Workflow Steps and Code Snippets
270 tagged steps and code snippets that match keyword snakemake-wrapper-utils
Obtain unbiased SNPs after FASTQ files bacoded for UMI
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2021, Aurora Campo" __email__ = "[email protected]" __license__ = "MIT" import os import pandas as pd import numpy as np from os import path from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts shell.executable("bash") extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) """ DEL SNPs AD<10 --------------- This new function cleans the SNPs that do not have enough counts and are considered possible poor quality reads. The SNPs with AD < 3 in one of the alleles are also cleaned. """ def AD10(df, samples): # The iterator collects the index were AD from both alleles is below 10 or the AD for one allele is below 3 # Keep all this analysis for the same individual including two tissues at a time i = 0 indexes_ad10 = 0 # There is only one tissue for sample in samples: print("AD10 filter in sample ", sample) sample_r_ad = str(sample + "_R_.AD") sample_a_ad = str(sample + "_A_.AD") index_sample = df[((df[sample_a_ad] + df[sample_r_ad]) < 10)and((df[sample_a_ad] <3) | (df[sample_r_ad] <3))].index """ Uncomment this if you have a way to verify the genotypes if i == 0: #For the first sample indexes_ad10 = np.array(index_sample) #print("Number of rows to drop", len(indexes_ad10)) i = i + 1 elif i != 0:#We accumulate the indexes to drop in the next samples index_sample = np.array(index_sample) # We need to convert into an array for compare with the array ad10_index # The next is the array of the common and unique elements in both arrays (common indexes or common rows mean the indexes of the rows to drop) indexes_ad10 = np.intersect1d(indexes_ad10, index_sample) print("Number of rows to drop", len(indexes_ad10)) i = i + 1 """ df.drop(index=indexes_ad10, inplace=True) return df def main(): # Add the files av_df=snakemake.input.get("csv") ad10_df=snakemake.output[0] df_average = pd.read_csv(av_df, low_memory=False) df_average = pd.DataFrame(df_average) sample_names = pd.read_csv(snakemake.input.get("sn1")) # Create arrays of the sample names samples = sample_names['Sample_name'].values # Mine the data df_AD10 = AD10(df_average, samples) # Write the temporary file df_AD10.to_csv(ad10_df) if __name__ == '__main__': main() shell( "{log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2022, Aurora Campo" __email__ = "[email protected]" __license__ = "MIT" import os import pandas as pd import numpy as np from os import path from typing import List, Any, Generator from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts shell.executable("bash") extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) """ ELIMINATE MONOALLELIC EXPRESSION FROM THE ALLELEIC IMBALANCE ------------------------------------------------------------ The alleles that are expressed only in one of the tissues analysed will be sent to a different path for studing the monoallelic expression Then, the alleles expressed in both tissues can be studied separately """ def frequencies (df, samples): # Calculate the allele frequencies for sample in samples: sample_r_ad = str(sample + "_R_.AD") sample_a_ad = str(sample + "_A_.AD") af_sample = str("AF_" + sample) df[af_sample] = df[sample_r_ad]/(df[sample_r_ad] + df[sample_a_ad]) df = df.fillna(0) print ("Allele frequencies calculated") return df def MAE (df, samples, samples_mae): print(os.getcwd()) #print the working path print(str(path.exists(samples_mae))) #print the working path # Collect the indexes whose allele frequencies are 0 or 1 in both tissues of the same sample. These indexes correspond # to the SNPs that are MAE for at least one sample if path.exists(samples_mae)==True: print("File ",samples_mae," was found") mae = pd.DataFrame() # Create an empty dataframe mae_ind = np.array([]) tissues = pd.read_csv(samples_mae) tissues = pd.DataFrame(tissues) first_samples = tissues.iloc[:, 0] second_samples = tissues.iloc[:, 1] i = 0 for first_sample in first_samples: print("MAE loop in sample ", first_sample, " and sample ", second_samples[i]) af1 = str("AF_" + first_sample) af2 = str("AF_" + second_samples[i]) index_af = df[((df[af1] == 0) & (df[af2] == 0)) | (df[af1] == 1) & (df[af2] == 1)].index.values mae_ind = np.append ( mae_ind , index_af ) #append all the indexes for collecting the SNPs in monoallelic expression of all the samples to be dropped i = i + 1 mae = df.iloc [mae_ind]# Using the operator .iloc[] to select multiple rows according to the index that points the monoallelic expression df_no_mae = df.drop(index = mae_ind) # using drop tp drop these rows with monoallelic expression else: print("No file ",samples_mae," was found. Please verify if your path to the Samples_MAE.csv in the config.yaml file is correct") mae = pd.DataFrame() mae_ind = np.array([]) for sample in samples: af = str("AF_" + sample) index_af = df[(df[af] == 0) | (df[af] == 1)].index.values #this is a numpy array with the indexes to drop in one sample mae_ind = np.append ( mae_ind , index_af ) #append all the indexes for collecting the SNPs in monoallelic expression of all the samples to be dropped mae = df.iloc [mae_ind]# Using the operator .iloc[] to select multiple rows according to the index that points the monoallelic expression df_no_mae = df.drop(index = mae_ind) # using drop tp drop these rows with monoallelic expression return df_no_mae, mae def main(): #PATH = os.getcwd() #os.chdir("temp") uniform = snakemake.input.get("result1") df_uni = pd.read_csv(uniform, low_memory=False) df_uni = pd.DataFrame(df_uni) #os.chdir(PATH) names = snakemake.input.get("names") sample_names = pd.read_csv(names) samples_mae = snakemake.input.get("mae") result_mae = snakemake.output.get("result_mae") result_no_mae = snakemake.output.get("result_no_mae") # Create arrays of the sample names and the pseudogenome codes samples = sample_names["Sample_name"].values # Mine the data df_af = frequencies(df_uni, samples) df_no_mae, df_mae = MAE(df_af, samples, samples_mae) df_no_mae.to_csv(result_no_mae) df_mae.to_csv(result_mae) if __name__ == '__main__': main() shell( "{log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2021, Aurora Campo" __email__ = "[email protected]" __license__ = "MIT" import os import pandas as pd import numpy as np from os import path from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts shell.executable("bash") extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) """ COMPARE GENOTYPES AND MAKE THE AVERAGE OF COUNTS ------------------------------------------------ Now let's make the average on the counts for the reference and the alternative alleles. For each sample, select the genotype of the reference allele established by the reads mapped against PSG1 and compare it to both alternative and reference genotypes of the values in the mapping with PSG2 genome. Then proceed to make the average of the counts. The possible cases are the next: 1.- Both homozigots for the reference allele: In that case set the same genotype to both alleles and sum all the counts from both sites, making the average for two individuals. 2.- Reference and alternative allele in the SNP from the PSG1 pseudogenome are placed in the same position for the SNP from the PSG2 pseudogenome. Set the genotype to the reference and alternative alleles to the ones from the SNP in PSG1 and make the average of the counts for reference and alternative genome 3.- The reference allele in the reference pseudogenome is called as alternative allele in the alternative pseudogenome. In that case, set the genotype to the reference allele and make the average of the counts for the corresponding variant. 4.- While the mapping against the reference genome resulted in an homozygot for the reference allele, the mapping against the alternative genome resulted in an heterozygot with the alternative allele in the alternative position. The genotype of the reference allele will be set from genotype of the reference allele in the reference mapping and the alternative allele will be set from the genotype of the alternative allele in the alternative mapping. The counts of each allele will be set accordingly to this distribution, thus dividing the counts by two individuals in the reference allele. 5.- The mapping against the reference genome resulted in an homozygot for the reference allele and the mapping against the alternative genome is heterozygot. In that case, the genotype of the alternative allele is set as the reference allele on the mapping against the alternative genome. The genotypes must be set accordingly, being the reference allele the one found in the reference genome and the alternative allele the one found in the alternative genome. The average of the counts will follow this pattern, being the average in the erference allele. 6.- The mapping against the reference genome produced an heterozygot with reference and alternative alleles. The mapping against the alternative pseudogenome produced an homozygot for the reference allele. In that case, reference and alternative allele must be set according to the reference pseudogenome and the counts must be averaged for both individuals in the alternative allele. 7.- The mapping against the reference genome produced an heterozygot with reference and alternative alleles. The mapping against the alternative pseudogenome produced an homozygot for the alternative allele. In that case, reference and alternative allele must be set according to the reference pseudogenome and the counts of the alternative allele must be averaged for both individuals. 8.