point(size =3) + geom_text(check_overlap=TRUE, hjust=0, vjust=1) + xlab(paste0("PC1: ", percentVar[1], "% variance")) + ylab(paste0("PC2: ", percentVar[2], "% variance")) + coord_fixed() + ggtitle("PCA on transformed (rlog) data with subgroups (see shapes)") print(customPCAPlot) dev.off() # ----------------- 4.4.2 Generalized PCA plot -------------- # Generalized PCA: Operates on raw counts, avoiding pitfalls of normalization print("Creating generalized PCA plot") gpca <- glmpca(counts(dds), L=2) gpca.dat <- gpca$factors gpca.dat$condition <- dds$condition gpca.dat$add_info <- dds$add_info jpeg(output_files[4], width=800, height=800) generalizedPCAPlot <- ggplot(gpca.dat, aes(x=dim1, y=dim2, color=condition, shape=add_info, label=rownames(gpca.dat))) + geom_point(size=2) + geom_text(check_overlap=TRUE, hjust=0.5,vjust=1) + coord_fixed() + ggtitle("glmpca - Generalized PCA of samples") print(generalizedPCAPlot) dev.off() } # ----------------- Main function ----------------- main_function <- function(){ threads <- snakemake@threads[[1]] register(MulticoreParam(workers=threads)) # Snakemake variables deseq_dataset_obj <- snakemake@input[["deseq_dataset_r_obj"]] output_file_paths <- snakemake@params[["output_file_paths"]] # Load deseq dataset object dds <- readRDS(deseq_dataset_obj) # Run explorative analysis run_deseq2_explorative_analysis(dds, output_file_paths) } # ----------------- Run main function ----------------- main_function() |
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | library("BiocParallel") # Load data library("tximeta") # Import transcript quantification data from Salmon library("tximport") # Import transcript-level quantification data from Kaleidoscope, Sailfish, Salmon, Kallisto, RSEM, featureCounts, and HTSeq library("rhdf5") library("SummarizedExperiment") library("magrittr") # Pipe operator library("DESeq2") # Differential gene expression analysis # Plotting libraries library("pheatmap") library("RColorBrewer") library("ggplot2") # Mixed library("PoiClaClu") library("glmpca") library("apeglm") library("ashr") library("genefilter") library("AnnotationDbi") library("org.Hs.eg.db") library("ReportingTools") # For creating HTML reports # ---------------- Helper functions ---------------- savely_create_deseq2_object <- function(dds) { ### Function to create a DESeq2 object -> Handles errors that can appear due to parallelization ### Input: dds object (DESeq dataset object) ### Output: dds object (DESeq2 object) # ------------- 5. Run the differential expression analysis --------------- # The respective steps of this function are printed out # 1. Estimation of size factors: Controlling for differences # in the sequencing depth of the samples # 2. Estimation of dispersion values for each gene & fitting a generalized # linear model print("Creating DESeq2 object") # Try to create the DESeq2 object with results in Parallel create_obj_parallelized <- function(){ print("Creating DESeq2 object in parallel") dds <- DESeq2::DESeq(dds, parallel=TRUE) return(list("dds"=dds, "run_parallel"=TRUE)) } # Try to create the DESeq2 object with results in Serial create_obj_not_parallelized <- function(error){ print("Error in parallelized DESeq2 object creation"); print(error) print("Creating DESeq2 object not in parallel") dds <- DESeq2::DESeq(dds, parallel=FALSE) return(list("dds"=dds, "run_parallel"=FALSE)) } result_list <- tryCatch(create_obj_parallelized(), error=create_obj_not_parallelized) print("DESeq2 object created!") return(result_list) } rename_rownames_with_ensembl_id_matching <- function(dds_object, input_algorithm) { " Extracts Ensembl-Gene-IDs from rownames of SummarizedExperiment object and renames rownames with Ensembl-Gene-IDs. " print("Gene annotations") if (input_algorithm == "salmon") { # Ensembl-Transcript-IDs at first place gene_ids_in_rows <- substr(rownames(dds_object), 1, 15) } else if (input_algorithm == "kallisto") { # Ensembl-Transcript-IDs at second place (delimeter: "|") gene_ids_in_rows <- sapply(rownames(dds_object), function(x) strsplit(x, '\\|')[[1]], USE.NAMES=FALSE)[2,] gene_ids_in_rows <- sapply(gene_ids_in_rows, function(x) substr(x, 1, 15), USE.NAMES=FALSE) } else { stop("Unknown algorithm used for quantification") } # Set new rownames rownames(dds_object) <- gene_ids_in_rows return(dds_object) } add_gene_symbol_and_entrez_id_to_results <- function(result_object, with_entrez_id=FALSE) { " Adds gene symbols and entrez-IDs to results