19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100 | #location in host genome (chr, start, stop)
#part of viral genome inserted (virus, start, stop)
#integration type (whole, portion, rearrangement, etc)
#overlaps/gaps at each junction
# reports all integration sites relative to the host genome, independent of other integrations
# intergrations are stored internally though the Integration class
###import libraries
from Bio import SeqIO
from Bio.Alphabet.IUPAC import unambiguous_dna
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
from scipy.stats import poisson
import pandas as pd
import argparse
from sys import argv
from os import path
import numpy as np
import scipy
import csv
import re
import pprint
import time
###
max_attempts = 200000 #maximum number of times to try to place an integration site
default_ints = 5
default_epi = 0
default_p_whole = 0.3
default_p_rearrange = 0.05
default_p_delete = 0.05
default_lambda_split = 1.5
default_p_overlap = 0.3
default_p_gap = 0.3
default_lambda_junction = 3
default_p_host_del = 0.0
default_lambda_host_del = 1000
default_min_sep = 500
search_length_overlap = 10000 # number of bases to search either side of randomly generated position for making overlaps
lambda_junc_percentile = 0.99
fasta_extensions = [".fa", ".fna", ".fasta"]
pp = pprint.PrettyPrinter(indent=4)
def main(argv):
#get arguments
parser = argparse.ArgumentParser(description='simulate viral integrations')
parser.add_argument('--host', help='host fasta file', required = True, type=str)
# parser.add_argument('--simug_snp_indel', help='output file from simuG to map location of snps and indels')
parser.add_argument('--virus', help = 'virus fasta file', required = True, type=str)
parser.add_argument('--ints', help = 'output fasta file', type=str, default="integrations.fa")
parser.add_argument('--int_info', help = 'output tsv with info about viral integrations', type=str, default="integrations.tsv")
parser.add_argument('--int_num', help = f"number of integrations to be carried out [{default_ints}]", type=int, default=default_ints)
parser.add_argument('--p_whole', help = f"probability of a virus being integrated completely [{default_p_whole}]", type = float, default=default_p_whole)
parser.add_argument('--p_rearrange', help=f"probability of an integrated piece of virus being rearranged [{default_p_rearrange}]", type=float, default=default_p_rearrange)
parser.add_argument('--p_delete', help=f"probability of an integrated piece of virus containing a deletion [{default_p_delete}]", type=float, default=default_p_delete)
parser.add_argument('--lambda_split', help = f"mean of poisson distriubtion for number of pieces to split an integrated viral chunk into when rearranging or deleting [{default_lambda_split}]", type=float, default=default_lambda_split)
parser.add_argument('--p_overlap', help=f"probability of a junction to be overlapped (common bases between virus and host) [{default_p_overlap}]", type=float, default=default_p_overlap)
parser.add_argument('--p_gap', help=f"probability of a junction to have a gap [{default_p_gap}]", type=float, default=default_p_gap)
parser.add_argument('--lambda_junction', help = f"mean of poisson distribution of number of bases in a gap/overlap [{default_lambda_junction}]", type=float, default=default_lambda_junction)
parser.add_argument('--p_host_deletion', help=f"probability of a host deletion at the integation site [{default_p_host_del}]", type=float, default=default_p_host_del)
parser.add_argument('--lambda_host_deletion', help = f"mean of poisson distribution of number of bases deleted from the host [{default_lambda_host_del}]", type=float, default=default_lambda_host_del)
parser.add_argument('--epi_num', help = f"number of episomes to added to output fasta [{default_ints}]", type=int, default=default_ints)
parser.add_argument('--epi_info', help = 'output tsv with info about episomes', type=str, default="episomes.tsv")
parser.add_argument('--seed', help = 'seed for random number generator', default=12345, type=int)
parser.add_argument('--verbose', help = 'display extra output for debugging', action="store_true")
parser.add_argument('--model-check', help = 'check integration model every new integration', action="store_true")
parser.add_argument('--min-sep', help='minimum separation for integrations', type=int, default=default_min_sep)
parser.add_argument('--min-len', help='minimum length of integrated viral fragments', type=int, default=None)
parser.add_argument('--max-len', help='maximum length of integrated viral fragments', type=int, default=None)
args = parser.parse_args()
args.simug_snp_indel = None
#### generate integrations ####
# generate dictionary of probabilities and lambda/means as input for Integrations class
probs = {'p_whole' : args.p_whole,
'p_rearrange' : args.p_rearrange,
'p_delete' : args.p_delete,
'lambda_split' : args.lambda_split,
'p_overlap' : args.p_overlap,
'p_gap' : args.p_gap,
'lambda_junction' : args.lambda_junction,
'p_host_del' : args.p_host_deletion,
'lambda_host_del' : args.lambda_host_deletion}
# initialise Events
if args.verbose is True:
print("initialising a new Events object")
seqs = Events(args.host, args.virus, seed=args.seed, verbose = True,
min_len = args.min_len, max_len=args.max_len,
simug_snp_indel = args.simug_snp_indel)
# add integrations
seqs.add_integrations(probs, args.int_num, max_attempts,
model_check = args.model_check, min_sep = args.min_sep)
seqs.add_episomes(probs, args.epi_num, max_attempts)
# save outputs
seqs.save_fasta(args.ints)
seqs.save_integrations_info(args.int_info)
seqs.save_episomes_info(args.epi_info)
class Events(dict):
"""
base class for this script - stores two kinds of events: Integrations and Episomes
Integrations is a list-like class of Integration objects, which contain information about pieces of
virus that have been integrated and their junctions with the surrounding chromomsomal sequence
Episomes is a list-like class of ViralChunk objects, which contain information about pieces of virus that
are episomal (present in sequence data but not integrated into the host chromosomes)
"""
def __init__(self, host_fasta_path, virus_fasta_path,
seed = 12345, verbose = False, min_len = None, max_len=None,
simug_snp_indel = None, simug_cnv = None,
simug_inversion = None, simug_tranlocation = None):
"""
initialise events class by importing a host and viral fasta, and setting up the random number generator
"""
# expectations for inputs
assert isinstance(seed, int)
assert seed > 0
assert isinstance(verbose, bool)
assert isinstance(min_len, int) or min_len is None
if min_len is not None:
assert min_len > 0
if max_len is not None:
assert max_len > 1
self.verbose = verbose
self.min_len = min_len
self.max_len = max_len
# check and import fasta files
if self.verbose is True:
print("importing host fasta", flush=True)
# read host fasta - use index which doesn't load sequences into memory because host is large genome
if self.checkFastaExists(host_fasta_path):
self.host = SeqIO.to_dict(SeqIO.parse(host_fasta_path, 'fasta', alphabet=unambiguous_dna))
else:
raise OSError("Could not open host fasta")
if self.verbose is True:
print(f"imported host fasta with {len(self.host)} chromosomes:", flush=True)
host_chrs = {key:len(self.host[key]) for key in self.host.keys()}
for key, length in host_chrs.items():
print(f"\thost chromosome '{key}' with length {length}", flush=True)
# read virus fasta - make dictionary in memory of sequences
if self.checkFastaExists(virus_fasta_path):
self.virus = SeqIO.to_dict(SeqIO.parse(virus_fasta_path, 'fasta', alphabet=unambiguous_dna))
# convert all viral sequences to upper case to make it easier to check output
for this_virus in self.virus.values():
this_virus.seq = this_virus.seq.upper()
else:
raise OSError("Could not open virus fasta")
# check for SNP and indel map file from simuG - need to account for indels in output
if simug_snp_indel is not None:
self.indel = [row for row in self.read_simug_file(simug_snp_indel) if row['variant_type'] == 'INDEL']
else:
self.indel = None
# other types of structural variants
self.cnv = self.read_simug_file(simug_cnv)
self.inversion = self.read_simug_file(simug_inversion)
self.tranlocation = self.read_simug_file(simug_tranlocation)
# check that minimum length is greater than the length of all the viral references
if self.min_len is not None:
if not all([len(virus) >= self.min_len for virus in self.virus.values()]):
raise ValueError(f"specified minimum length is more than the length of one of the input viruses")
if any([len(virus) == self.min_len for virus in self.virus.values()]):
print(f"warning: minimum length is equal to the length of one or more references - integrations involving these references will all be whole, regardless of p_whole")
# check maximum length
if self.max_len is not None and self.min_len is not None:
if self.min_len > self.max_len:
raise ValueError("Minimum length cannot be greater than maximum")
# check maximum insertion is shorter than all viral references
if self.max_len is not None:
assert all([len(virus) >= self.max_len for virus in self.virus.values()])
if self.verbose is True:
print(f"imported virus fasta with {len(self.virus)} sequences:", flush=True)
virus_seqs = {key:len(self.virus[key]) for key in self.virus.keys()}
for key, length in virus_seqs.items():
print(f"\tviral sequence '{key}' with length {length}", flush=True)
# instantiate random number generator
self.rng = np.random.default_rng(seed)
def read_simug_file(self, filename):
"""
open simuG output file and read contents into memory
"""
if filename is None:
return None
assert path.isfile(filename)
lines = []
with open(filename, 'r') as infile:
reader = csv.DictReader(infile, delimiter = '\t')
for row in reader:
lines.append(row)
return lines
def add_integrations(self, probs, int_num, max_attempts = 50, model_check = False, min_sep = 1):
"""
Add an Integrations object with int_num integrations, with types specified by probs,
to self
"""
assert isinstance(max_attempts, int)
assert isinstance(int_num, int)
assert isinstance(min_sep, int)
assert max_attempts > 0
assert int_num >= 0
assert min_sep > 0
self._check_probs(probs)
self.min_sep = min_sep
self.max_attempts = max_attempts
self.model_check = model_check
# can only add integrations once
if 'ints' in self:
raise ValueError("integrations have already been added to this Events object") # is there a better error type for this?