- The mapping against the reference genome produced an homozygot for the reference allele. The mapping against the alterantive pseudogenome produced an homozygot for the alternative allele. In that case, the reference allele is set according to the first pseudogenome and summing the counts of this reference allele and the alternative allele is set following the second pseudogenome and the counts of this alternative allele are summed. This analysis is repeated for each sample and will assign reference and alternative alleles independently. The assignation of reference and alternative alleles uniformly in all the samples will be developed in a further step of the workflow. """ # Definitions: def evaluation(df, sample, PSGs): # Evaluation of genotype and average. This is an iterator r = "_R_" a = "_A_" gt = ".GT" ad = ".AD" PSG1_code: str = PSGs[0] PSG2_code: str = PSGs[1] rPSG1_GT = int(df.columns.get_loc(str(sample + r + PSG1_code + gt))) aPSG1_GT = int(df.columns.get_loc(str(sample + a + PSG1_code + gt))) rPSG2_GT = int(df.columns.get_loc(str(sample + r + PSG2_code + gt))) aPSG2_GT = int(df.columns.get_loc(str(sample + a + PSG2_code + gt))) rPSG1_AD = int(df.columns.get_loc(str(sample + r + PSG1_code + ad))) aPSG1_AD = int(df.columns.get_loc(str(sample + a + PSG1_code + ad))) rPSG2_AD = int(df.columns.get_loc(str(sample + r + PSG2_code + ad))) aPSG2_AD = int(df.columns.get_loc(str(sample + a + PSG2_code + ad))) # Create the empty lists to collect the average variables and genotypes r_AD = [] a_AD = [] r_GT = [] a_GT = [] print("Evaluation loop in sample: ", sample) # Start iterator for i in range(len(df)): # Case 1 homozygots for the two pseudogenoes if (df.iloc[i, rPSG1_GT] == df.iloc[i, aPSG1_GT]) and (df.iloc[i, rPSG2_GT] == df.iloc[i, aPSG2_GT]) and ( df.iloc[i, rPSG1_GT] == df.iloc[i, rPSG2_GT]) and (df.iloc[i, aPSG1_GT] == df.iloc[i, aPSG2_GT]): #print("Ref GT: ", df.iloc[i, rPSG1_GT], " Counts: ", df.iloc[i, rPSG1_AD], " ", df.iloc[i, aPSG1_AD], " ", df.iloc[i, rPSG2_AD], " ", df.iloc[i, aPSG2_AD]," averaged by 2") r_GT.append(df.iloc[i, rPSG1_GT]) if (df.iloc[i, rPSG1_AD] != 0 and df.iloc[i, aPSG1_AD] !=0): x = ((((df.iloc[i, rPSG1_AD] + df.iloc[i, aPSG1_AD])/2) + df.iloc[i, rPSG2_AD] + df.iloc[i, aPSG2_AD]) / 2) elif (df.iloc[i, rPSG2_AD] != 0 and df.iloc[i, aPSG2_AD] !=0): x = ((((df.iloc[i, rPSG2_AD] + df.iloc[i, aPSG2_AD]) / 2) + df.iloc[i, rPSG1_AD] + df.iloc[i, aPSG1_AD]) / 2) elif (df.iloc[i, rPSG1_AD] != 0 and df.iloc[i, aPSG1_AD] !=0 and df.iloc[i, rPSG2_AD] != 0 and df.iloc[i, aPSG2_AD] != 0): x = ((((df.iloc[i, rPSG2_AD] + df.iloc[i, aPSG2_AD]) / 2) + (df.iloc[i, rPSG1_AD] + df.iloc[ i, aPSG1_AD])/2) / 2) else: x = ((df.iloc[i, rPSG1_AD] + df.iloc[i, rPSG2_AD] + df.iloc[i, aPSG1_AD] + df.iloc[i, aPSG2_AD]) / 2) r_AD.append(x) a_GT.append(df.iloc[i, rPSG2_GT]) y = 0 a_AD.append(y) # Case 2 Same situation Ref and Alt in both for df elif (df.iloc[i, rPSG1_GT] == df.iloc[i, rPSG2_GT]) and (df.iloc[i, aPSG1_GT] == df.iloc[i, aPSG2_GT]): r_GT.append(df.iloc[i, rPSG1_GT]) x = (df.iloc[i, rPSG1_AD] + df.iloc[i, rPSG2_AD]) / 2 r_AD.append(x) a_GT.append(df.iloc[i, aPSG1_GT]) y = (df.iloc[i, aPSG1_AD] + df.iloc[i, aPSG2_AD]) / 2 a_AD.append(y) # Case 3 Inverse situation Ref and Alt in both for df elif (df.iloc[i, rPSG1_GT] == df.iloc[i, aPSG2_GT]) and (df.iloc[i, aPSG1_GT] == df.iloc[i, rPSG2_GT]): r_GT.append(df.iloc[i, rPSG1_GT]) x = (df.iloc[i, rPSG1_AD] + df.iloc[i, aPSG2_AD]) / 2 # averaged by 2 (for each mapping method) r_AD.append(x) a_GT.append(df.iloc[i, aPSG1_GT]) y = (df.iloc[i, aPSG1_AD] + df.iloc[i, rPSG2_AD]) / 2 # averaged by 2 (for each mapping method) a_AD.append(y) # Case 4 First homozygot, second with alternative allele in second position (as alternative) elif (df.iloc[i, rPSG1_GT] == df.iloc[i, aPSG1_GT]) and (df.iloc[i, rPSG2_GT] != df.iloc[i, aPSG2_GT]) and ( df.iloc[i, rPSG1_GT] == df.iloc[i, rPSG2_GT]): # print("Ref GT: ", df.iloc[i, rPSG1_GT]," Counts: ",df.iloc[i, rPSG1_AD]," ",df.iloc[i, aPSG1_AD]," ",df.iloc[i, rPSG2_AD]," averaged by 2") r_GT.append(df.iloc[i, rPSG1_GT]) if (df.iloc[i, rPSG1_AD] != 0 and df.iloc[i, aPSG1_AD] != 0 and df.iloc[i, rPSG2_AD] != 0): #print ("WARNING: Line ",i," in sample ",sample," has three counts for the same allele. It is corrected by averaging by 3") x = (df.iloc[i, rPSG1_AD] + df.iloc[i, aPSG1_AD] + df.iloc[i, rPSG2_AD]) / 3 else: x = (df.iloc[i, rPSG1_AD] + df.iloc[i, aPSG1_AD] + df.iloc[i, rPSG2_AD]) / 2 # counts from 3 cells from # which one is 0, from 2 mapping methods (averaged by 2) r_AD.append(x) a_GT.append(df.iloc[i, aPSG2_GT]) y = df.iloc[i, aPSG2_AD] / 2 a_AD.append(y) # Case 5 First homozygot, second with alternative allele in first position (as reference) elif ((df.iloc[i, rPSG1_GT] == df.iloc[i, aPSG1_GT]) and (df.iloc[i, rPSG2_GT] != df.iloc[i, aPSG2_GT]) and ( df.iloc[i, rPSG1_GT] == df.iloc[i, aPSG2_GT])): #print("Ref GT: ", df.iloc[i, rPSG1_GT], " Counts: ", df.iloc[i, rPSG1_AD], " ", df.iloc[i, aPSG1_AD], " ",df.iloc[i, aPSG2_AD], " averaged by 2") r_GT.append(df.iloc[i, rPSG1_GT]) if (df.iloc[i, rPSG1_AD] != 