object. " gene_ids_in_rows <- rownames(result_object) # Add gene symbols # Something breaks here when setting a new column name result_object$symbol <- AnnotationDbi::mapIds(org.Hs.eg.db::org.Hs.eg.db, keys=gene_ids_in_rows, column="SYMBOL", keytype="ENSEMBL", multiVals="first") if (with_entrez_id) { # Add ENTREZ-ID result_object$entrez <- AnnotationDbi::mapIds(org.Hs.eg.db::org.Hs.eg.db, keys=gene_ids_in_rows, column="ENTREZID", keytype="ENSEMBL", multiVals="first") } return(result_object) } # ---------------- DESeq2 analysis ---------------- explore_deseq2_results <- function(dds, false_discovery_rate, output_file_paths, run_parallel=FALSE, used_algorithm) { # Results: Metadata # 1. baseMean: Average/Mean of the normalized count values divided by size factors, taken over ALL samples # 2. log2FoldChange: Effect size estimate. Change of gene's expression # 3. lfcSE: Standard Error estimate for log2FoldChange # 4. Wald statistic results # 5. Wald test p-value -> p value indicates the probability that a fold change as strong as the observed one, or even stronger, would be seen under the situation described by the null hypothesis. # 6. BH adjusted p-value print("Creating DESeq2 results object") results_obj <- results(dds, alpha=false_discovery_rate, parallel=run_parallel) capture.output(summary(results_obj), file=output_file_paths[1]) # ------------------ 6. Plotting results -------------------- # Contrast usage # TODO: Failed... -> Remove # print("Plotting results") # chosen_contrast <- tail(resultsNames(results_obj), n=1) # get the last contrast: Comparison of states # print("resultsNames(results_obj)"); print(resultsNames(results_obj)) # print("chosen_contrast"); print(chosen_contrast) # ------------ 6.1 MA plot without shrinking -------------- # - M: minus <=> ratio of log-values -> log-Fold-change on Y-axis # - A: average -> Mean of normalized counts on X-axis # res.noshr <- results(dds, contrast=chosen_contrast, parallel=run_parallel) res.no_shrink <- results(dds, parallel=run_parallel) jpeg(output_file_paths[2], width=800, height=800) DESeq2::plotMA(res.no_shrink, ylim = c(-5, 5), main="MA plot without shrinkage") dev.off() # ------------ 6.2 MA plot with apeGLM shrinking -------------- # apeglm method for shrinking coefficients # -> which is good for shrinking the noisy LFC estimates while # giving low bias LFC estimates for true large differences # TODO: apeglm requires coefficients. However, resultsNames(results_obj) does not return any coefficients... # res <- lfcShrink(dds, coef=chosen_contrast, type="apeglm", parallel=run_parallel) # Pass contrast and shrink results # Use ashr as shrinkage method res <- DESeq2::lfcShrink(dds, res=res.no_shrink, type="ashr", parallel=run_parallel) jpeg(output_file_paths[3], width=800, height=800) DESeq2::plotMA(res, ylim = c(-5, 5), main="MA plot with ashr shrinkage") dev.off() # ------------ 6.3 Plot distribution of p-values in histogram -------------- jpeg(output_file_paths[4], width=800, height=800) hist(res$pvalue[res$baseMean > 1], breaks = 0:20/20, col = "grey50", border = "white", main="Histogram of distribution of p-values (non-adjusted)", xlab="p-value", ylab="Frequency") dev.off() jpeg(output_file_paths[5], width=800, height=800) hist(res$padj[res$baseMean > 1], breaks = 0:20/20, col = "grey50", border = "white", main="Histogram of distribution of p-values (adjusted)", xlab="p-value", ylab="Frequency") dev.off() # ------------- 6.4 Gene clustering ----------------- print("Plotting results: Gene clustering") # Gene clustering -> Heatmap of divergence of gene's expression in comparison to average over all samples # Transform count results to reduce noise for low expression genes transformed_dds <- DESeq2::rlog(dds, blind=FALSE) # Get top Genes -> with most variance in VSD-values/rlog-transformed counts topVarGenes <- head(order(genefilter::rowVars(SummarizedExperiment::assay(transformed_dds)), decreasing=TRUE), 20) mat <- SummarizedExperiment::assay(transformed_dds)[ topVarGenes, ] mat <- mat - rowMeans(mat) # difference to mean expression # Transform row names to gene symbols rownames(mat) <- add_gene_symbol_and_entrez_id_to_results(mat)$symbol # Additional annotations anno <- as.data.frame(SummarizedExperiment::colData(transformed_dds)[, c("condition", "add_info")]) # Create plot jpeg(output_file_paths[6], width=800, height=800) pheatmap::pheatmap(mat, annotation_col=anno, main="Divergence in gene expression in comparison to average over