# check that the number of requested integrations will fit in the host, given the requested minimum separation
# rule of thumb is that we allow 4*min_sep for each integration
total_host_length = sum([len(seq) for seq in self.host.values()])
if self.min_sep * 4 * int_num > total_host_length:
raise ValueError("The requested number of integrations, with the specified minimum separation, are not likely to fit into the specified host. Either decrease the number of integrations or the minimum separation.")
# we require that the minimum length of integrations is longer than the integrated virus
# so check the value of lambda_junction relative to min_len and the length of the shortest viral reference
# require that both are greater than the 99th percentile of the poisson distribution defined by lambda_junction
self.check_junction_length(probs)
# instantiate Integrations object
self.ints = Integrations(self.host, self.virus, probs, self.rng, self.max_attempts, self.model_check, self.min_sep, self.min_len, self.max_len, self.indel)
# add int_num integrations
if self.verbose is True:
print(f"performing {int_num} integrations", flush=True)
counter = 0
while len(self.ints) < int_num:
t0 = time.time()
if self.ints.add_integration() is False:
counter += 1
# check for too many attempts
if counter > max_attempts:
raise ValueError('too many failed attempts to add integrations')
t1 = time.time()
print(f"added integration {len(self.ints)} in {(t1-t0):.2f}s", flush=True)
print()
# if we had fewer than 50% of our attempts left
if (counter / max_attempts) > 0.5:
print(f"warning: there were {counter} failed integrations", flush=True)
def _check_probs(self, prob_dict):
"""
Check that all keys in probs are present
"""
for prob in ['p_whole', 'p_rearrange', 'p_delete', 'lambda_split', 'p_overlap', 'p_gap', 'lambda_junction', 'p_host_del', 'lambda_host_del']:
if prob not in prob_dict.keys():
raise ValueError(f"probs dictionary must contain key '{prob}'")
def add_episomes(self, probs, epi_num, max_attepmts = 50):
"""
Add an Integrations object with int_num integrations, with types specified by probs,
to self
"""
assert isinstance(max_attempts, int)
assert isinstance(epi_num, int)
assert max_attempts > 0
assert epi_num >= 0
# can only add episomes once
if 'epis' in self:
raise ValueError("episomes have already been added to this Events object")
# we require that the minimum length of integrations is longer than the integrated virus
# so check the value of lambda_junction relative to min_len and the length of the shortest viral reference
# require that both are greater than the 99th percentile of the poisson distribution defined by lambda_junction
self.check_junction_length(probs)
# instantiate Episomes object
self.epis = Episomes(self.virus, self.rng, probs, max_attempts, self.min_len)
# add epi_num episomes
if self.verbose is True:
print(f"adding {epi_num} episomes", flush=True)
counter = 0
while len(self.epis) < epi_num:
if self.epis.add_episome() is False:
counter += 1
if counter > max_attempts:
raise ValueError('too many failed attempts to add episomes')
def checkFastaExists(self, file):
#check file exists
exists = path.isfile(file)
if not(exists):
return False
#check extension
prefix = path.splitext(file)[-1]
if prefix:
if not prefix in fasta_extensions:
return False
return True
def check_junction_length(self, probs):
"""
we require that the minimum length of integrations is longer than the integrated virus
so check the value of lambda_junction relative to min_len and the length of the shortest viral reference
require that both are greater than the 99th percentile of the poisson distribution defined by lambda_junction
"""
if probs['p_gap'] + probs['p_overlap'] == 0:
return
thresh = poisson.ppf(lambda_junc_percentile, probs['lambda_junction'])
if self.min_len is not None:
if thresh * 2 > self.min_len:
raise ValueError(
"There is likely to be a lot of clashes between the length of the left and right junctions, and the \
length of the integrations. Set a shorter lambda_jucntion or a longer minimum length"
)
if thresh * 2 > min([len(virus) for virus in self.virus.values()]):
raise ValueError(
"There is likely to be a lot of clashes in which the length of the left and right junctions, and the \
length of the integrations. Set a shorter lambda_jucntion or use longer viral references."
)
def save_fasta(self, file):
"""
save output sequences to file
"""
if 'ints' in vars(self):
assert len(self.ints) >= 0
self.ints._Integrations__save_fasta(file, append = False)
if 'epis' in vars(self):
assert len(self.epis) >= 0
self.epis._Episomes__save_fasta(file, append = True)
if ('ints' not in vars(self)) and ('epis' not in vars(self)):
print("warning: no integrations or episomes have been added")
if self.verbose is True:
print(f"saved fasta with integrations and episomes to {file}")
def save_integrations_info(self, file):
"""
save info about integrations to file
"""
assert len(self.ints) >= 0
self.ints._Integrations__save_info(file)
if self.verbose is True:
print(f"saved information about integrations to {file}")
def save_episomes_info(self, file):
"""
save info about episomes to file
"""
assert 'epis' in vars(self)
assert len(self.epis) >= 0
self.epis._Episomes__save_info(file)
if self.verbose is True:
print(f"saved information about episomes to {file}", flush=True)
class Integrations(list):
"""
Class to store all integrations for a given host and virus
This class stores the sequences for the host and virus (dictionaries of biopython seqRecord objects)
And probabilities of each type of viral integration - whole/portion, rearrangement/deletion, gap/overlap,
means of poisson distributions, host deletions and their mean lengths, etc
These probabilities and means are stored in a dictionary - probs, which must contain the following values:
p_whole - probability of an integration being of the whole virus [0.3]. probability of a portion is 1-p_whole
p_rearrange - probability of a chunk being rearranged
p_delete - probability of a chunk containing a deletion
note that rearrangements and deletions are not mutually exclusive - an integration can have both a rearrangement and
a deletion. if this is the case, deletions are always performed first.
lambda_split - when splitting a chunk for a rearrangement or deletion, mean of the poission distribution for
number of pieces in which to split chunk
p_overlap - probability of a junction to contain an overlap (common bases between virus and host)
p_gap - probability of a junction to contain a gap (random bases inserted between host and virus)
(probability of neither a rearrangement or a deletion is 1 - (p_overlap + p_gap) )
lambda_junction - mean of poisson distribution of number of bases involved in overlap or gap
p_host_del - probability that there will be a deletion from the host at integration site
lambda_host_del - mean of poisson distribution of number of bases deleted from host genome at integration site
"""
def __init__(self, host, virus, probs, rng, max_attempts=50, model_check=False, min_sep=1, min_len=None, max_len=None, indel=None):
"""
Function
to initialise Integrations object
"""
# checks for inputs
assert isinstance(virus, dict)
assert isinstance(probs, dict)
assert isinstance(max_attempts, int)
assert max_attempts > 0
assert isinstance(model_check, bool)
assert isinstance(min_sep, int)
assert min_sep > 0
assert isinstance(min_len, int) or min_len is None
if min_len is not None:
assert min_len > 0
assert isinstance(max_len, int) or max_len is None
if max_len is not None:
assert max_len > 1
if min_len is not None:
assert max_len >= min_len
assert isinstance(indel, list) or indel is None
# assign properties common to all integrations
self.host = host
self.virus = virus
self.probs = probs
self.rng = rng
self.max_attempts = max_attempts
self.model_check = model_check
self.min_sep = min_sep
self.min_len = min_len
self.max_len = max_len
self.indel = indel
# default values for probs
self.set_probs_default('p_whole', default_p_whole)
self.set_probs_default('p_rearrange', default_p_rearrange)
self.set_probs_default('p_delete', default_p_delete)
self.set_probs_default('lambda_split', default_lambda_split)
self.set_probs_default('p_overlap', default_p_overlap)
self.set_probs_default('p_gap', default_p_gap)
self.set_probs_default('lambda_junction', default_lambda_junction)
self.set_probs_default('p_host_del', default_p_host_del)
self.set_probs_default('lambda_host_del', default_lambda_host_del)
# checks on assigned variables
assert 'p_whole' in probs
assert 'p_rearrange' in probs
assert 'p_delete' in probs
assert 'lambda_split' in probs
assert 'p_overlap' in probs
assert 'p_gap' in probs
assert 'lambda_junction' in probs
assert 'p_host_del' in probs
assert 'lambda_host_del' in probs
# check that probabilities are between 0 and 1
self.check_prob(self.probs['p_whole'], 'p_whole')
#self.check_prob(self.probs['p_rearrange'] + self.probs['p_delete'], 'the sum of p_rearrange and p_delete')
self.check_prob(self.probs['p_rearrange'], 'p_rearrange')
self.check_prob(self.probs['p_delete'], 'p_delete')
self.check_prob(self.probs['p_overlap'] + self.probs['p_gap'], 'the sum of p_overlap and p_gap')
self.check_prob(self.probs['p_host_del'], 'p_host_deletion')
# check that lambda values are positive floats
self.check_float_or_int_positive(self.probs['lambda_split'], 'lambda_split')
self.check_float_or_int_positive(self.probs['lambda_junction'], 'lambda_junction')
self.check_float_or_int_positive(self.probs['lambda_host_del'], 'lambda_host_deletion')
# initialize model of integrations
# each chromosome is an entry in the model dict
# each chromosome is composed of a list of sequences, each composed of a dictionary
# each sequence is a dictionary, specifying the 'origin' of the bases - 'host', 'virus', 'ambig'
# as well as the start and stop and orientation of that sequence (in a list)
# this is to be updated every time we do an integration
self.model = {chr : [{'origin': 'host', 'coords':(0, len(seq)), "ori" : "+", 'seq_name': chr}] for chr, seq in host.items()}
def set_probs_default(self, key, default):
"""
check if a key is in the probs dictionary, and if not set it to a default
"""
if key not in self.probs:
self.probs[key] = default
def check_float_or_int_positive(self, value, name):
"""
Check that a value, with a name, is a positive float or int
"""
if not isinstance(value, float) and not isinstance(value, int):
raise ValueError(f"{name} must be a float (it's currently {type(value)})")
if value <= 0:
raise ValueError(f"{name} must be greater than zero (it's currently {value})")
def check_prob(self, value, name):
"""
Check that a value, with a name, is a valid probability (float between 0 and 1):
"""
if not isinstance(value, float):
raise ValueError(f"{name} must be a float (it's currently {type(value)})")
if value < 0 or value > 1:
raise ValueError(f"{name} must be between 0 and 1")
def poisson_with_minimum_and_maximum(self, lambda_poisson, min=-np.inf, max=np.inf):
"""
get an integer from the poisson distribution with the specified lambda
with a minimum value
"""
assert max >= min
if min == max:
return min
counter = 0
while True:
n = int(self.rng.poisson(lam = lambda_poisson))
if n >= min and n <= max:
return n
counter += 1
if counter > self.max_attempts:
print(f"warning: too many attempts to get value with minimum {min} and maximum {max} from poisson distribution with mean {lambda_poisson}", flush=True)
return None
def add_integration(self):
"""
Add an integration by appending an Integration object to self.