0 and df.iloc[i, aPSG1_AD] != 0 and df.iloc[i, aPSG2_AD] != 0) : #print("WARNING: Line ", i, " in sample ", sample, " has three counts for the same allele. It is corrected by averaging by 3") x = (df.iloc[i, rPSG1_AD] + df.iloc[i, aPSG1_AD] + df.iloc[i, aPSG2_AD]) / 3 else: x = (df.iloc[i, rPSG1_AD] + df.iloc[i, aPSG1_AD] + df.iloc[i, aPSG2_AD]) / 2 # counts from 3 cells from which one is 0, from 2 mapping methods (averaged by 2) r_AD.append(x) a_GT.append(df.iloc[i, rPSG2_GT]) y = df.iloc[i, rPSG2_AD] / 2 a_AD.append(y) # Case 6 Second homozygot, first heterozygot with alternative allele in second position (as alternative) elif (df.iloc[i, rPSG1_GT] != df.iloc[i, aPSG1_GT]) and (df.iloc[i, rPSG2_GT] == df.iloc[i, aPSG2_GT]) and ( df.iloc[i, rPSG1_GT] == df.iloc[i, rPSG2_GT]): #print("Ref GT: ", df.iloc[i, rPSG1_GT], " Counts: ", df.iloc[i, rPSG1_AD], " ", df.iloc[i, rPSG2_AD], " ",df.iloc[i, aPSG2_AD], " averaged by 2") r_GT.append(df.iloc[i, rPSG1_GT]) if (df.iloc[i, rPSG1_AD] != 0 and df.iloc[i, rPSG2_AD] != 0 and df.iloc[i, aPSG2_AD] !=0 ): #print("WARNING: Line ", i, " in sample ", sample, " has three counts for the same allele. It is corrected by averaging by 3") x = (df.iloc[i, rPSG1_AD] + df.iloc[i, rPSG2_AD] + df.iloc[i, aPSG2_AD]) / 3 else: x = (df.iloc[i, rPSG1_AD] + df.iloc[i, rPSG2_AD] + df.iloc[i, aPSG2_AD]) / 2 # counts from 3 cells from which one is 0, from 2 mapping methods (averaged by 2) r_AD.append(x) a_GT.append(df.iloc[i, aPSG1_GT]) y = df.iloc[i, aPSG1_AD] / 2 a_AD.append(y) # Case 7 Second homozygot, first heterozygot with alternative allele in first position (as reference) elif (df.iloc[i, rPSG1_GT] != df.iloc[i, aPSG1_GT]) and (df.iloc[i, rPSG2_GT] == df.iloc[i, aPSG2_GT]) and ( df.iloc[i, aPSG1_GT] == df.iloc[i, aPSG2_GT]): #print("Alt GT: ", df.iloc[i, rPSG2_GT], " Counts: ", df.iloc[i, aPSG1_AD], " ", df.iloc[i, rPSG2_AD], " ",df.iloc[i, aPSG2_AD], " averaged by 2") r_GT.append(df.iloc[i, rPSG1_GT]) x = df.iloc[i, rPSG1_AD] / 2 r_AD.append(x) a_GT.append(df.iloc[i, rPSG2_GT]) if (df.iloc[i, aPSG1_AD] != 0 and df.iloc[i, rPSG2_AD] != 0 and df.iloc[i, aPSG2_AD] !=0): #print("WARNING: Line ", i, " in sample ", sample, " has three counts for the same allele. It is corrected by averaging by 3") y = (df.iloc[i, aPSG1_AD] + df.iloc[i, rPSG2_AD] + df.iloc[i, aPSG2_AD]) / 3 else: y = (df.iloc[i, aPSG1_AD] + df.iloc[i, rPSG2_AD] + df.iloc[i, aPSG2_AD]) / 2 # counts from 3 cells from which one is 0, from 2 mapping methods (averaged by 2) a_AD.append(y) # Case 8 Both homozygot, first for the reference allele and second for the alternative allele elif (df.iloc[i, rPSG1_GT] == df.iloc[i, aPSG1_GT]) and (df.iloc[i, rPSG2_GT] == df.iloc[i, aPSG2_GT]) and ( df.iloc[i, aPSG1_GT] != df.iloc[i, aPSG2_GT]): #print("Ref GT: ", df.iloc[i, rPSG1_GT], " Counts: ", df.iloc[i, rPSG1_AD], " ", df.iloc[i, aPSG1_AD], "averaged by 2") r_GT.append(df.iloc[i, rPSG1_GT]) x = df.iloc[i, rPSG1_AD] + df.iloc[i, aPSG1_AD] # one of these counts will be 0 so no need to average r_AD.append(x) a_GT.append(df.iloc[i, rPSG2_GT]) y = df.iloc[i, rPSG2_AD] + df.iloc[i, aPSG2_AD] # one of these counts will be 0 so no need to average a_AD.append(y) else: print("Error in the SNP on the coordinates ", df.iloc[i, "CHROM"], ", ", df.iloc[i, "POS"], ", sample num ", sample) return (r_GT, r_AD, a_GT, a_AD) def sample_average(df, samples, PSGs): cols = [] # Index of columns to be drop in the end # Create 4 columns for each averaged sample: for sample in samples: print("Sample average in sample ", sample, "\n") # Average each sample according to genotype: (r_GT, r_AD, a_GT, a_AD) = evaluation(df, sample, PSGs) # Add the new columns sample_r_GT = str(sample + "_R_.GT") sample_a_GT = str(sample + "_A_.GT") sample_r_AD = str(sample + "_R_.AD") sample_a_AD = str(sample + "_A_.AD") df[sample_r_GT] = r_GT df[sample_a_GT] = a_GT df[sample_r_AD] = r_AD df[sample_a_AD] = a_AD # Drop the columns that won't be used r = "_R_" a = "_A_" gt = ".GT" ad = ".AD" PSG1_code: str = PSGs[0] PSG2_code: str = PSGs[1] rPSG1_GT = int(df.columns.get_loc(str(sample + r + PSG1_code + gt))) aPSG1_GT = int(df.columns.get_loc(str(sample + a + PSG1_code + gt))) rPSG2_GT = int(df.columns.get_loc(str(sample + r + PSG2_code + gt))) aPSG2_GT = int(df.columns.get_loc(str(sample + a + PSG2_code + gt))) rPSG1_AD = int(df.columns.get_loc(str(sample + r + PSG1_code + ad))) aPSG1_AD = int(df.columns.get_loc(str(sample + a + PSG1_code + ad))) rPSG2_AD = int(df.columns.get_loc(str(sample + r + PSG2_code + ad))) aPSG2_AD = int(df.columns.get_loc(str(sample + a + PSG2_code + ad))) cols.append(rPSG1_GT) cols.append(aPSG1_GT) cols.append(rPSG2_GT) cols.append(aPSG2_GT) cols.append(rPSG1_AD) cols.append(aPSG1_AD) cols.append(rPSG2_AD) cols.append(aPSG2_AD) return df, cols def main(): # Add files extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) df_bi = snakemake.input.get("csv") df_bi = pd.read_csv(df_bi, low_memory=False) df_bi = pd.DataFrame(df_bi) sample_names = pd.read_csv(snakemake.input.get("sn1")) PSG_codes = pd.read_csv(snakemake.input.get("psc")) # Create arrays of the sample names and the pseudogenome codes samples = sample_names['Sample_name'].values PSGs = PSG_codes['PSGs'].values df_av = snakemake.output[0] # Mine the data df_average, cols = sample_average(df_bi, samples, PSGs) # Drop the columns that are not needed df_average.drop(df_average.columns[cols], axis=1, inplace=True) df_average.to_csv(df_av) if __name__ == '__main__': main() shell( "{log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2021, Aurora Campo" __email__ = "[email protected]" __license__ = "MIT" import os import pandas as pd import numpy as np from os import path from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts shell.executable("bash") extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) """ DEL MULTIALLELIC SITES ---------------------- Compare the genotypes for assessing the counts on each allele Set the data for the mapping against the pseudogenome of sample PSG1 because it has the variants of the reference genotype. The SNPs called by this sample are set as reference and alternative alleles for all the other samples. The tables containing the SNPs from mapping to PSG1 and PSG2 contained only biallelic sites. However multiallelic possibilities can appear if one SNP was called for a different genotpe in each of the pseudogenomes. The multiallelic sites will be deleted from this dataframe to continue the analysis with bialleleic sites only. Delete multiallelic sites: Let's start droping the multiallelic. The criteria compares if the reference allele in the SNPs resulting from mapping against PSG1 pseudogenome is different form the reference and the alternative alleles from the mapping against PSG2 pseudogenome. This is later repeated for the alternative allele. Note that the SNPs mapped against PSG1 pseudogenome have been pre-filtered for biallelic sites for all the samples. Collect the indexes where the reference allele in PSG1 is different from both alleles in the other mappings or the alternative allele in PSG1 is different from both alleles in the PSG2 mapping. """ # Make an iterator for the collection of multiallelic sites: def multiallelic_sample(df, sample, PSGs): # For obtaining the column names: r = "_R_" a = "_A_" gt = ".GT" PSG1_code: str = PSGs[0] PSG2_code: str = PSGs[1] rPSG1_GT = int(df.columns.get_loc(str(sample + r + PSG1_code + gt))) aPSG1_GT = int(df.columns.get_loc(str(sample + a + PSG1_code + gt))) rPSG2_GT = int(df.columns.get_loc(str(sample + r + PSG2_code + gt))) aPSG2_GT = int(df.columns.get_loc(str(sample + a + PSG2_code + gt))) print("Multiallelic loop in sample: ", sample) sample_index = [] for i in range(len(df)): if (((df.iloc[i, rPSG1_GT]) != df.iloc[i, rPSG2_GT]) & (df.iloc[i, rPSG1_GT] != df.iloc[i, aPSG2_GT])) | ( (df.iloc[i, aPSG1_GT] != df.iloc[i, rPSG2_GT]) & (df.iloc[i, aPSG1_GT] != df.iloc[i, aPSG2_GT])): sample_index.append(i) return sample_index # Eliminate the multiallelic sites def multiallelic(df, samples, PSGs, multi_index): for sample in samples: multiallelic_sample_index = multiallelic_sample(df, sample, PSGs) multi_index = multi_index + multiallelic_sample_index df_bi = df.drop(index=multi_index) return df_bi def main(): # Add files mdf = pd.read_csv(snakemake.input.get("csv"), low_memory=False) mdf = pd.DataFrame(mdf) sample_names = pd.read_csv(snakemake.input.get("sn1")) PSG_codes = pd.read_csv(snakemake.input.get("psc")) # Create arrays of the sample names and the pseudogenome codes samples = sample_names['Sample_name'].values PSGs = PSG_codes['PSGs'].values # Create an empty array for collect the indexes with multiallelic sites: multi_index = [] # Mine the datafiles df_bi = multiallelic(mdf, samples, PSGs, multi_index) df_bi.to_csv(snakemake.output[0]) if __name__ == '__main__': main() shell( "{log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2018, Johannes Köster" __email__ = "[email protected]" __license__ = "MIT" import os from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") files=snakemake.input.gvcfs print(files) gvcfs = list(map("-V {}".format, snakemake.input.gvcfs)) print(gvcfs) log = snakemake.log_fmt_shell(stdout=True, stderr=True) shell( "gatk --java-options '{java_opts}' CombineGVCFs {extra} " "{gvcfs} " "-R {snakemake.input.ref} " "-O {snakemake.output.gvcf} {log}" ) |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | __author__ = "Johannes Köster" __copyright__ = "Copyright 2018, Johannes Köster" __email__ = "[email protected]" __license__ = "MIT" import tempfile from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts extra = snakemake.params.get("extra", "") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) with tempfile.TemporaryDirectory() as tmpdir: shell( "picard CreateSequenceDictionary" " {java_opts} {extra}" " --REFERENCE {snakemake.input[0]}" " --TMP_DIR {tmpdir}" " --OUTPUT {snakemake.output[0]}" " --CREATE_INDEX true" " {log}" ) |