all samples") dev.off() # ---------- 7. Gene annotations -------------- res <- add_gene_symbol_and_entrez_id_to_results(res) resOrdered <- res[order(res$pvalue),] # Sort results by p-value # Exporting results resOrderedDF <- as.data.frame(resOrdered) write.csv(resOrderedDF, file=output_file_paths[7]) } # ----------------- Main function ----------------- main_function <- function(){ threads <- snakemake@threads[[1]] register(MulticoreParam(workers=threads)) # Snakemake variables deseq_dataset_obj <- snakemake@input[["deseq_dataset_r_obj"]] output_file_paths <- snakemake@params[["output_file_paths"]] # For gene-ID matching: Used in rename_rownames_with_ensembl_id_matching() used_algorithm <- snakemake@params["used_algorithm"] # Adjusted p-value threshold false_discovery_rate <- 0.05 # Load deseq dataset object dds <- readRDS(deseq_dataset_obj) # Create DESeq2 results object print("Creating DESeq2 results object") result_list <- savely_create_deseq2_object(dds) deseq2_obj <- result_list$dds run_parallel <- result_list$run_parallel # Rename rows deseq2_obj <- rename_rownames_with_ensembl_id_matching(deseq2_obj, used_algorithm) # Run statistical analysis print("Running statistical analysis") explore_deseq2_results(deseq2_obj, false_discovery_rate, output_file_paths, run_parallel=run_parallel, used_algorithm=used_algorithm) } # ----------------- Run main function ----------------- main_function() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 | library("DESeq2") library("AnnotationDbi") library("org.Hs.eg.db") library("clusterProfiler") library("ggplot2") library("enrichplot") create_gsea_plots <- function(gsea_obj, dotplot_file_path, gsea_plot_file_path_1, gsea_plot_file_path_2, method) { # Create plots for GSEA results # -------- Plottings --------- # 1. Dotplot jpeg(dotplot_file_path,width=800, height=800) print(clusterProfiler::dotplot(gsea_obj, showCategory=30) + ggplot2::ggtitle(paste0("DotPlot for GSE-analysis (top 30 results) with method: ", method))) dev.off() # 2. GSEA-Plot for top 10 results jpeg(gsea_plot_file_path_1, width=800, height=800) print(enrichplot::gseaplot2(gsea_obj, geneSetID = 1:5, pvalue_table=FALSE, title = paste0("GSEA-Plot for top 1-5 results with method: ", method))) dev.off() jpeg(gsea_plot_file_path_2, width=800, height=800) print(enrichplot::gseaplot2(gsea_obj, geneSetID = 6:10, pvalue_table=FALSE, title = paste0("GSEA-Plot for top 6-10 results with method: ", method))) dev.off() # for (count in c(1:10)) { # jpeg(paste0(plot_output_dir, "/gsea_plot_", method, "_", count, ".jpg"), width=800, height=800) # print(clusterProfiler::gseaplot(gsea_obj, geneSetID=1, pvalue_table=TRUE)) # dev.off() # } } explore_gsea_go <- function(ordered_gene_list, summary_file_path, gsea_obj_file_path) { # Gene Set Enrichtment Analyses # params: # ordered_gene_list: Ordered (i.e. deseq2 stat) list of genes # ----- 1. GO Enrichment -------- # GO comprises three orthogonal ontologies, i.e. molecular function (MF), # biological process (BP), and cellular component (CC) go_gsea <- clusterProfiler::gseGO(ordered_gene_list, ont = "BP", keyType = "ENSEMBL", OrgDb = "org.Hs.eg.db", verbose = TRUE) df_go_gsea <- as.data.frame(go_gsea) df_go_gsea <- df_go_gsea[order(df_go_gsea$p.adjust),] write.csv(df_go_gsea, file=summary_file_path) # Save GSEA object saveRDS(go_gsea, file=gsea_obj_file_path) return(go_gsea) } explore_gsea_kegg <- function(ordered_gene_list, summary_file_path, gsea_obj_file_path) { # KEGG pathway enrichment analysis # params: # ordered_gene_list: Ordered (i.e. deseq2 stat) list of genes names(ordered_gene_list) <- mapIds(org.Hs.eg.db, keys=names(ordered_gene_list), column="ENTREZID", keytype="ENSEMBL", multiVals="first") # res$symbol <- mapIds(org.Hs.eg.db, keys=row.names(res), column="SYMBOL", keytype="ENSEMBL", multiVals="first") # res$entrez <- mapIds(org.Hs.eg.db, keys=row.names(res), column="ENTREZID", keytype="ENSEMBL", multiVals="first") # res$name <- mapIds(org.Hs.eg.db, keys=row.names(res), column="GENENAME", keytype="ENSEMBL", multiVals="first") # ----- 1. GO Enrichment -------- # GO comprises three orthogonal ontologies, i.e. molecular function (MF), # biological process (BP), and cellular component (CC) kegg_gsea <- clusterProfiler::gseKEGG(geneList=ordered_gene_list, organism='hsa', verbose=TRUE) df_kegg_gsea <- as.data.frame(kegg_gsea) df_kegg_gsea <- df_kegg_gsea[order(df_kegg_gsea$p.adjust),] write.csv(df_kegg_gsea, file=summary_file_path) # Save GSEA