"""
# call functions that randomly set properties of this integrations
counter = 0
while True:
chunk_props = self.set_chunk_properties()
if len(chunk_props) != 0:
break
counter += 1
if counter > self.max_attempts:
raise ValueError("too many attempts to set chunk properties")
assert len(chunk_props) == 6
counter = 0
while True:
junc_props = self.set_junc_properties()
if len(junc_props) != 0:
break
counter += 1
if counter > self.max_attempts:
raise ValueError("too many attempts to set junction properties")
assert len(junc_props) == 4
# make an integration
integration = Integration(self.host,
self.virus,
model = self.model,
rng = self.rng,
int_id = len(self),
chunk_props = chunk_props,
junc_props = junc_props,
min_sep = self.min_sep
)
# append to self if nothing went wrong with this integration
if integration.chunk.pieces is not None:
if integration.pos is not None:
assert integration.id not in [item.id for item in self]
self.append(integration)
self.__update_model(integration)
return True
return False
def set_junc_properties(self):
"""
randomly set the properties of the junctions (self.junc_props) for this Integration
dict with the following properties:
- junc_types = iterable of length 2 specifying type of left and right junctions (one of gap, overlap, clean)
- n_junc = iterable of length 2 specifying length of left and right junctions
- host_del = boolean specifying if there should be a deletion from the host at the integration site
- host_del_len = integer specifying the number of bases to be deleted from the host at the integration site
"""
junc_props = {}
# get type of left junction
p_clean = 1 - self.probs['p_overlap'] - self.probs['p_gap']
prob_juncs = [self.probs['p_overlap'], self.probs['p_gap'], p_clean]
junc_props['junc_types'] = self.rng.choice(a = ['overlap', 'gap', 'clean'], size = 2, p = prob_juncs)
# get number of bases in left junction
if junc_props['junc_types'][0] == 'clean':
n_left_junc = 0
elif junc_props['junc_types'][0] in ['gap', 'overlap']:
n_left_junc = self.poisson_with_minimum_and_maximum(self.probs['lambda_junction'], min = 1)
if n_left_junc is None:
return {}
else:
return {}
# get number of bases in right junction
if junc_props['junc_types'][1] == 'clean':
n_right_junc = 0
elif junc_props['junc_types'][1] in ['gap', 'overlap']:
n_right_junc = self.poisson_with_minimum_and_maximum(self.probs['lambda_junction'], min = 1)
if n_right_junc is None:
return {}
else:
return {}
junc_props['n_junc'] = (n_left_junc, n_right_junc)
# check that if we have a clean junction, it's length is 0
assert not(junc_props['junc_types'][0] == 'clean') or junc_props['n_junc'][0] == 0
assert not(junc_props['junc_types'][1] == 'clean') or junc_props['n_junc'][1] == 0
# check that if we don't have a clean junction, it's length is greater than zero
assert not(junc_props['junc_types'][0] != 'clean') or junc_props['n_junc'][0] > 0
assert not(junc_props['junc_types'][1] != 'clean') or junc_props['n_junc'][1] > 0
# decide if this integration should have a deletion from the host
host_deletion = self.rng.choice(a = [True, False], p = (self.probs['p_host_del'], 1 - self.probs['p_host_del']))
junc_props['host_del'] = bool(host_deletion)
# if we're doing a host deletion, get number of bases to be deleted
if junc_props['host_del'] is True:
junc_props['host_del_len'] = self.poisson_with_minimum_and_maximum(self.probs['lambda_host_del'], min = 1)
if junc_props['host_del_len'] is None:
return {}
elif junc_props['host_del'] is False:
junc_props['host_del_len'] = 0
else:
return {}
# check that
return junc_props
def set_chunk_properties(self):
"""
randomly set the properties of the viral chunk for this Integration
returns dict with the following properties:
- is_whole: boolean specifying if the ViralChunk is whole (if false, chunk is just a portion)
- n_fragments: number of fragments into which ViralChunk should be split
- n_delete: number of fragments to delete from ViralChunk (should always leave at least two fragments after deletion)
- n_swaps: number of swaps to make when rearranging ViralChunk
- min_len: the minimum length of the viral chunk - optional (if not present, for
integration will be set to the number of overlap bases + 1, for episome will be set to 1
- max_len: the maxumum length of the viral chunk
"""
chunk_props = {}
# get if integration should be whole or portion
p_portion = 1 - self.probs['p_whole']
chunk_props['is_whole'] = bool(self.rng.choice(a = [True, False], p = [self.probs['p_whole'], p_portion]))
# get if integration should be rearranged
p_not_rearrange = 1 - self.probs['p_rearrange']
is_rearrange = bool(self.rng.choice(a = [True, False], p = [self.probs['p_rearrange'], p_not_rearrange]))
# get if integration should contain deletion
p_not_delete = 1 - self.probs['p_delete']
is_delete = bool(self.rng.choice(a = [True, False], p = [self.probs['p_delete'], p_not_delete]))
# get number of fragments - ignored if both isDelete and isRearrange are both False
# must have at least two pieces for a rearrangment, or three for a deletion
min_split = 1
if is_rearrange is True:
min_split = 2
if is_delete is True:
min_split = 3
# set the number of fragments for the chunk
if is_delete is False and is_rearrange is False:
chunk_props['n_fragments'] = 1
else:
chunk_props['n_fragments'] = self.poisson_with_minimum_and_maximum(self.probs['lambda_split'], min = min_split)
if chunk_props['n_fragments'] is None:
return {}
assert chunk_props['n_fragments'] > 0
# if we're doing a deletion, get the number of fragments to delete
if is_delete is True:
chunk_props['n_delete'] = int(self.rng.choice(range(0, chunk_props['n_fragments'] - 1)))
else:
chunk_props['n_delete'] = 0
# if we're doing a rearrangement, get the number of swaps to make
if is_rearrange is True:
chunk_props['n_swaps'] = self.poisson_with_minimum_and_maximum(self.probs['lambda_split'], min = 1)
if chunk_props['n_swaps'] is None:
return {}
else:
chunk_props['n_swaps'] = 0
# set minimum length of chunk
chunk_props['min_len'] = self.min_len
chunk_props['max_len'] = self.max_len
return chunk_props
def __update_model(self, integration):
"""
update self.model for a new integration
"""
# find segment in which integration should occur
for i, seg in enumerate(self.model[integration.chr]):
if seg['origin'] != 'host':
continue
if integration.pos >= seg['coords'][0] and integration.pos <= seg['coords'][1]:
break
t0 = time.time()
# remove this element from the list
seg = self.model[integration.chr].pop(i)
host_start = seg['coords'][0]
host_stop = seg['coords'][1]
left_overlap_bases = integration.junc_props['n_junc'][0] if integration.junc_props['junc_types'][0] == 'overlap' else 0
right_overlap_bases = integration.junc_props['n_junc'][1] if integration.junc_props['junc_types'][1] == 'overlap' else 0