2 3 4 5 6 7 8 9 10 11 12 13 | __author__ = "Michael Chambers" __copyright__ = "Copyright 2019, Michael Chambers" __email__ = "[email protected]" __license__ = "MIT" from snakemake.shell import shell from snakemake_wrapper_utils.samtools import get_samtools_opts log = snakemake.log_fmt_shell(stdout=True, stderr=True) shell("samtools faidx {snakemake.input[0]} {log}") |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2021, Aurora Campo" __email__ = "[email protected]" __license__ = "MIT" import os import pandas as pd import numpy as np from os import path from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts shell.executable("bash") extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) """ ASSIGN REFERENCE AND ALTERNATIVE ALLELES UNIFORMLY IN ALL SAMPLES ----------------------------------------------------------------- Reference and alternative alleles have been assigned by sample. This function will correct it and will assign the reference and alternative alleles according to the pattern established in sample 1. """ def compare(df, sample, R_models, A_models,SNP_panel): # This iterator will construct the new columns for the samples according to the reference and alternative alleles # assigned in sample1 # Position of the sample columns sample_r_gt = int(df.columns.get_loc(str(sample + "_R_.GT"))) sample_a_gt = int(df.columns.get_loc(str(sample + "_A_.GT"))) sample_r_ad = int(df.columns.get_loc(str(sample + "_R_.AD"))) sample_a_ad = int(df.columns.get_loc(str(sample + "_A_.AD"))) # Create the empty lists to collect the average variables and genotypes r_AD = [] a_AD = [] r_GT = [] a_GT = [] print("Compare genotypes loop in sample: ", sample) # Start iterator for model genotypes for k in range(len(df)): # Set in the model the new genotypes in case the samples didn't express this allele. if R_models[k] == A_models[k] and R_models[k] == ".": # print("Previous: ", R_models[k], A_models[k], ", new: ", df.iloc[k, sample_r_gt], df.iloc[k, sample_a_gt]) R_models[k] = df.iloc[k, sample_r_gt] A_models[k] = df.iloc[k, sample_a_gt] elif R_models[k] == A_models[k] and R_models[k] == df.iloc[k, sample_r_gt]: A_models[k] = df.iloc[k, sample_a_gt] elif R_models[k] == A_models[k] and R_models[k] == df.iloc[k, sample_a_gt]: A_models[k] = df.iloc[k, sample_r_gt] # Start iterator for comparison with the new models for i in range(len(df)): if R_models[i] == df.iloc[i, sample_r_gt] and A_models[i] == df.iloc[i, sample_a_gt]: # 1 Reference and alternative are set in the same position for sample and sample1 (reference) # It applies to both samples heterozygots or both homozygots with same genotype r_AD.append(df.iloc[i, sample_r_ad]) a_AD.append(df.iloc[i, sample_a_ad]) r_GT.append(df.iloc[i, sample_r_gt]) a_GT.append(df.iloc[i, sample_a_gt]) elif A_models[i] == df.iloc[i, sample_r_gt] and R_models[i] == df.iloc[i, sample_a_gt]: # 2 Reference and alternative are set in the inverse position for sample and sample1 (reference) # It applies to both samples heterozygots or both homozygots with same genotype r_AD.append(df.iloc[i, sample_a_ad]) a_AD.append(df.iloc[i, sample_r_ad]) r_GT.append(df.iloc[i, sample_a_gt]) a_GT.append(df.iloc[i, sample_r_gt]) elif R_models[i] == df.iloc[i, sample_r_gt] and A_models[i] == df.iloc[i, sample_r_gt] and A_models[i] != \ df.iloc[i, sample_a_gt]: # 3 It applies to first sample homozygot and second sample heterozygot with the alternative allele in second r_AD.append(df.iloc[i, sample_r_ad]) a_AD.append(df.iloc[i, sample_a_ad]) r_GT.append(df.iloc[i, sample_r_gt]) a_GT.append(df.iloc[i, sample_a_gt]) elif R_models[i] != df.iloc[i, sample_r_gt] and A_models[i] != df.iloc[i, sample_r_gt] and A_models[i] == \ df.iloc[i, sample_a_gt]: # 4 It applies to first sample homozygot and second sample heterozygot with the alternative allele in first r_AD.append(df.iloc[i, sample_a_ad]) a_AD.append(df.iloc[i, sample_r_ad]) r_GT.append(df.iloc[i, sample_a_gt]) a_GT.append(df.iloc[i, sample_r_gt]) elif R_models[i] == A_models[i] and R_models[i] != df.iloc[i, sample_r_gt] and df.iloc[i, sample_r_gt] == \ df.iloc[i, sample_a_gt]: # 5 It applies to first sample homozygot for the reference allele and second sample homozygot for the # alternative allele a_AD.append(df.iloc[i, sample_r_ad] + df.iloc[i, sample_a_ad]) # One of them will be 0 r_GT.append(df.iloc[i, sample_a_gt]) a_GT.append(df.iloc[i, sample_a_gt]) r_AD.append(0) elif R_models[i] != A_models[i] and R_models[i] == df.iloc[i, sample_r_gt] and df.iloc[i, sample_r_gt] == \ df.iloc[i, sample_a_gt]: # 6 It applies to first sample heterozygot and second sample homozygot for the reference allele r_GT.append(df.iloc[i, sample_r_gt]) a_GT.append(df.iloc[i, sample_r_gt]) r_AD.append(df.iloc[i, sample_r_ad] + df.iloc[i, sample_r_ad]) # One of