Workflow Steps and Code Snippets
1707 tagged steps and code snippets that match keyword Snakemake
In this repository, we present the code for the analysis of study of the transcription's impact on Escherichia coli chromosome.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 | import bacchus.hic as bch import bacchus.io as bcio import bacchus.plot as bcp import cooler import copy import matplotlib.pyplot as plt import matplotlib.patches as patches import numpy as np import os from os.path import join import pandas as pd from scipy import ndimage import seaborn as sns # Import snakemake parameters. annotation_file = snakemake.input.annotation mat_wt_file = str(snakemake.input.cool_wt) mat_rf_file = str(snakemake.input.cool_rf) rna_wt_file = snakemake.input.rna_wt rna_rf_file = snakemake.input.rna_rf cov_wt_file = snakemake.input.cov_wt cov_rf_file = snakemake.input.cov_rf gc_file = snakemake.input.gc epod_file = snakemake.input.EPODs res = int(snakemake.params.res) cmap = snakemake.params.cmap outdir = str(snakemake.params.outdir) width = snakemake.params.width pos = snakemake.params.positions # Create outdir if necessary. os.makedirs(outdir, exist_ok=True) def import_annotation_gff(annotation_file): """Function to create a table of the gene positions from the gff file.""" annotation = pd.DataFrame( columns=["type", "start", "end", "strand", "name"] ) with open(annotation_file, "r") as file: for line in file: # Header. if line.startswith("#"): continue # Stop at the fasta sequences. elif line.startswith(">"): break else: line = line.split("\t") if line[2] in ["gene", "tRNA", "rRNA"]: if line[2] == "gene": name = line[8].split("Name=")[-1].split(";")[0] # Extract gene position. annot = { "type": line[2], "start": int(line[3]), "end": int(line[4]), "strand": line[6], "gene_name": name, } annotation = annotation.append(annot, ignore_index=True) return annotation # Import files. annotation = import_annotation_gff(annotation_file) mat_wt = cooler.Cooler(f"{mat_wt_file}::/resolutions/{res}").matrix( balance=True, sparse=False )[:] mat_wt[np.isnan(mat_wt)] = 0 mat_rf = cooler.Cooler(f"{mat_rf_file}::/resolutions/{res}").matrix( balance=True, sparse=False )[:] mat_rf[np.isnan(mat_rf)] = 0 rna_wt, _ = bcio.extract_big_wig(rna_wt_file, binning=100) rna_rf, _ = bcio.extract_big_wig(rna_rf_file, binning=100) cov_wt, _ = bcio.extract_big_wig(cov_wt_file, binning=1000) cov_rf, _ = bcio.extract_big_wig(cov_wt_file, binning=1000) gc_content = pd.read_csv(gc_file, sep="\t", header=None).iloc[:, 1] epod = pd.read_csv(epod_file, sep="\t", header=None) # Make the rotation of the matrix to plot them mat_wt_rot = copy.copy(mat_wt) mat_wt_rot = bch.interpolate_white_lines(mat_wt_rot) mat_wt_rot[np.isnan(mat_wt_rot)] = 0 mat_wt_rot = ndimage.rotate(mat_wt_rot, 45, reshape=True) mat_rf_rot = copy.copy(mat_rf) mat_rf_rot = bch.interpolate_white_lines(mat_rf_rot) mat_rf_rot[np.isnan(mat_rf_rot)] = 0 mat_rf_rot = ndimage.rotate(mat_rf_rot, 45, reshape=True) def plot_region( M1, M1_rot, M2, M2_rot, rna1, rna2, cov1, cov2, annotation, binning, width, zoom_ini, outfile, split=False, ): rna_binning = 100 pal = sns.color_palette("Paired") # Defined values to specify the borders of the matrices and tables zoom = [zoom // binning for zoom in zoom_ini] width = width / 1000 row1 = len(M1_rot) // 2 - int(np.sqrt(2) * width) row2 = len(M1_rot) // 2 + int(np.sqrt(2) * width) col1 = int(zoom[0] * np.sqrt(2)) col2 = int(zoom[1] * np.sqrt(2)) annotation_zoom = annotation[ np.logical_and( annotation.start > zoom_ini[0], annotation.end < zoom_ini[1] ) ] ymax = np.nanmax( np.concatenate( ( rna1[zoom_ini[0] // rna_binning : zoom_ini[1] // rna_binning], rna2[zoom_ini[0] // rna_binning : zoom_ini[1] // rna_binning], ) ) ) max_cov = np.nanmax(cov1) * 1.02 min_cov = np.nanmin(cov1) * 0.98 # Define panels depending on split or not. if split and ymax > 1500: a = 4 fig, ax = plt.subplots( 7, 2, figsize=(16, 12), gridspec_kw={"height_ratios": [1, 30, 1, 6, 12, 3, 3]}, sharex=False, ) # Parameters to merge panel 2 and 3. d = 0.02 D = 0.04 