overlap_bases = left_overlap_bases + right_overlap_bases
# create host segment before this integration and add to list
host = {'origin' : 'host', 'seq_name' : integration.chr, 'ori' : '+'}
# if the integration had a left overlap, we need to trim these bases from the host
# note that int.pos is always to the left of any overlaps
# so we don't need to consider them here
host['coords'] = (host_start, integration.pos)
assert host['coords'][1] > host['coords'][0]
self.model[integration.chr].insert(i, host)
i += 1
# if we have ambiguous bases at the left junction, add these to the list too
assert len(integration.junc_props['junc_bases'][0]) == integration.junc_props['n_junc'][0]
if integration.junc_props['junc_types'][0] in ['gap', 'overlap']:
# features common to both ambiguous types
ambig = {'origin': 'ambig',
'ori' : "+"}
ambig['bases'] = integration.junc_props['junc_bases'][0]
# gap features
if integration.junc_props['junc_types'][0] == 'gap':
ambig['seq_name'] = 'gap'
ambig['coords'] = (0, integration.junc_props['n_junc'][0])
# overlap features
elif integration.junc_props['junc_types'][0] == 'overlap':
ambig['seq_name'] = integration.chr
ambig['coords'] = (integration.pos, integration.pos + left_overlap_bases)
assert str(self.host[integration.chr][ambig['coords'][0]:ambig['coords'][1]].seq).lower() == integration.junc_props['junc_bases'][0].lower()
else:
raise ValueError(f"unrecgonised integration type: {integration.junc_props[0]}")
assert ambig['coords'][1] > ambig['coords'][0]
self.model[integration.chr].insert(i, ambig)
i += 1
# add each piece of the viral chunk too
for j in range(len(integration.chunk.pieces)):
virus = {'origin': 'virus',
'coords': (integration.chunk.pieces[j][0], integration.chunk.pieces[j][1]),
'ori' : integration.chunk.oris[j],
'seq_name' : integration.chunk.virus}
assert virus['coords'][1] > virus['coords'][0]
self.model[integration.chr].insert(i, virus)
i += 1
t0 = time.time()
# if we have ambiguous bases at the right junction, add these
assert len(integration.junc_props['junc_bases'][1]) == integration.junc_props['n_junc'][1]
if integration.junc_props['junc_types'][1] in ['gap', 'overlap']:
ambig = {'origin': 'ambig',
'bases' : integration.junc_props['junc_bases'][1],
'ori' : "+"}
if integration.junc_props['junc_types'][1] == 'gap':
ambig['seq_name'] = 'gap'
ambig['coords'] = (0, integration.junc_props['n_junc'][1])
# overlap features
elif integration.junc_props['junc_types'][1] == 'overlap':
ambig['seq_name'] = integration.chr
# if the left junction was also an overlap, we need to account for this in the coordinates
if integration.junc_props['junc_types'][0] == 'overlap':
start = integration.pos + left_overlap_bases
stop = start + right_overlap_bases
else:
start = integration.pos
stop = start + right_overlap_bases
ambig['coords'] = (start, stop)
assert str(self.host[integration.chr][ambig['coords'][0]:ambig['coords'][1]].seq).lower() == integration.junc_props['junc_bases'][1].lower()
else:
raise ValueError(f"unrecgonised integration type: {integration.junc_props[0]}")
assert ambig['coords'][1] > ambig['coords'][0]
self.model[integration.chr].insert(i, ambig)
i += 1
# finally, add second portion of host
host = {'origin': 'host', 'seq_name': integration.chr, 'ori': '+'}
# accounting for bases deleted from the host and overlaps
# note that integration.pos is always to the left of any overlapped bases, so here is where we need to account for them
host['coords'] = (integration.pos + integration.junc_props['host_del_len'] + overlap_bases, host_stop)
assert host['coords'][1] > host['coords'][0]
self.model[integration.chr].insert(i, host)
i += 1
if self.model_check is True:
self.__check_model()
def __check_model(self):
"""
check model is valid by checking various properties
"""
n_ints = 0
next_int = True
t0 = time.time()
for chr in self.model.keys():
host_pos = 0
for seg in self.model[chr]:
assert seg['coords'][1] > seg['coords'][0]
assert seg['origin'] in ('host', 'virus', 'ambig')
assert 'seq_name' in seg
if seg['origin'] == 'host':
next_int = True
assert seg['seq_name'] == chr
assert seg['ori'] == '+'
# check that host position is only increasing
assert seg['coords'][0] >= host_pos
host_pos = seg['coords'][1]
elif seg['origin'] == 'virus':
if next_int is True:
n_ints += 1
next_int = False
assert seg['seq_name'] in list(self.virus.keys())
elif seg['origin'] == 'ambig':
assert 'bases' in seg
if seg['seq_name'] != 'gap':
assert seg['seq_name'] in list(self.host.keys())
host_bases = str(self.host[chr][seg['coords'][0]:seg['coords'][1]].seq).lower()
seg_bases = seg['bases'].lower()
assert host_bases == seg_bases
assert n_ints == len(self)
t1 = time.time()
print(f"checked model validity in {t1-t0}s")
def __save_fasta(self, filename, append = False):
"""
Save host fasta with integrated viral bases to a fasta file
"""
assert isinstance(append, bool)
if append is True:
write_type = "a"
if append is False:
write_type = "w+"
with open(filename, write_type) as handle:
# loop over chromosomes
for chr in self.host.keys():
# print chromosome name
handle.write(f">{chr}\n")
# loop over entries in the model for this chromosome
for entry in self.model[chr]:
start = entry['coords'][0]
stop = entry['coords'][1]
# if host
if entry['origin'] == 'host':
handle.write(str(self.host[chr].seq[start:stop]))
# if ambiguous write bases - note that overlapped bases have been trimmed from host and virus
# so we're ok to write them here
elif entry['origin'] == 'ambig':
handle.write(entry['bases'])
# if viral
elif entry['origin'] == 'virus':
virus = entry['seq_name']
if entry['ori'] == '+':
handle.write(str(self.virus[virus].seq[start:stop]))
elif entry['ori'] == '-':
handle.write(str(self.virus[virus].seq[start:stop].reverse_complement()))
else:
raise ValueError(f"unregconised orientation {entry['ori']} in {entry}")
else:
raise ValueError(f"unrecgonised model feature on chr {chr}: {entry}")
handle.write("\n")
def __handle_indels(self, integration):
"""
this function gets the offset due to indels that occurs before an input integration
it also remove from the list of indels any indels that occur in the region of the input host chomosome
that is deleted after this integration
it also calculates the length of the host deletion in the original fasta,
which differs from the length in the input fasta (integration.host_deleted)
if the deleted region contains indels (which are not present in the original fasta
it uses a list of indels: self.indel_list_for_consuming
each time indels are accounted for, they are removed from the list (consumed), so they can only be counted
once for increasing positions
03/03/2021
Abandoned the indel feature for now, but left this function in case I decide to come back to it.