object saveRDS(kegg_gsea, file=gsea_obj_file_path) return(kegg_gsea) } explore_gsea_wp <- function(ordered_gene_list, summary_file_path, gsea_obj_file_path) { # WikiPathway # params: # ordered_gene_list: Ordered (i.e. deseq2 stat) list of genes names(ordered_gene_list) <- mapIds(org.Hs.eg.db, keys=names(ordered_gene_list), column="ENTREZID", keytype="ENSEMBL", multiVals="first") # ----- 1. GO Enrichment -------- # GO comprises three orthogonal ontologies, i.e. molecular function (MF), # biological process (BP), and cellular component (CC) wp_gsea <- clusterProfiler::gseWP( geneList=ordered_gene_list, organism="Homo sapiens", verbose=TRUE) df_wp_gsea <- as.data.frame(wp_gsea) df_wp_gsea <- df_wp_gsea[order(df_wp_gsea$p.adjust),] write.csv(df_wp_gsea, file=summary_file_path) # Save GSEA object saveRDS(wp_gsea, file=gsea_obj_file_path) return(wp_gsea) } main <- function() { # Input input_dseq_dataset_obj <- snakemake@input$deseq_dataset_obj # Outputs gsea_go_obj_file_path <- snakemake@output$gsea_go_obj_file_path gsea_go_summary_file_path <- snakemake@output$gsea_go_summary_file_path gsea_kegg_obj_file_path <- snakemake@output$gsea_kegg_obj_file_path gsea_kegg_summary_file_path <- snakemake@output$gsea_kegg_summary_file_path gsea_wp_obj_file_path <- snakemake@output$gsea_wp_obj_file_path gsea_wp_summary_file_path <- snakemake@output$gsea_wp_summary_file_path # DotPlots dotplot_gsea_go_file_path <- snakemake@output$dotplot_gsea_go_file_path dotplot_gsea_kegg_file_path <- snakemake@output$dotplot_gsea_kegg_file_path dotplot_gsea_wp_file_path <- snakemake@output$dotplot_gsea_wp_file_path # GSEA Plots gsea_go_top10_plot_file_path_1 <- snakemake@output$gsea_go_top10_plot_file_path_1 gsea_kegg_top10_plot_file_path_1 <- snakemake@output$gsea_kegg_top10_plot_file_path_1 gsea_wp_top10_plot_file_path_1 <- snakemake@output$gsea_wp_top10_plot_file_path_1 gsea_go_top10_plot_file_path_2 <- snakemake@output$gsea_go_top10_plot_file_path_2 gsea_kegg_top10_plot_file_path_2 <- snakemake@output$gsea_kegg_top10_plot_file_path_2 gsea_wp_top10_plot_file_path_2 <- snakemake@output$gsea_wp_top10_plot_file_path_2 # Params input_algorithm <- snakemake@params$input_algorithm # Load DataSet dds <- readRDS(input_dseq_dataset_obj) # Create DESeq2 object dds <- DESeq(dds) res <- DESeq2::results(dds) # Filtering res <- na.omit(res) res <- res[res$baseMean >50,] # Filter out genes with low expression # Order output -> We choose stat, which takes log-Fold as well as SE into account # Alternative: lfc * -log10(P-value) # order descending so use minus sign res <- res[order(-res$stat),] # --------- Create input gene list --------------- # Extract stat values gene_list <- res$stat # Add rownames if (input_algorithm == "salmon") { # Ensembl-Transcript-IDs at first place names(gene_list) <- substr(rownames(res), 1, 15) } else if (input_algorithm == "kallisto") { # Ensembl-Transcript-IDs at second place (delimeter: "|") gene_ids_in_rows <- sapply(rownames(res), function(x) strsplit(x, '\\|')[[1]], USE.NAMES=FALSE)[2,] gene_ids_in_rows <- sapply(gene_ids_in_rows, function(x) substr(x, 1, 15), USE.NAMES=FALSE) names(gene_list) <- gene_ids_in_rows } else { stop("Unknown algorithm used for quantification") } # =========== Run GSEA =========== # ----- 1. GO Enrichment -------- go_gsea_obj <- explore_gsea_go(gene_list, gsea_go_summary_file_path, gsea_go_obj_file_path) create_gsea_plots(go_gsea_obj, dotplot_gsea_go_file_path, gsea_go_top10_plot_file_path_1, gsea_go_top10_plot_file_path_2, "go") # ----- 2. KEGG Enrichment -------- kegg_gsea_obj <- explore_gsea_kegg(gene_list, gsea_kegg_summary_file_path, gsea_kegg_obj_file_path) create_gsea_plots(kegg_gsea_obj, dotplot_gsea_kegg_file_path, gsea_kegg_top10_plot_file_path_1, gsea_kegg_top10_plot_file_path_2, "kegg") # ----- 3. WikiPathway Enrichment -------- wp_gsea_obj <- explore_gsea_wp(gene_list, gsea_wp_summary_file_path, gsea_wp_obj_file_path) create_gsea_plots(wp_gsea_obj, dotplot_gsea_wp_file_path, gsea_wp_top10_plot_file_path_1, gsea_wp_top10_plot_file_path_2, "wp") } # Run main function main() |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 | library("FRASER") library("TxDb.Hsapiens.UCSC.hg19.knownGene") library("org.Hs.eg.db") # Requierements: 1. Sample annotation, # 2. Two count matrices are needed: one containing counts for the splice junctions, i.e. the # split read counts, and one containing the splice site counts, i.e. the counts of non # split reads overlapping