for j in range(2): ax[a - 1, j].set_xlim(zoom_ini[0] // 1000, zoom_ini[1] // 1000) ax[a - 1, j].tick_params(axis="both", labelsize=15) ax[a - 1, j].spines["bottom"].set_visible(False) ax[a - 1, j].spines["top"].set_visible(False) ax[a - 1, j].spines["right"].set_visible(False) ax[a - 1, j].set_ylim(ymax - 525, ymax) ax[a - 1, j].get_xaxis().set_visible(False) # Add the small cut between the two panels kwargs = dict( transform=ax[a - 1, j].transAxes, color="k", clip_on=False ) ax[a - 1, j].plot((-d, +d), (-D, +D), **kwargs) # top-left diagonal kwargs.update( transform=ax[a, j].transAxes ) # switch to the bottom axes ax[a, j].plot( (-d, +d), (1 - d, 1 + d), **kwargs ) # bottom-left diagonal # Plot the RNA on the split panel ax[a - 1, 0].fill_between( np.arange( zoom_ini[0] // 1000, zoom_ini[1] // 1000, rna_binning / 1000 ), rna1[zoom_ini[0] // rna_binning : zoom_ini[1] // rna_binning], color="black", ) ax[a - 1, 1].fill_between( np.arange( zoom_ini[0] // 1000, zoom_ini[1] // 1000, rna_binning / 1000 ), rna2[zoom_ini[0] // rna_binning : zoom_ini[1] // rna_binning], color="black", ) else: a = 3 fig, ax = plt.subplots( 6, 2, figsize=(16, 12), gridspec_kw={"height_ratios": [1, 30, 1, 15, 3, 3]}, sharex=False, ) # Plot expressed genes - blue are forward - red are reversed for j in range(2): ax[0, j].set_xlim(zoom_ini[0], zoom_ini[1]) ax[0, j].get_xaxis().set_visible(False) ax[0, j].get_yaxis().set_visible(False) ax[2, j].set_xlim(zoom_ini[0], zoom_ini[1]) ax[2, j].get_xaxis().set_visible(False) ax[2, j].get_yaxis().set_visible(False) pos = 1 for i in range(len(annotation_zoom)): # Extract annotation information annot = annotation_zoom.iloc[ i, ] strand = annot.strand start = annot.start // rna_binning end = annot.end // rna_binning name = annot.gene_name # Defined color depending on the strand if strand == "+": color = pal.as_hex()[1] else: color = pal.as_hex()[5] # Print it only if it transcribed (10% most transcribed genes) if np.mean(rna1[start:end]) >= 120.7628998139441: pos = pos * -1 for j in range(2): ax[0, j].add_patch( patches.Rectangle( (start * 100, 0), (end - start) * 100, 1, edgecolor=color, facecolor=color, fill=True, ) ) ax[0, j].text( x=(start + ((end - start) / 2)) * 100, y=pos + 0.5, s=name, rotation=90 * pos, wrap=True, ) color = pal.as_hex()[3] for i in epod.index: start = epod.loc[i, 3] end = epod.loc[i, 4] if ( (start > zoom_ini[0]) and (start < zoom_ini[1]) or (end > zoom_ini[0]) and (end < zoom_ini[1]) ): start = max(start, zoom_ini[0]) // rna_binning end = min(end, zoom_ini[1]) // rna_binning for j in range(2): ax[2, j].add_patch( patches.Rectangle( (start * 100, 0), (end - start) * 100, 1, edgecolor=color, facecolor=color, fill=True, ) ) # ax[2, j].text( # x=(start + ((end - start) / 2)) * 100, # y=pos + 0.5, # s="EPOD", # rotation=90 * pos, # wrap=True, # ) # Plot the matrices ax[1, 0].set_ylabel("Genomic distance (kb)", fontsize=15) for j in range(2): ax[1, j].get_xaxis().set_visible(False) ax[1, j].tick_params(axis="both", labelsize=15) # Plot the matrice 1 im = ax[1, 0].imshow( M1_rot[row1:row2, col1:col2], cmap=cmap, interpolation="none", vmin=0, vmax=np.nanpercentile(M1[zoom[0] : zoom[1], zoom[0] : zoom[1]], 97), extent=(col1 / np.sqrt(2), col2 / np.sqrt(2), width, -width), ) # Plot the matrice 2 ax[1, 1].imshow( M2_rot[row1:row2, col1:col2], cmap=cmap, interpolation="none", vmin=0, vmax=np.nanpercentile(M1[zoom[0] : zoom[1], zoom[0] : zoom[1]], 97), extent=(col1 / np.sqrt(2), col2 / np.sqrt(2), width, -width), ) # RNAseq legends and plot at the bottom panel. ax[a, 0].set_ylabel("RNA count (CPM)", fontsize=15) for j in range(2): # ax[a, j].set_xlabel("Genomic coordinates (kb)", size=15) ax[a, j].get_xaxis().set_visible(False) ax[a, j].tick_params(axis="both", labelsize=15) ax[a, j].set_xlim(zoom_ini[0] // 1000, zoom_ini[1] // 1000) ax[a, j].spines["top"].set_visible(False) ax[a, j].spines["right"].set_visible(False) if split: if ymax > 1500: ax[a, j].set_ylim(0, 1050) else: ax[a, j].set_ylim(0, 1500) else: ax[a, j].set_ylim(0, ymax) # Plot RNA at the bottom panel