The main problem I have is the way I'm defining the integration position - this is to the left of any ambiguous bases
However, it should probably be after the left ambiguous bases and before the right ambiguous bases. Deletions
should also occur before the right ambiguous bases, so that the homology occurs after the deletion
With the current definition of the integration position, it's difficult to handle indels in a consistent way, but
changing to the more sensible definition is a big job
"""
host_position_offset = 0
host_deletion_offset = 0
if self.indel is None:
integration.host_deleted_original_fasta = integration.host_deleted
return host_position_offset, host_deletion_offset
if not hasattr(self, "indel_list_for_consuming"):
self.indel_list_for_consuming = list(self.indel)
# find indels before the position of this integration
prior_indels = []
i = 0
while i < len(self.indel_list_for_consuming):
indel = self.indel_list_for_consuming[i]
if indel['ref_chr'] != integration.chr:
continue
# if this indel is before the integration position
if integration.pos >= int(indel['sim_end']):
host_position_offset += len(indel['sim_allele']) - len(indel['ref_allele'])
self.indel_list_for_consuming.pop(i)
# if this integration is after the integration position (assumes indels are sorted)
elif integration.pos < int(indel['sim_start']):
break
else:
i += 1
# find indels that are in the deleted region
del_region_indels = []
i = 0
while i < len(self.indel_list_for_consuming):
indel = self.indel_list_for_consuming[i]
if indel['ref_chr'] != integration.chr:
continue
# if integration is in this insertion
if int(indel['sim_start']) <= integration.pos and int(indel['sim_end']) > integration.pos:
# split insertion at integration
# add portion of insertion that's before integration.pos to host position offset
# add portion of insertion that's after integration.pos to deletion offset
pass
# if indel is in deleted region
# add indel length to deletion offset
# if insertion straddles end of deleted region
pass
# split insertion at end of deleted region
# add portion of insetion that's before end of deleted region to deletion offset
# retain portion of insertion that's after end of deleted region for next integration
# if indel is after deleted region, we're done
elif integration.pos < int(indel['sim_stop']):
break
else:
i += 1
integration.host_deleted_original_fasta = integration.host_deleted + host_deletion_offset
return host_position_offset, host_deletion_offset
def __save_info(self, filename):
"""
Output the following info for each integration (one integration per line) into a tab-separated file:
Note that all co-orindates are 0-based
- chr: host chromosome on which integration occurs
- hPos: 0-based position in the ORIGINAL host fasta (before adding variation with simuG) at which integration occurs
- hPos_input_fasta: 0-based position in the input host fasta at which integration occurs
(relative to input fasta)
- leftStart, leftStop: position of the ambiguous bases (gap, overlap or clean junction) on left side,
in final output fasta (accounting for any previous integrations)
- rightStart, rightStop: position of the ambiguous bases (gap, overlap or clean junction) on right side
in final output fasta (accounting for any previous integrations)
- hDeleted: number of bases deleted from host chromosome in original fasta (before adding variation)
- hDeleted_input_fasta: number of bases deleted from host chromosome in input fasta (after adding variation)
- virus: name of integrated virus
- viral breakpoints: a comma separated list of viral breakpoints which together indicate the integrated bases
adjacent pairs of breakpoints indicate portions of the virus that have been integrated
- vOris: orientation (+ or -) of each portion of the virus that was integrated
- juncTypes: types (gap, overlap, clean) of left and right junctions, respectively
- juncBases: bases at left and right junctions, respectively
"""
#pp.pprint(self.model)
# dictionary will keep track of the number of bases previously integrated on each chromosome
previous_ints = {key:0 for key in self.host.keys()} # length of previous integrations
deleted_bases_input_fasta = {key:0 for key in self.host.keys()} # deletions because of integrations
deleted_bases_original_fasta = {key:0 for key in self.host.keys()}
sim_to_original_offset = {key:0 for key in self.host.keys()} # add this to sim position to get original position (due to indels)
self.__check_model()
self.sort()
with open(filename, "w", newline='') as csvfile:
intwriter = csv.writer(csvfile, delimiter = '\t')
intwriter.writerow(['id', 'chr', 'hPos', 'hPos_input_fasta', 'leftStart', 'leftStop', 'rightStart', 'rightStop', 'hDeleted', 'hDelted_input_fasta', 'virus', 'vBreakpoints', 'vOris', 'juncTypes', 'juncBases', 'juncLengths', 'whole', 'rearrangement', 'deletion', 'n_swaps', 'n_delete'])
for i, integration in enumerate(self):
assert integration.pos is not None
# to calculate hPos, we need to account for variants introduced by simuG
host_position_offset, host_deletion_offset = self.__handle_indels(integration)
sim_to_original_offset[integration.chr] += host_position_offset
h_pos = integration.pos + sim_to_original_offset[integration.chr]
# calculate start and stop position for this integration
left_start = integration.pos + previous_ints[integration.chr] - deleted_bases_input_fasta[integration.chr]
left_stop = left_start + integration.junc_props['n_junc'][0]
right_start = left_stop + len(integration.chunk.bases)
right_stop = right_start + integration.junc_props['n_junc'][1]
# update previous_ints - total integrated bases
# are the integrated viral bases, and the bases in the gaps
previous_ints[integration.chr] += len(integration.chunk.bases)
if integration.junc_props['junc_types'][0] == 'gap':
previous_ints[integration.chr] += integration.junc_props['n_junc'][0]
if integration.junc_props['junc_types'][1] == 'gap':
previous_ints[integration.chr] += integration.junc_props['n_junc'][1]
# update deleted_bases
deleted_bases_input_fasta[integration.chr] += integration.junc_props['host_del_len']
deleted_bases_original_fasta[integration.chr] += integration.host_deleted_original_fasta
# indels in deleted region didn't happen, so we need to account for this in the position offset
sim_to_original_offset[integration.chr] -= host_deletion_offset
# format lists into comma-separated strings
breakpoints = ";".join([str(i) for i in integration.chunk.pieces])
oris = ','.join(integration.chunk.oris)
junc_types = ",".join(integration.junc_props['junc_types'])
junc_bases = ",".join(integration.junc_props['junc_bases'])
junc_lengths = ",".join([str(i) for i in integration.junc_props['n_junc']])
# write a row for this integration
intwriter.writerow([integration.id,
integration.chr,
h_pos,
integration.pos,
left_start,
left_stop,
right_start,
right_stop,
integration.host_deleted,
integration.host_deleted_original_fasta,
integration.chunk.virus,
breakpoints,
oris,
junc_types,
junc_bases,
junc_lengths,
integration.chunk.chunk_props['is_whole'],
integration.chunk.chunk_props['n_swaps'] > 0,
integration.chunk.chunk_props['n_delete'] > 0,
integration.chunk.chunk_props['n_swaps'],
integration.chunk.chunk_props['n_delete']
])
def __str__(self):
return f"Viral integrations object with {len(self)} integrations of viral sequences {list(self.virus.keys())} into host chromosomes {list(self.host.keys())}"
def __repr__(self):
return f"Object of type Integrations with properties {self}"
class Episomes(Integrations):
"""
Episomes may be added to the output fasta to mimic contamination of sample with purely viral sequences
this class stores a list of ViralChunk objects which make up the contaminating viral sequences
This class is intended to be used by the Integrations class
Since Integrations and Episomes use some similar methods, this class inherits from Integrations
in order to avoid duplication
"""
def __init__(self, virus, rng, probs, max_attempts = 50, min_len = None, max_len=None):
"""
initialises an empty Episomes list, storing the properties common to all episomes
"""
# checks for inputs
assert isinstance(virus, dict)
assert isinstance(probs, dict)
assert isinstance(max_attempts, int)
assert isinstance(min_len, int) or min_len is None
if min_len is None:
min_len = 1
else:
assert min_len > 0
assert isinstance(max_len, int) or max_len is None
if max_len is not None:
assert max_len > 1
if min_len is not None:
assert max_len >= min_len
# assign properties common to all episomes
self.virus = virus
self.probs = probs
self.rng = rng
self.max_attempts = max_attempts
self.min_len = min_len
self.max_len = max_len
# default values for probs
self.set_probs_default('p_whole', default_p_whole)
self.set_probs_default('p_rearrange', default_p_rearrange)
self.set_probs_default('p_delete', default_p_delete)
self.set_probs_default('lambda_split', default_lambda_split)
# checks on assigned variables
assert 'p_whole' in probs
assert 'p_rearrange' in probs
assert 'p_delete' in probs
assert 'lambda_split' in probs
# check that probabilities are between 0 and 1
self.check_prob(self.probs['p_whole'], 'p_whole')
#self.check_prob(self.probs['p_rearrange'] + self.probs['p_delete'], 'the sum of p_rearrange and p_delete')
self.check_prob(self.probs['p_rearrange'], 'p_rearrange')
self.check_prob(self.probs['p_delete'], 'p_delete')
self.check_prob(self.probs['p_overlap'] + self.probs['p_gap'], 'the sum of p_overlap and p_gap')
# when adding episomes, we will want to keep track of the number of episomes for each virus
self.virus_counts = {virus: 0 for virus in self.virus.keys()}
def add_episome(self):
"""
get a viral chunk and add to self
"""
# call functions that randomly set properties of this integrations
chunk_props = self.set_chunk_properties()
assert len(chunk_props) != 2
# get a viral chunk
chunk = ViralChunk(self.virus, self.rng, chunk_props)
# check for valid chunk
if chunk.pieces is not None:
# add id to chunk
chunk.id = f"{chunk.virus}__{self.virus_counts[chunk.virus]}"
self.virus_counts[chunk.virus] += 1
# append to self
self.append(chunk)
return True
return False
def __save_fasta(self, filename, append = True):
"""
save each ViralChunk as a separate sequence in an output fasta
"""
assert isinstance(append, bool)
if append is True:
write_type = "a"
if append is False:
write_type = "w+"
# virus counts will keep track of the number of episomes
# for each virus
virus_counts = {virus: 0 for virus in self.virus.keys()}
# open file for writing
with open(filename, write_type) as handle:
for chunk in self:
# write name of virus and current count as an id
handle.write(f">{chunk.id}\n")
virus_counts[chunk.virus] += 1
# write viral bases
handle.write(f"{chunk.bases}\n")
def __save_info(self, filename):
"""
save chunk.chunk_properties into tab-separated format
fields to write:
- id: a unique identifier for each episome
- virus: virus from which this episome comes from
- start: coordinate (in virus) of left-most base in chunk
- stop: coordinate (in virus) of right-most base in chunk
- pieces: breakpoints of each piece of this chunk
- oris: orientation of each piece of this chunk
- is_whole: if this episome was originally the whole virus
- is_rearrange: if this episome was rearranged
- is_deletion: if this episome contains a deletion
- n_swaps: number of swaps made when rearranging
- n_delete: number of pieces deleted from chunk
"""
assert len(self) >= 0
# define header
header = ["id", "virus", "start", "stop", "pieces", "oris", "is_whole", "is_rearrange", "is_deletion", "n_swaps", "n_delete"]
with open(filename, "w", newline='') as csvfile:
epiwriter = csv.writer(csvfile, delimiter = '\t')
epiwriter.writerow(header)
for chunk in self:
epiwriter.writerow([chunk.id,
chunk.virus,
chunk.start,
chunk.stop,
chunk.pieces,
chunk.oris,
chunk.chunk_props['is_whole'],
chunk.chunk_props['n_swaps'] > 0,
chunk.chunk_props['n_swaps'],
chunk.chunk_props['n_delete'] > 0,
chunk.chunk_props['n_delete']])
def __str__(self):
return f"Episomes object with {len(self)} episomes drawn from viral sequences {list(self.virus.keys())}"
def __repr__(self):
return f"Object of type Episomes with properties {self}"
class Integration(dict):
"""
Class to store the properties of an individual integration. If properly instantiated, it stores
the properties of the junctions either side of the integrated bases, and a ViralChunk object (self.chunk)
which stores the properties of the integrated bases themselves.