with the splice sites present in the splice junctions. set_up_fraser_dataset_object <- function(sample_annotation_file_path) { #' Function to set up a FRASER object #' #' @param sample_annotation_file_path Path to sample annotation file #' @param output_dir_path Path to output directory #' #' @return FRASER object # Load annotation file annotationTable <- fread(sample_annotation_file_path, header=TRUE, sep="\t", stringsAsFactors=FALSE) annotationTable$bamFile <- file.path(annotationTable$bamFile) # Required for FRASER # --------------- Creating a FRASER object ---------------- # create FRASER object settings <- FraserDataSet(colData=annotationTable, name="Fraser Dataset") # Via count reads fds <- countRNAData(settings) # Via raw counts # junctionCts <- fread(additional_junction_counts_file, header=TRUE, sep="\t", stringsAsFactors=FALSE) # spliceSiteCts <- fread(additional_splice_site_counts_file, header=TRUE, sep="\t", stringsAsFactors=FALSE) # fds <- FraserDataSet(colData=annotationTable, junctions=junctionCts, spliceSites=spliceSiteCts, workingDir="FRASER_output") return(fds) } run_filtering <- function(fraser_object, plot_filter_expression_file, plot_cor_psi5_heatmap_file, plot_cor_psi3_heatmap_file, plot_cor_theta_heatmap_file) { #' Function to run filtering #' #' @param fraser_object FRASER object #' @param output_dir_path Path to output directory #' #' @return FRASER object # --------------- Filtering ---------------- # Compute main splicing metric -> The PSI-value fds <- calculatePSIValues(fraser_object) # Run filters on junctions: At least one sample has 20 reads, and at least 5% of the samples have at least 1 reads # Filter=FALSE, since we first plot and subsequently apply subsetting fds <- filterExpressionAndVariability(fds, minExpressionInOneSample=20, minDeltaPsi=0.0, # Only junctions with a PSI-value difference of at least x% between two samples are considered filter=FALSE # If TRUE, a subsetted fds containing only the introns that passed all filters is returned. ) # Plot filtering results jpeg(plot_filter_expression_file, width=800, height=800) print(plotFilterExpression(fds, bins=100)) dev.off() # Finally apply filter results fds_filtered <- fds[mcols(fds, type="j")[,"passed"],] # ---------------- Heatmaps of correlations ---------------- # 1. Correlation of PSI5 tryCatch( expr = { # Heatmap of the sample correlation jpeg(plot_cor_psi5_heatmap_file, width=800, height=800) plotCountCorHeatmap(fds_filtered, type="psi5", logit=TRUE, normalized=FALSE) dev.off() }, error = function(e) { print("Error in creating Heatmap of the sample correlation") print(e) } ) # tryCatch( # expr = { # # Heatmap of the intron/sample expression # jpeg(plot_cor_psi5_top100_heatmap_file, width=800, height=800) # plotCountCorHeatmap(fds_filtered, type="psi5", logit=TRUE, normalized=FALSE, # plotType="junctionSample", topJ=100, minDeltaPsi = 0.01) # dev.off() # }, # error = function(e) { # print("Error in creating Heatmap of the intron/sample expression") # print(e) # } # ) # 2. Correlation of PSI3 tryCatch( expr = { # Heatmap of the sample correlation jpeg(plot_cor_psi3_heatmap_file, width=800, height=800) plotCountCorHeatmap(fds_filtered, type="psi3", logit=TRUE, normalized=FALSE) dev.off() }, error = function(e) { print("Error in creating Heatmap of the sample correlation") print(e) } ) # tryCatch( # expr = { # # Heatmap of the intron/sample expression # jpeg(plot_cor_psi3_top100_heatmap_file, width=800, height=800) # plotCountCorHeatmap(fds_filtered, type="psi3", logit=TRUE, normalized=FALSE, # plotType="junctionSample", topJ=100, minDeltaPsi = 0.01) # dev.off() # }, # error = function(e) { # print("Error in creating Heatmap of the intron/sample expression") # print(e) # } # ) # 3. Correlation of Theta tryCatch( expr = { # Heatmap of the sample correlation jpeg(plot_cor_theta_heatmap_file, width=800, height=800) plotCountCorHeatmap(fds_filtered, type="theta", logit=TRUE, normalized=FALSE) dev.off() }, error = function(e) { print("Error in creating Heatmap of the sample correlation") print(e) } ) # tryCatch( # expr = { # # Heatmap of the intron/sample expression # jpeg(plot_cor_theta_top100_heatmap_file, width=800, height=800) # plotCountCorHeatmap(fds_filtered, type="theta", logit=TRUE, normalized=FALSE, # plotType="junctionSample", topJ=100, minDeltaPsi = 0.01) # dev.off() # }, # error = function(e) { # print("Error in creating Heatmap of the intron/sample