them will be 0 a_AD.append(0) elif R_models[i] != A_models[i] and A_models[i] == df.iloc[i, sample_a_gt] and df.iloc[i, sample_r_gt] == \ df.iloc[i, sample_a_gt]: # 7 It applies to first sample heterozygot and second sample homozygot for the alternative allele a_AD.append(df.iloc[i, sample_r_ad] + df.iloc[i, sample_a_ad]) # One of them will be 0 r_GT.append(df.iloc[i, sample_a_gt]) a_GT.append(df.iloc[i, sample_a_gt]) r_AD.append(0) elif R_models[i] == df.iloc[i, sample_r_gt] and A_models[i] == df.iloc[i, sample_r_gt] and df.iloc[ i, sample_r_gt] == df.iloc[i, sample_a_gt]: # 8 It applies to first sample homozygot for the reference allele and second sample homozygot for the # reference allele too r_AD.append(df.iloc[i, sample_r_ad] + df.iloc[i, sample_a_ad]) # One of them will be 0 r_GT.append(df.iloc[i, sample_r_gt]) a_GT.append(df.iloc[i, sample_r_gt]) a_AD.append(0) elif R_models[i] == A_models[i] and R_models[i] == ".": # 9 SNP not expressed in the sample1 as reference gentoype r_AD.append(df.iloc[i, sample_r_ad]) a_AD.append(df.iloc[i, sample_a_ad]) r_GT.append(df.iloc[i, sample_r_gt]) a_GT.append(df.iloc[i, sample_a_gt]) print(i) elif df.iloc[i, sample_r_gt] == df.iloc[i, sample_a_gt] and df.iloc[i, sample_r_gt] == ".": # 10 SNP not expressed in the sample to evaluate r_AD.append(0) a_AD.append(0) r_GT.append(".") a_GT.append(".") else: print("ERROR: Comparison of genotypes of sample ", sample, " provided an error for the SNP in the row ", i, " with genotypes ", df.iloc[i, sample_a_gt], ", ", df.iloc[i, sample_r_gt], ". You must check if the evaluation of this case is correct") # Make a dataframe with the model genotypes SNP_panel["Reference allele"] = R_models SNP_panel["Alternative allele"] = A_models SNP_panel.to_csv(snakemake.output.get("result2")) print("Result 2, SNP panel, written in disk") genotype_models = pd.DataFrame(data=[R_models, A_models]).T genotype_models.to_csv(snakemake.output.get("result3")) print("Results 3, Genotype models, written in disk") return r_AD, a_AD, r_GT, a_GT, R_models, A_models def genotype(df, samples): # Make the new df and prepare the first columns of the SNP_panel: df_uni = df.iloc[:, 1:10] SNP_panel = df.iloc[:, 1:10] # Determines the genotypes for sample1 and calls the function to compare genotypes j = 0 for sample in samples: j = j + 1 if j == 1: # If we are in the first sample we set the reference R_models = df[str(sample + "_R_.GT")].to_numpy() A_models = df[str(sample + "_A_.GT")].to_numpy() # Collection the name of the samples sample_r_gt = str(sample + "_R_.GT") sample_a_gt = str(sample + "_A_.GT") sample_r_ad = str(sample + "_R_.AD") sample_a_ad = str(sample + "_A_.AD") # Assign the list to the column name df_uni[sample_r_gt] = df[str(sample + "_R_.GT")] df_uni[sample_a_gt] = df[str(sample + "_A_.GT")] df_uni[sample_r_ad] = df[str(sample + "_R_.AD")] df_uni[sample_a_ad] = df[str(sample + "_A_.AD")] else: # If we already passed the first sample (r_ad, a_ad, r_gt, a_gt, R_models, A_models) = compare(df, sample, R_models, A_models, SNP_panel) # Collection the name of the samples sample_r_gt = str(sample + "_R_.GT") sample_a_gt = str(sample + "_A_.GT") sample_r_ad = str(sample + "_R_.AD") sample_a_ad = str(sample + "_A_.AD") # Assign the list to the column name df_uni[sample_r_gt] = r_gt df_uni[sample_a_gt] = a_gt df_uni[sample_r_ad] = r_ad df_uni[sample_a_ad] = a_ad #df_uni.drop(['Unnamed: 0', 'Unnamed: 0.1', 'Unnamed: 0.1.1', 'Unnamed: 0_x'], axis=1) return df_uni def main(): # Add the files ad10_df=snakemake.input.get("csv") geno_df=snakemake.output.get("result1") result2=snakemake.output.get("result2") result3=snakemake.output.get("result3") df_ad10 = pd.read_csv(ad10_df, low_memory=False) df_ad10 = pd.DataFrame(df_ad10) sample_names = pd.read_csv(snakemake.input.get("sn1")) # Create arrays of the sample names samples = sample_names['Sample_name'].values # Mine the datafiles df_uni = genotype(df_ad10, samples) #drop the useless columns: df_uni.to_csv(geno_df) print("Final file, Uniform SNPs, written in disk") if __name__ == '__main__': main() shell( "{log}" ) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2021, Aurora Campo" __email__ = "[email protected]" __license__ = "MIT" import os import pandas as pd import numpy as np from os import path from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts shell.executable("bash") extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) """ MERGE THE DATAFRAMES ----------------------- The format of the table is the same for both dataframes. Columns from 1 to 6 are: CHROM: Chromosome, POS: position, Gene.refGene: Gene_ID Func.refGene: Annotation of the function for this SNP ExonicFunc.refGene: Annotation of the function if this SNP is exonic AF: Allele frequency estimated for all the samples From column 7th till the end there will be 4 columns for each sample. The structure of the column name is as follows: NAME (determined by the sample name) _R or _A (reference or alternative allele) _??? (The pseudogenome code) .AD (allele depth) .GT (Genotype) The next step is to merge the two dataframes on the common chromosome and position: """ # Read the files csv1=snakemake.input.get("csv1") csv2=snakemake.input.get("csv2") merged_df=snakemake.output[0] PSG1 = pd.read_csv(csv1, low_memory=False) PSG2 = pd.read_csv(csv2, low_memory=False) PSG1 = pd.DataFrame(PSG1) PSG2 = pd.DataFrame(PSG2) # Merge df = pd.merge(PSG1, PSG2, on=('CHROM', 'POS')) df.to_csv(merged_df, sep=',') print('Files merged') shell( "{log}" ) |