This class is intended to be used by the Integrations class, which is essentially a list of Integration objects
"""
def __init__(self, host, virus, model, rng, int_id, chunk_props, junc_props, min_sep):
"""
Function to initialise Integration object
portionType is 'whole' or 'portion' - the part of the virus that has been inserted
overlapType is two-member tuple of 'clean', 'gap' or 'overlap' - defines the junction at each end of the integration
when initialising an Integration, need to provide:
- host (as a dict of SeqRecord objects or similar)
- virus (as a dict of SeqRecord ojbects or similar)
- model - self.model of Integrations object - specifies where existing integrations have occured
- rng (a numpy.random.Generator object for setting random properties)
- chunk_props (a dict of properties for initialising ViralChunk object)
- junc_props (a dict of properties defining the junctions of this integration)
- junc_types = iterable of length 2 specifying type of left and right junctions (one of gap, overlap, clean)
- n_junc = iterable of length 2 specifying length of left and right junction
objects of this class have the following properties:
self.id - an integer unique to this integrations
self.chr - string: host chromosome on which integration should be located
self.chunk - ViralChunk object which is integrated
self.chunk_props - properties of the integration chunk that were specified as input. dict with fields:
- is_whole: boolean specifying if the ViralChunk is whole (if false, chunk is just a portion)
- n_fragments: number of fragments into which ViralChunk should be split
- n_delete: number of fragments to delete from ViralChunk (should always leave at least two fragments after deletion)
- n_swaps: number of swaps to make when rearranging ViralChunk
self.junc_props - properties of the integration chunk that were specified as input
- junc_types = iterable of length 2 specifying type of left and right junctions (one of gap, overlap, clean)
- n_junc = iterable of length 2 specifying length of left and right junction
- junc_bases = iterable of length 2 specifying bases involved in each junction
- host_del = boolean specifying if there should be a deletion from the host
- host_del_len = number of bases to be deleted from the host at this integration site
if anything went wrong with initialisation, self.pos is set to None - check this to make sure integration
is valid
after assigning a
"""
# assign chunk_props and junc_props to self
self.chunk_props = chunk_props
self.junc_props = junc_props
# check inputs
assert isinstance(virus, dict)
assert isinstance(model, dict)
for key in host.keys():
assert key in model
assert isinstance(chunk_props, dict) # leave most of the checking to ViralChunk
assert isinstance(junc_props, dict)
assert len(junc_props) == 4
assert 'junc_types' in junc_props
assert len(self.junc_props['junc_types']) == 2
assert all([i in ['clean', 'gap', 'overlap'] for i in self.junc_props['junc_types']])
assert 'n_junc' in junc_props
assert len(self.junc_props['n_junc']) == 2
assert all([isinstance(i, int) for i in self.junc_props['n_junc']])
assert all([i >=0 for i in self.junc_props['n_junc']])
assert 'host_del' in junc_props
assert isinstance(junc_props['host_del'], bool)
assert 'host_del_len' in junc_props
assert isinstance(junc_props['host_del_len'], int)
assert junc_props['host_del_len'] >= 0
if junc_props['host_del'] is True:
assert junc_props['host_del_len'] > 0
if junc_props['host_del'] is False:
assert junc_props['host_del_len'] == 0
assert search_length_overlap > 0 and isinstance(search_length_overlap, int)
assert isinstance(min_sep, int)
assert min_sep > 0
# set parameters that won't be changed
self.search_length_overlap = search_length_overlap
self.id = int_id
# get random chromosome on which to do integration (weighted by chromosome length)
lens = [len(i) for i in host.values()]
lens = [i/sum(lens) for i in lens]
self.chr = str(rng.choice(list(host.keys()), p=lens))
# set minimum length for viral chunk - longer than the number of bases involved in the junction
if self.chunk_props['min_len'] is None:
self.chunk_props['min_len'] = self.n_overlap_bases() + 1
if self.chunk_props['min_len'] < self.n_overlap_bases() + 1:
self.chunk_props['min_len'] = self.n_overlap_bases() + 1
# need to check that minimum length is still greater than maximum length
if self.chunk_props['max_len'] is not None:
if self.chunk_props['max_len'] < self.chunk_props['min_len']:
raise ValueError('The maximum length ({self.chunk_props["max_len"]}) is less than the length of the overlapped bases ({self.n_overlap_bases()}). Please specify a longer maximum length or a smaller number for the mean of the number of bases involved in the junction.')
# get viral chunk
self.chunk = ViralChunk(virus,
rng,
self.chunk_props)
# if specified properties (chunk_props) are incompatible with the initialised chunk
# self.chunk.pieces will be None
if self.chunk.pieces is None:
self.pos = None
return
# set the number of bases in overlaps
self.junc_props['n_junc'] = [junc_props['n_junc'][0], junc_props['n_junc'][1]]
# but overwrite in the case of a clean junction
if self.junc_props['junc_types'][0] == 'clean':
self.junc_props['n_junc'][0] = 0
if self.junc_props['junc_types'][1] == 'clean':
self.junc_props['n_junc'][1] = 0
# number of bases in overlaps must be less than the length of the integrated chunk
if self.n_overlap_bases() >= len(self.chunk.bases):
self.pos = None
return
# set bases belonging to junction
self.junc_props['junc_bases'] = (self.get_junc_bases(rng, 'left'), self.get_junc_bases(rng, 'right'))
# get a position at which to integrate
pos_success = self.get_int_position(host[self.chr].seq, rng, model, min_sep)
if pos_success is False:
self.pos = None
return
# number of bases deleted from host chromosome
if junc_props['host_del'] is False:
self.host_deleted = 0
else:
self.host_deleted = junc_props['host_del_len']
# but only delete up to the length of the segment in which this integration occurs,
# so that we don't delete any integrations as well
for seg in model[self.chr]:
# skip viral and ambiguous segments
if seg['seq_name'] != self.chr:
continue
# find if this is the segment in which the integration occurs
if not self.has_overlap(self.pos, self.pos, seg['coords'][0], seg['coords'][1]):
continue
# are we trying to delete past the end of the segment?
if self.pos + self.host_deleted + self.n_overlap_bases() >= (seg['coords'][1] - min_sep):
self.host_deleted = seg['coords'][1] - self.pos - min_sep - self.n_overlap_bases()
self.junc_props['host_del_len'] = self.host_deleted
if self.host_deleted < 0:
self.pos = None
return
break
# double check for valid chunk
assert self.chunk.bases == self.chunk.get_bases(virus)
assert 'junc_bases' in self.junc_props
assert len(self.junc_props['junc_bases']) == 2
assert len(self.junc_props['junc_bases'][0]) == self.junc_props['n_junc'][0]
assert len(self.junc_props['junc_bases'][1]) == self.junc_props['n_junc'][1]
assert all([len(i) == 2 for i in self.chunk.pieces])
assert len(self.chunk.pieces) == len(self.chunk.oris)
assert all([piece[1] > piece[0] for piece in self.chunk.pieces])
def n_overlap_bases(self):
"""
Get the total number of bases in overlaps
"""
assert len(self.junc_props['n_junc']) == 2
assert len(self.junc_props['junc_types']) == 2
n = 0
if self.junc_props['junc_types'][0] == 'overlap':
n += self.junc_props['n_junc'][0]
if self.junc_props['junc_types'][1] == 'overlap':
n += self.junc_props['n_junc'][1]
return n
def get_random_position(self, model, rng, min_sep):
"""
based on current model, get a random position that is available for integration
(that is, doesn't already have an integration)
do this by getting all the host parts of the model, and choosing a random one (weighted by their length)
and then choosing a random position from within this part
"""
# get a list of host coordinates
host_coords = [segment['coords'] for segment in model[self.chr] if segment['origin'] == 'host']
# enforce minimum separation
host_coords = [(coords[0] + min_sep, coords[1] - min_sep) for coords in host_coords]
# ensure lengths are positive
host_coords = [coord for coord in host_coords if (coord[1] - coord[0]) > 0]
# get lengths of each range to weight choosing a part
lengths = [coord[1] - coord[0] for coord in host_coords]
lengths = [length/sum(lengths) for length in lengths]
# get a random part, weighted by lengths
part = rng.choice(host_coords, p = lengths)
# get a random postion from this part
return rng.integers(low = part[0], high = part[1], endpoint=True, dtype=int)
def get_int_position(self, chr, rng, model, min_sep):
"""
get a position at which to perform the integration
the position depends on the overlap type at each side of the overlap
if both sides are 'clean' or 'gap', position can be random
'overlap' junctions place constraints on the integration location because the need
to be placed where there are overlaps
"""
# if at both ends the junction is either 'clean' or 'gap', just get a random positon
if all([True if (i in ['clean', 'gap']) else False for i in self.junc_props['junc_types']]):
self.pos = self.get_random_position(model, rng, min_sep)
return True
# if overlap at both ends, look for both overlaps in host chromosome next to each other
elif self.junc_props['junc_types'][0] == 'overlap' and self.junc_props['junc_types'][1] == 'overlap':