expression") # print(e) # } # ) return(fds_filtered) } detect_dif_splice <- function(fraser_object, output_fraser_analysis_set_object_file, plot_normalized_cor_psi5_heatmap_file, plot_normalized_cor_psi3_heatmap_file, plot_normalized_cor_theta_heatmap_file) { #' Function to detect differential splicing #' #' @param fraser_object FRASER object #' @param output_dir_path Path to output directory #' @param summary_table_file Path to summary table file #' #' @return FRASER object # ----------------- Detection of differential splicing ----------------- # 1. Fitting the splicing model: # Normalizing data and correct for confounding effects by using a denoising autoencoder # This is computational heavy on real size datasets and can take awhile # q: The encoding dimension to be used during the fitting procedure. Can be fitted with optimHyperParams # see: https://rdrr.io/bioc/FRASER/man/optimHyperParams.html fds <- FRASER(fraser_object, q=c(psi5=3, psi3=5, theta=2)) # Plot 1: PSI5 tryCatch( expr = { # Check results in heatmap jpeg(plot_normalized_cor_psi5_heatmap_file, width=800, height=800) plotCountCorHeatmap(fds, type="psi5", normalized=TRUE, logit=TRUE) dev.off() }, error = function(e) { print("Error in creating Heatmap of the sample correlation") print(e) } ) # Plot 2: PSI3 tryCatch( expr = { # Check results in heatmap jpeg(plot_normalized_cor_psi3_heatmap_file, width=800, height=800) plotCountCorHeatmap(fds, type="psi3", normalized=TRUE, logit=TRUE) dev.off() }, error = function(e) { print("Error in creating Heatmap of the sample correlation") print(e) } ) # Plot 3: Theta tryCatch( expr = { # Check results in heatmap jpeg(plot_normalized_cor_theta_heatmap_file, width=800, height=800) plotCountCorHeatmap(fds, type="theta", normalized=TRUE, logit=TRUE) dev.off() }, error = function(e) { print("Error in creating Heatmap of the sample correlation") print(e) } ) # 2. Differential splicing analysis # 2.1 annotate introns with the HGNC symbols of the corresponding gene txdb <- TxDb.Hsapiens.UCSC.hg19.knownGene orgDb <- org.Hs.eg.db fds <- annotateRangesWithTxDb(fds, txdb=txdb, orgDb=orgDb) # 2.2 retrieve results with default and recommended cutoffs (padj <= 0.05 and |deltaPsi| >= 0.3) print("Saving FraserAnalysisDataSetTest results") # Saves RDS-file into savedObjects folder saveFraserDataSet(fds, dir=dirname(dirname(output_fraser_analysis_set_object_file)), name=basename(output_fraser_analysis_set_object_file)) # ----------------- Finding splicing candidates in patients ----------------- # -> Plotting the results # tryCatch( # expr = { # -------- Sample specific plots -------- # jpeg(file.path(output_dir_path, "psi5_volcano_plot_sample1.jpg"), width=800, height=800) # plotVolcano(fds, type="psi5", annotationTable$sampleID[1]) # dev.off() # jpeg(file.path(output_dir_path, "psi5_expression_sample1.jpg"), width=800, height=800) # plotExpression(fds, type="psi5", result=sampleRes[1]) # dev.off() # jpeg(file.path(output_dir_path, "expected_vs_observed_psi_sample1.jpg"), width=800, height=800) # plotExpectedVsObservedPsi(fds, result=sampleRes[1]) # dev.off() # }, # error = function(e) { # print("Error in creating plots") # print(e) # } # ) return(fds) } main_function <- function() { in_sample_annotation_file <- snakemake@input[["sample_annotation_file"]] # Output: Plot files - After filtering, no normalization plot_filter_expression_file <- snakemake@output[["plot_filter_expression_file"]] plot_cor_psi5_heatmap_file <- snakemake@output[["plot_cor_psi5_heatmap_file"]] plot_cor_psi3_heatmap_file <- snakemake@output[["plot_cor_psi3_heatmap_file"]] plot_cor_theta_heatmap_file <- snakemake@output[["plot_cor_theta_heatmap_file"]] # ToDO: Set plotType to "sampleCorrelation", however this plots are not helpful and can be ignored... # plot_cor_psi5_top100_heatmap_file <- snakemake@output[["plot_cor_psi5_top100_heatmap_file"]] # plot_cor_psi3_top100_heatmap_file <- snakemake@output[["plot_cor_psi3_top100_heatmap_file"]] # plot_cor_theta_top100_heatmap_file <- snakemake@output[["plot_cor_theta_top100_heatmap_file"]] # Output: Plot files - After filtering, normalization plot_normalized_cor_psi5_heatmap_file <- snakemake@output[["plot_normalized_cor_psi5_heatmap_file"]] plot_normalized_cor_psi3_heatmap_file <- snakemake@output[["plot_normalized_cor_psi3_heatmap_file"]] plot_normalized_cor_theta_heatmap_file <- snakemake@output[["plot_normalized_cor_theta_heatmap_file"]] # Output: Differential splicing analysis output_fraser_dataset_object_file <- snakemake@output[["fraser_data_set_object_file"]] # TODO: Integrate additional count files from external resources -> Failed... # additional_junction_counts_file <- snakemake@params[["additional_junction_counts_file"]] # additional_splice_site_counts_file <- snakemake@params[["additional_splice_site_counts_file"]] threads <- snakemake@threads register(MulticoreParam(workers=threads)) # 1. Create FRASER object fraser_obj <- set_up_fraser_dataset_object(in_sample_annotation_file) print("FRASER: FRASER dataset object created") # 2. Run filtering filtered_fraser_obj <- run_filtering(fraser_obj, plot_filter_expression_file, plot_cor_psi5_heatmap_file, plot_cor_psi3_heatmap_file, plot_cor_theta_heatmap_file) print("FRASER: Filtering done") # 3. Detect differential splicing detect_dif_splice(filtered_fraser_obj, output_fraser_dataset_object_file, plot_normalized_cor_psi5_heatmap_file, plot_normalized_cor_psi3_heatmap_file, plot_normalized_cor_theta_heatmap_file ) print("FRASER: Differential splicing analysis done") } main_function() |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 | library("AnnotationDbi") library("org.Hs.eg.db") extract_gene_id_from_info_col <- function(data_frame_obj, info_col, gene_id_col="gene_ensembl_id") { " Extracts gene ID from info column. " # Extract gene-IDs from info_col # Each entry in info_col looks like this: # gene_id "ENSG00000186092"; transcript_id "ENST00000335137"; exon_number "1"; gene_name "OR4F5"; gene_biotype "protein_coding"; transcript_name "OR4F5-201"; exon_id "ENSE00002234944"; # Extract the first part of the string, i.e. the gene_id gene_ids <- lapply(data_frame_obj[info_col], FUN=function(x) { gene_id <- gsub(pattern=".*gene_id \"", replacement="", x=x) gene_id <- gsub(pattern="\";.*", replacement="", x=gene_id) return(gene_id) } ) data_frame_obj[gene_id_col] <- gene_ids return(data_frame_obj) } add_gene_symbol_and_entrez_id_to_results <- function(data_frame_obj, gene_ensembl_id_col="gene_ensembl_id", gene_name_col="gene_name") { " Adds gene symbols and entrez-IDs to results object. " gene_ids_vector <- as.vector(t(data_frame_obj[gene_ensembl_id_col])) # If empty gene_ids_vector, then return fill with NA if (length(gene_ids_vector) == 0) { data_frame_obj[gene_name_col] <- character(0) } else { # Add gene symbols # Something breaks here when setting a new column name data_frame_obj[gene_name_col] <- AnnotationDbi::mapIds(org.Hs.eg.db::org.Hs.eg.db, keys=gene_ids_vector, column="SYMBOL", keytype="ENSEMBL", multiVals="first") } return(data_frame_obj) } # Main function main <- function() { # Input input_table_files <- snakemake@input # Output output_files <- snakemake@output # info_col info_col_name <- snakemake@params[["info_col_name"]] gene_ensembl_id_col_name = snakemake@params[["gene_ensembl_id_col_name"]] gene_name_col_name = snakemake@params[["gene_name_col_name"]] # Loop over input files for (i in seq_along(input_table_files)) { # Read input table df <- read.table(toString(input_table_files[i]), sep="\t", header=TRUE, stringsAsFactors=FALSE) # Extract gene ID from info column df <- extract_gene_id_from_info_col(df, info_col=info_col_name, gene_id_col=gene_ensembl_id_col_name) # Add gene symbols and entrez-IDs df <- add_gene_symbol_and_entrez_id_to_results(df, gene_ensembl_id_col=gene_ensembl_id_col_name, gene_name_col=gene_name_col_name) # Put gene_ensembl_id_col and gene_name_col to the front input_table <- df[, c(gene_ensembl_id_col_name, gene_name_col_name, setdiff(colnames(df), c(gene_ensembl_id_col_name, gene_name_col_name)))] # Write output table write.table(input_table, file=toString(output_files[i]), sep="\t", quote=FALSE, row.names=FALSE) } } # Run main function main() |
KAS-Seq Analysis Workflow (v0.2)
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 | library(BiocManager, quietly = TRUE) library(ChIPseeker, quietly = TRUE) library(org.Hs.eg.db, quietly = TRUE) library(cowplot, quietly = TRUE) library(readr, quietly = TRUE) library(argparser, quietly = TRUE) p <- arg_parser("KAS-Seq Peak Annotation and Comparison") p <- add_argument(p, "--peak_files", help = "Peak files to annotate and compare", nargs = Inf) p <- add_argument(p, "--txdb_file", help = "File to load txdb using AnnotationDbi::loadDb()") p <- add_argument(p, "--annotation_file", help = paste0("GFF3 or GTF file of gene annotations used to ", "build txdb")) p <- add_argument(p, "--txdb", help = "Name of txdb package to install from Bioconductor") # Add an