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 | __author__ = "Aurora Campo" __copyright__ = "Copyright 2021, Aurora Campo" __email__ = "[email protected]" __license__ = "MIT" """ python 3.7 @autor : Ayla @version : 1.0 @date : September 2021 This script is a quality control of the data filtered by the script "ASE_workflow.py". These SNPs are unbiased and biallelic, and the monoallelic expression (MAE) has been discarded. This script will plot the distribution of the data in general and for each experimental group. It needs a file with the name of the experimental group as the acronyms used in the sample name. For example: The sample number 1 corresponds to the gills exposed to freshwater The two experimental factors are "gills" (G) and "freshwater" (F) Then the sample is called "1GF" and the group name will be called "GF" This script also needs a csv file with the first column naming the experimental groups and the next columns with the sample names of each sample in a group """ import pandas as pd import os import numpy as np import matplotlib.pyplot as plt from matplotlib.ticker import StrMethodFormatter from snakemake.shell import shell from snakemake_wrapper_utils.java import get_java_opts shell.executable("bash") extra = snakemake.params.get("extra") java_opts = snakemake.params.get("java_opts") log = snakemake.log_fmt_shell(stdout=False, stderr=True) """ ALLELE FREQUENCIES ------------------ Compute allele frequencies for each allele and later for each experimental group. """ def frequencies(df, samples): """ :param df: dataframe with unbiased SNP counts without allele frequencies :param samples: list of strings including the sample names :return: dataframe with the allele frequencies by sample """ # Calculate the allele frequencies for sample in samples: sample_r_ad = str(sample + "_R_.AD") sample_a_ad = str(sample + "_A_.AD") af_sample = str("AF_" + sample) df[af_sample] = df[sample_r_ad] / (df[sample_r_ad] + df[sample_a_ad]) df = df.fillna(0) # To fill cases where there are no counts and therefore AF is divided by 0 print("Allele frequencies by sample calculated") return df def allele_freqs(group_names, df): # Calculate the allele frequency for each experimental group in order to make a plot of each group: for group_name in group_names: af_group = "AF_" + group_name x_name = af_group + "_x" y_name = af_group + "_y" print(x_name) print(y_name) x = df.loc[:, df.columns.str.contains("([0-9])+" + group_name + "_R_.AD", regex=True)] y = df.loc[:, df.columns.str.contains("([0-9])+" + group_name + "_A_.AD", regex=True)] df[x_name] = x.sum(axis=1) df[y_name] = y.sum(axis=1) df[af_group] = df[x_name]/(df[x_name] + df[y_name]) #df.drop(columns=x_name, inplace=True) #df.drop(columns=y_name, inplace=True) df = df.fillna(0) print("Allele frequencies by experimental group calculated") return df def plot(df, group_names): # Plot all the histograms with the allele frequencies for group_name in group_names: af_group = "AF_" + group_name # Possibility 1 # df.hist(column=af_group, bins=100, grid=False, figsize=(8,10), layout=(1,1), sharex=True, color='#86bf91', zorder=2, rwidth=0.9) # Possibility 3 previous in the script hist_data = df[af_group].values plt.hist(hist_data, 100, density=False, facecolor='#86bf91') plt.xlabel('Allele frequency') plt.ylabel('Frequency') plt.title(af_group) plt.grid(True) axes = plt.gca() axes.set_ylim([0, 15000]) # plt.show() # Get the path PATH = os.getcwd () os.chdir("results") plt.savefig(group_name + "_AF_mapping_bias.svg") os.chdir(PATH) plt.clf () def main(): # Import the files df = pd.read_csv(snakemake.input.get("i1")) sample_names = pd.read_csv(snakemake.input.get("sn1")) # Create arrays of the sample names samples = sample_names['Sample_name'].values groups_df = pd.read_csv(snakemake.input.get("i2")) # Create a numpy array with the name of each group group_names = list(groups_df.columns[0]) # Mine the data df_af = frequencies(df, samples) df_qc = allele_freqs(group_names, df_af) # Copy the quality control file for further calculation of the stats df_qc.to_csv(snakemake.output.get("results")) # Plot the histograms plot(df_qc, group_names) if __name__ == '__main__': main() shell( "{log}" ) |
tool / bioconda
snakemake-wrapper-utils
A collection of utility functions and classes for Snakemake wrappers.