# make string with both overlap bases
self.pos = self.find_overlap_bases(self.junc_props['junc_bases'][0] + self.junc_props['junc_bases'][1], chr, rng, model, min_sep)
# check for unsuccessful find
if self.pos == -1:
self.pos = None
return False
## need to remove overlapped bases from viral chunk, and adjust chunk start, breakpoints and oris
self.delete_left_bases(self.junc_props['n_junc'][0])
self.delete_right_bases(self.junc_props['n_junc'][1])
return True
# if one end is an overlap, find those bases in the host chromosome
# left overlap
elif self.junc_props['junc_types'][0] == 'overlap':
# find position with overlap at which to do overlap
self.pos = self.find_overlap_bases(self.junc_props['junc_bases'][0], chr, rng, model, min_sep)
# check for unsuccessful find
if self.pos == -1:
self.pos = None
return False
## need to remove overlapped bases from viral chunk, and adjust chunk start, breakpoints and oris
self.delete_left_bases(self.junc_props['n_junc'][0])
return True
# right overlap
elif self.junc_props['junc_types'][1] == 'overlap':
# find position with overlap at which to do overlap
self.pos = self.find_overlap_bases(self.junc_props['junc_bases'][1], chr, rng, model, min_sep)
# check for unsuccessful find
if self.pos == -1:
self.pos = None
return False
## need to remove overlapped bases from viral chunk, and adjust chunk start, breakpoints and oris
self.delete_right_bases(self.junc_props['n_junc'][1])
return True
else:
raise ValueError(f"junction types {self.junc_props['junc_types']} are not implemented yet")
return False
def find_overlap_bases(self, overlap_bases, chr, rng, model, min_sep):
"""
find bases from an overlap in the host chromosome
"""
# get position around which to search
start = self.get_random_position(model, rng, min_sep)
# get start and stop positions for bases in host chromosome to search for overlaps
stop = start + self.search_length_overlap
# make sure that we aren't searching after the end of the chromosome
if stop > len(chr):
stop = len(chr)
# find overlapping bases in host segments in model
for seg in model[self.chr]:
# check that this segment comes from the host
if seg['origin'] != 'host':
continue
# check that this segment overlaps with desired start and stop from above
if not self.has_overlap(start, stop, seg['coords'][0], seg['coords'][1]):
continue
# look for desired overlap bases in this segment
search_start = seg['coords'][0] + min_sep
search_stop = seg['coords'][1] - min_sep
if search_stop <= search_start:
continue
if seg['ori'] == "+":
found = re.search(overlap_bases, str(chr[search_start:search_stop]), re.IGNORECASE)
if found:
return found.span()[0] + search_start
else:
# not implemented - we assume no flipping of host chromosome segments
raise ValueError("host chromosome segment {seg} has a negative orientation!")
# check for unsuccessful find
return -1
def has_overlap(self, start_1, stop_1, start_2, stop_2):
"""
check to see if two intervals, specified by start_1 and stop_1; and start_2 and stop_2, overlap
"""
# check inputs
assert isinstance(start_1, int)
assert isinstance(start_2, int)
assert isinstance(stop_1, int)
assert isinstance(stop_2, int)
assert start_1 >= 0
assert start_2 >= 0
assert stop_1 >= 0
assert stop_2 >= 0
assert start_1 <= stop_1
assert start_2 <= stop_2
# interval 1 start and stop to the left of interval 2
if (start_1 < start_2) and (stop_1 < start_2):
return False
# interval 2 start and stop are to the right of interval 2
if (start_1 > stop_2) and (stop_1 > stop_2):
return False
# otherwise they must overlap
return True
def delete_left_bases(self, n):
"""
delete bases on the left after adding an overlap - need to adjust chunk bases, oris and breakpoints and start
"""
assert self.junc_props['junc_types'][0] == 'overlap'
# check we're not trying to delete more bases than there are in the chunk
assert n < len(self.chunk.bases)
# adjust bases
self.chunk.bases = self.chunk.bases[n:]
# adjust breakpoints - delete bases one by one from breakpoints
# until we've deleted enough baes
deleted_bases = 0
to_delete = []
i = 0
while deleted_bases < n:
# if this piece is a forward piece
if self.chunk.oris[i] == '+':
# detele one base
self.chunk.pieces[i][0] += 1
deleted_bases += 1
# if this piece is a reverse piece we need to remove from the end
# because self.chunk.bases has already taken orientations into account
elif self.chunk.oris[i] == "-":
self.chunk.pieces[i][1] -= 1
deleted_bases += 1
else:
print(f"unrecgonised orientation {self.chunk.oris[i]} in chunk {vars(self.chunk)}")
self.pos = None
return
# if we're left with a piece of length 0, flag this piece for deletion
if self.chunk.pieces[i][0] == self.chunk.pieces[i][1]:
to_delete.append(i)
i += 1
# remove chunks that we want to delete
self.chunk.pieces = [self.chunk.pieces[i] for i in range(len(self.chunk.pieces)) if (i not in to_delete)]
self.chunk.oris = [self.chunk.oris[i] for i in range(len(self.chunk.oris)) if (i not in to_delete)]
#adjust start and stop
breakpoints = [piece[0] for piece in self.chunk.pieces]
breakpoints += [piece[1] for piece in self.chunk.pieces]
breakpoints.sort()
self.chunk.start = breakpoints[0]
self.chunk.stop = breakpoints[-1]
def delete_right_bases(self, n):
"""
delete bases on the left after adding an overlap - need to adjust chunk bases, oris and breakpoints and stop
"""
assert self.junc_props['junc_types'][1] == 'overlap'
# check we're not trying to delete more bases than there are in the chunk
assert n < len(self.chunk.bases)
# adjust stop
self.chunk.stop -= n
# adjust bases
self.chunk.bases = self.chunk.bases[:-n]
# adjust breakpoints
deleted_bases = 0
to_delete = []
i = len(self.chunk.pieces) - 1 # start at the last piece in the chunk
while deleted_bases < n:
assert i >= 0
# if this piece is a forward piece
if self.chunk.oris[i] == "+":
# delete one base
self.chunk.pieces[i][1] -= 1
deleted_bases += 1
elif self.chunk.oris[i] == "-":
# delete one base
self.chunk.pieces[i][0] += 1
deleted_bases += 1
else:
print(f"unrecgonised orientation {self.chunk.oris[i]} in chunk {vars(self.chunk)} ")
self.pos = None
return
# if we're left with a piece of length 0, flag this piece for deletion
if self.chunk.pieces[i][0] == self.chunk.pieces[i][1]:
to_delete.append(i)
i -= 1
# remove chunks that we want to delete
self.chunk.pieces = [self.chunk.pieces[i] for i in range(len(self.chunk.pieces)) if (i not in to_delete)]
self.chunk.oris = [self.chunk.oris[i] for i in range(len(self.chunk.oris)) if (i not in to_delete)]
#adjust start and stop
breakpoints = [piece[0] for piece in self.chunk.pieces]
breakpoints += [piece[1] for piece in self.chunk.pieces]
breakpoints.sort()
self.chunk.start = breakpoints[0]
self.chunk.stop = breakpoints[-1]
def get_junc_bases(self, rng, side):
"""
Get the bases at the left or right junction, depending on whether the junction is
a gap, overlap, or clean junction
"""
assert side in ['left', 'right']
assert len(self.junc_props['junc_types']) == 2
assert len(self.junc_props['n_junc']) == 2
assert self.junc_props['junc_types'][0] in ['gap', 'overlap', 'clean']
assert self.junc_props['junc_types'][1] in ['gap', 'overlap', 'clean']
if side == 'left':
n_bases = self.junc_props['n_junc'][0]
# no bases in a clean junction
if self.junc_props['junc_types'][0] == 'clean':
return ""
# random bases in a gap
elif self.junc_props['junc_types'][0] == 'gap':
return self.get_n_random_bases(rng, n_bases)
# first n bases of viral chunk in an overlap
elif self.junc_props['junc_types'][0] == 'overlap':
return self.chunk.bases[:n_bases]
else:
raise ValueError(f"unrecgonised type: {self.junc_props['junc_types'][0]}")
elif side == 'right':
n_bases = self.junc_props['n_junc'][1]
if self.junc_props['junc_types'][1] == "clean":
return ""
elif self.junc_props['junc_types'][1] == 'gap':
return self.get_n_random_bases(rng, n_bases)
elif self.junc_props['junc_types'][1] == 'overlap':
return self.chunk.bases[-n_bases:]
else:
raise ValueError(f"unrecgonised type: {self.junc_props['junc_types'][1]}")
else:
raise ValueError(f"unrecgonised side: {side}")
def get_n_random_bases(self, rng, n_bases):
"""
get a string composed of n random nucleotides
"""
return "".join(rng.choice(['A', 'T', 'G', 'C'], n_bases))
def __str__(self):
return f"Viral integration into host chromosome {self.chr}'"
def __repr__(self):
return f"Object of type Integration with properties {self}"
def __lt__(self, other):
"""
Integrations can be ranked by both chromosome name and position on that chromosome
"""
# make sure that we're comparing with another integration
assert isinstance(other, Integration)
# first check chromosome name
assert isinstance(self.chr, str) and isinstance(other.chr, str)
assert isinstance(self.pos, int) and isinstance(other.pos, int)
return (self.chr.lower(), self.pos) < (other.chr.lower(), other.pos)
def __eq__(self, other):
"""
Integrations can be ranked by both chromosome name and position on that chromosome
"""
# make sure that we're comparing with another integration
assert isinstance(other, Integration)
# first check chromosome name
assert isinstance(self.chr, str) and isinstance(other.chr, str)
assert isinstance(self.pos, int) and isinstance(other.pos, int)
return (self.chr.lower(), self.pos) == (other.chr.lower(), other.pos)
class ViralChunk(dict):
"""
Class to store properties of an integrated chunk of virus.