optional arguments p <- add_argument(p, "--names", help = "Sample names for each peak file", nargs = Inf) p <- add_argument(p, "--output_dir", help = "Directory for output files", default = "peak_annotation") p <- add_argument(p, "--annotation_distribution_plot", help = "Peak annotation distribution barplot filename", default = "annotationDistributionPlot.pdf") p <- add_argument(p, "--peak_annotation_list_rdata", help = "Peak annotation list Rdata file", default = "peak_anno_list.Rdata") p <- add_argument(p, "--venn_diagram", help = paste0("Venn digagram of annotated genes per sample ", "pdf filename"), default = "annotationVennDiagram.pdf") # Parse arguments (interactive, snakemake, or command line) if (exists("snakemake")) { # Arguments via Snakemake argv <- parse_args(p, c( "--peak_files", snakemake@input[["peak_files"]], "--txdb_file", snakemake@input[["txdb_file"]], "--names", snakemake@params[["names"]], "--output_dir", snakemake@params[["output_dir"]], "--annotation_distribution_plot", snakemake@output[["annotation_distribution_plot"]], "--venn_diagram", snakemake@output[["venn_diagram"]], "--peak_annotation_list_rdata", snakemake@output[["peak_annotation_list_rdata"]] )) } else if (interactive()) { # Arguments supplied inline (for debug/testing when running interactively) print("Running interactively...") peak_files <- c("results_2020-12-03/macs2/D701-lane1_peaks.broadPeak", "results_2020-12-03/macs2/D702-lane1_peaks.broadPeak", "results_2020-12-03/macs2/D703-lane1_peaks.broadPeak", "results_2020-12-03/macs2/D704-lane1_peaks.broadPeak", "results_2020-12-03/macs2/D705-lane1_peaks.broadPeak") names <- c("D701", "D702", "D703", "D704", "D705") annotation_file <- "genomes/hg38/annotation/Homo_sapiens.GRCh38.101.gtf" txdb_file <- "txdb.db" argv <- parse_args(p, c("--peak_files", peak_files, "--names", names, "--txdb_file", txdb_file)) print(argv) } else { # Arguments from command line argv <- parse_args(p) print(argv) } # Set names if (!anyNA(argv$names)) { peak_file_names <- argv$names } else { peak_file_names <- sapply(argv$peak_files, basename) } names(argv$peak_files) <- peak_file_names # Output directory if (!dir.exists(argv$output_dir)) { dir.create(argv$output_dir, recursive = TRUE) } # Get txdb object if (!is.na(argv$txdb)) { # Load (install if needed) txdb from bioconductor library(pacman, quietly = TRUE) pacman::p_load(argv$txdb, character.only = TRUE) txdb <- eval(parse(text = argv$txdb)) } else if (!is.na(argv$txdb_file)) { # Load txdb library(AnnotationDbi, quietly = TRUE) txdb <- AnnotationDbi::loadDb(argv$txdb_file) } else if (!is.na(argv$annotation_file)) { # Create txdb object from supplied annotation file library(GenomicFeatures, quietly = TRUE) txdb <- GenomicFeatures::makeTxDbFromGFF(argv$annotation_file) } else { stop("Must specify one of --txdb, --txdb_file, or --annotation_file") } # Peak Annotation # TODO Provide config parameter for annoDb peak_anno_list <- lapply(argv$peak_files, annotatePeak, TxDb = txdb, tssRegion = c(-3000, 3000), annoDb = "org.Hs.eg.db", verbose = FALSE) lapply(names(peak_anno_list), function(name) { filebase <- file.path(argv$output_dir, basename(argv$peak_files[[name]])) write_tsv(as.data.frame(peak_anno_list[[name]]), file = paste0(filebase, ".annotated.tsv.gz")) sink(file = paste0(filebase, ".annotated.summary.txt")) print(peak_anno_list[[name]]) sink() }) saveRDS(peak_anno_list, file = argv$peak_annotation_list_rdata) # Peak annotation distribution plot peak_anno_dist_plot <- plotAnnoBar(peak_anno_list) save_plot( filename = argv$annotation_distribution_plot, plot = peak_anno_dist_plot, base_height = 14, base_width = 14 ) # nolint start # Functional profiles comparison # NOTE: Not all data return enrichment # genes = lapply(peak_anno_list, function(i) as.data.frame(i)$geneId) # names(genes) = sub("_", "\n", names(genes)) # compKEGG <- compareCluster(geneCluster = genes, # fun = "enrichKEGG", # pvalueCutoff = 0.05, # pAdjustMethod = "BH") # dotplot(compKEGG, showCategory = 15, title = "KEGG Pathway Enrichment Analysis") # nolint end # Venn Diagram of gene annotated per sample # Note: vennplot does not return a ggplot object pdf( file = argv$venn_diagram, height = 14, width = 14 ) genes <- lapply(peak_anno_list, function(i) as.data.frame(i)$geneId) vennplot(genes) dev.off() |
data / bioconductor
org.Hs.eg.db
Genome wide annotation for Human: Genome wide annotation for Human, primarily based on mapping using Entrez Gene identifiers.