Intended to be used by the Integrations and Episomes classes
"""
def __init__(self, virus, rng, chunk_props):
"""
function to get a chunk of a virus
virus is the dictionary of seqrecords imported using biopython
desired properties of chunk are input as a dict with the following attributes:
- is_whole: boolean specifying if the ViralChunk is whole (if false, chunk is just a portion)
- n_fragments: number of fragments into which ViralChunk should be split
- n_delete: number of fragments to delete from ViralChunk (should always leave at least two fragments after deletion)
- n_swaps: number of swaps to make when rearranging ViralChunk
- min_len: the minimum length of this chunk (integer greater than 1)
- max_len: the maxumum length of this chunk (None, or integer greater than min_len)
the bases attribute of a ViralChunk consist of only the bases that are unique to the virus.
So in the case of an Integration of a ViralChunk with a 'overlap' type junction,
the bases, breakpoints and oris attributes are re-assigned to remove the overlapped bases
"""
# check inputs
assert isinstance(virus, dict)
assert len(virus) > 0
assert isinstance(chunk_props, dict)
assert len(chunk_props) == 6
assert 'is_whole' in chunk_props
assert isinstance(chunk_props['is_whole'], bool)
assert 'n_fragments' in chunk_props
assert isinstance(chunk_props['n_fragments'], int)
assert chunk_props['n_fragments'] > 0
assert 'n_delete' in chunk_props
assert isinstance(chunk_props['n_delete'], int)
assert chunk_props['n_delete'] >= 0
assert 'n_swaps' in chunk_props
assert isinstance(chunk_props['n_delete'], int)
assert chunk_props['n_delete'] >= 0
assert 'min_len' in chunk_props
assert isinstance(chunk_props['min_len'], int) or chunk_props['min_len'] is None
if chunk_props['min_len'] is None:
chunk_props['min_len'] = 1
assert chunk_props['min_len'] > 0
assert 'max_len' in chunk_props
assert isinstance(chunk_props['max_len'], int) or chunk_props['max_len'] is None
if chunk_props['max_len'] is not None and chunk_props['min_len'] is not None:
assert chunk_props['max_len'] >= chunk_props['min_len']
# check that the minimum length specified is longer than all the viruses
# otherwise we might fail
if not all([chunk_props['min_len'] <= len(vir.seq) for vir in virus.values()]):
raise ValueError("minimum length must be longer than all the Viruses")
# get a random virus to integrate
self.virus = str(rng.choice(list(virus.keys())))
self.chunk_props = chunk_props
# if the length of the virus is equal to min_len, is_whole must be true
if len(virus[self.virus]) == chunk_props['min_len']:
chunk_props['is_whole'] = True
if self.chunk_props['is_whole'] is True:
self.start = 0
self.stop = len(virus[self.virus])
elif self.chunk_props['is_whole'] is False:
self.start = int(rng.integers(low = 0, high = len(virus[self.virus].seq) - chunk_props['min_len']))
if chunk_props['max_len'] is None:
self.stop = int(rng.integers(low = self.start + chunk_props['min_len'],
high = len(virus[self.virus].seq)
)
)
elif chunk_props['max_len'] == chunk_props['min_len']:
self.stop = self.start + chunk_props['max_len']
else:
self.stop = int(rng.integers(low = self.start + chunk_props['min_len'],
high = min(len(virus[self.virus].seq),
self.start+chunk_props['max_len'])
)
)
else:
raise ValueError("self.chunk_props['is_whole'] must be either True or False")
# breakpoints are the start and stop coordinates of pieces of the virus that have been
# integrated
# set breakpoints
self.pieces = [[self.start, self.stop]]
self.oris = str(rng.choice(('+', '-')))
# do a deletion if applicable
if self.chunk_props['n_delete'] > 0:
self.__delete(rng)
# if something went wrong, breakpoints will be None
if self.pieces is None:
return
if self.chunk_props['n_swaps'] > 0:
self.__rearrange(rng)
# if something went wrong, breakpoints will be None
if self.pieces is None:
return
# get bases
self.bases = self.get_bases(virus)
def get_bases(self, virus):
"""
return bases of viral chunk as a string
note that objects of class ViralChunk do not store the whole viral sequence, so
need to provide this in order to get the bases
"""
bases = []
# get integrated bases
for i, points in enumerate(self.pieces):
start = points[0]
stop = points[1]
if self.oris[i] == '+':
bases += [str(virus[self.virus].seq[start:stop])]
else:
bases += [str(virus[self.virus].seq[start:stop].reverse_complement())]
return "".join(bases)
def __split_into_pieces(self, rng):
"""
get random, unique breakpoints to divide a viral chunk into pieces
there must be at least min_breakpoints, which results in min_breakpoints + 1 pieces
this is a list of coordinates, not tuples (unlike self.pieces)
"""
# shouldn't do this if this chunk has already been split
assert len(self.pieces) == 1
assert len(self.oris) == 1
# check that we're not trying to divide a chunk into more pieces than there are bases
if self.chunk_props['n_fragments'] >= self.stop - self.start:
self.pieces = None
return
# get the number of pieces to divide into
num_breakpoints = self.chunk_props['n_fragments'] - 1
# get random breakpoints from within this chunk
breakpoints = rng.choice(range(self.start + 1, self.stop - 1), size = num_breakpoints, replace = False)
# set self.pieces
breakpoints = [self.start] + sorted(breakpoints) + [self.stop]
self.pieces = [[int(breakpoints[i]), int(breakpoints[i+1])] for i in range(len(breakpoints) - 1)]
# set self.oris
self.oris = [self.oris[0]] * len(self.pieces)
return
def __swap_orientations(self, breakpoint, side):
"""
Given a breakpoint, swap all of the orientations (+ to - or vice versa) for all of the pieces
on the left or right of this breakpoint
"""
if side == 'left':
for i, ori in enumerate(self.oris[:breakpoint]):
if ori == "+":
self.oris[i] = "-"
else:
self.oris[i] = "+"
else:
for i, ori in enumerate(self.oris[breakpoint:]):
if ori == "+":
self.oris[i] = "-"
else:
self.oris[i] = "+"
def __delete(self, rng):
"""
Divide a viral chunk up into multiple pieces
and remove one of those pieces
"""
# deletions are always performed first, so the chunk should not have been split yet
assert len(self.pieces) == 1
# want to have at least two pieces left
assert self.chunk_props['n_fragments'] - self.chunk_props['n_delete'] >= 2
# split chunk into at n_fragments pieces
self.__split_into_pieces(rng)
if self.pieces is None:
return
assert len(self.pieces) == self.chunk_props['n_fragments']
# decide which portions to delete
i_delete = rng.choice(range(1, len(self.pieces) - 1), self.chunk_props['n_delete'], replace=False)
# do deletion
self.pieces = [piece for i, piece in enumerate(self.pieces) if i not in i_delete]
self.oris = [ori for i, ori in enumerate(self.oris) if i not in i_delete]
assert len(self.pieces) == self.chunk_props['n_fragments'] - self.chunk_props['n_delete']
def __rearrange(self, rng):
"""
Divide a viral chunk up into multiple pieces
and randomise their order and orientiations
"""
# split the chunk if it hasn't already been split
if len(self.pieces) == 1:
# split chunk into at least three pieces
self.__split_into_pieces(rng)
if self.pieces is None:
return
assert len(self.pieces) == self.chunk_props['n_fragments']
else:
assert len(self.pieces) > 1
# if we only have two pieces, we should only do one swap
# so that we don't end up back with the same fragment
# there are other ways to end up with the same fragment after swaps
# but don't worry about them for now - TODO
if len(self.pieces) == 2:
self.chunk_props['n_swaps'] = 1
for i in range(self.chunk_props['n_swaps']):
# pick a point about which to swap
if 1 == len(self.pieces) - 1:
i_swap = 1
else:
i_swap = rng.choice(range(1, len(self.pieces) - 1))
# swap everything to the left of this position with everything on the right
self.pieces = self.pieces[i_swap:] + self.pieces[:i_swap]
# 50 % chance of swapping the orientations of all the pieces for each side
if bool(rng.choice((True, False))) is True:
self.__swap_orientations(i_swap, 'left')
if bool(rng.choice((True, False))) is True:
self.__swap_orientations(i_swap, 'right')
def __str__(self):
return f"Viral chunk of virus {self.virus} ({self.start}, {self.stop}) and orientations {self.oris}"
def __repr__(self):
return f"Object of type ViralChunk with properties {self}"
if __name__ == "__main__":
main(argv[1:])
|