ax[a, 0].fill_between( np.arange(zoom_ini[0] // 1000, zoom_ini[1] // 1000, rna_binning / 1000), rna1[zoom_ini[0] // rna_binning : zoom_ini[1] // rna_binning], color="black", ) ax[a, 1].fill_between( np.arange(zoom_ini[0] // 1000, zoom_ini[1] // 1000, rna_binning / 1000), rna2[zoom_ini[0] // rna_binning : zoom_ini[1] // rna_binning], color="black", ) # GC content gc_binning = 100 for j in range(2): ax[a + 1, j].plot( np.arange( zoom_ini[0] // 1000, zoom_ini[1] // 1000, gc_binning / 1000 ), gc_content[ (zoom_ini[0] + 250) // gc_binning : (zoom_ini[1] + 250) // gc_binning ], color="black", ) ax[a + 1, j].set_xlim(zoom_ini[0] // 1000, zoom_ini[1] // 1000) ax[a + 1, j].tick_params(axis="both", labelsize=15) ax[a + 1, j].get_xaxis().set_visible(False) ax[a + 1, 0].set_ylabel("GC", fontsize=15) # Coverage cov_binning = 1000 ax[a + 2, 0].plot( np.arange(zoom_ini[0] // 1000, zoom_ini[1] // 1000, cov_binning / 1000), cov1[ (zoom_ini[0] + 250) // cov_binning : (zoom_ini[1] + 250) // cov_binning ], color="black", ) ax[a + 2, 1].plot( np.arange(zoom_ini[0] // 1000, zoom_ini[1] // 1000, cov_binning / 1000), cov2[ (zoom_ini[0] + 250) // cov_binning : (zoom_ini[1] + 250) // cov_binning ], color="black", ) for j in range(2): ax[a + 2, j].set_xlim(zoom_ini[0] // 1000, zoom_ini[1] // 1000) ax[a + 2, j].set_ylim(min_cov, max_cov) ax[a + 2, j].set_xlabel("Genomic coordinates (kb)", size=15) ax[a + 2, j].tick_params(axis="both", labelsize=15) ax[a + 2, 0].set_ylabel("HiC\ncoverage\n(CPM)", fontsize=15) # Colorbar cbar = fig.colorbar( im, ax=ax.ravel().tolist(), shrink=0.3, anchor=(1.2, 0.75) ) cbar.ax.tick_params(labelsize=15) # Save the fig and adjust margins if split and ymax > 1500: plt.subplots_adjust(wspace=0.2, hspace=0.1) else: plt.subplots_adjust(wspace=0.2, hspace=0.1) plt.savefig(outfile, bbox_inches="tight", dpi=200) for split in [True, False]: if split: outfile = join( outdir, f"region_{pos[0]}_{pos[1]}_split.pdf", ) else: outfile = join( outdir, f"region_{pos[0]}_{pos[1]}.pdf", ) position = [int(p) * 1000 for p in pos] plot_region( mat_wt, mat_wt_rot, mat_rf, mat_rf_rot, rna_wt, rna_rf, cov_wt, cov_rf, annotation, res, width, position, outfile, split=split, ) |
Pipeline for Predicting Antibiotic Resistance in Mycobacterium tuberculosis Using Snakemake
22 23 | shell: "snakemake --nolock --report {output}" |
46 47 | shell: "snakemake --nolock --report {output}" |
MYCRes: Snakemake-based Antibiotic Resistance Prediction in Mycobacterium tuberculosis
22 23 | shell: "snakemake --nolock --report {output}" |
46 47 | shell: "snakemake --nolock --report {output}" |
Finding cryptic relationships to boost disease gene detection (v0.3.0dev1-1)
19 20 21 22 23 24 25 26 27 28 29 30 | #Snakemake interface args = list() if (exists('snakemake')) { args = list(estimatedRelFile = snakemake@input$estRel, trueRelFile = snakemake@input$trueRel) } else { warning("Not running with snakemake. Using test arguments!!!") args = list(estimatedRelFile = '~/tmp/tribes/TFEur/FF-EUR-15-30-2-mut_BiSnp_EurAF:0.01_LD_PH_GRM-allchr_IBD.csv', trueRelFile = '~/tmp/tribes/TFEur/FF-EUR-15-30-2-mut_relations.txt') } print(args) |
Single-Cell and Single-Nuclei Data Integration Workflow
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 | project_root <- here::here() renv::load(project_root) # import libraries library(magrittr) library(optparse) library(SingleCellExperiment) # source helper functions source(file.path(project_root, "scripts", "utils", "integration-helpers.R")) # Set up optparse options option_list <- list( make_option( opt_str = c("-l", "--library_file"), type = "character", default = file.path(project_root, "sample-info", "hca-processed-libraries.tsv"), help = "path to file listing all libraries that are to be converted" ), make_option( opt_str = c("-g", "--grouping_var"), type = "character", default = "project_name", help = "Column name present in the library metadata file to use for grouping SCE objects and merging." ), make_option( opt_str = c("--groups_to_integrate"), type = "character", default = "All", help = "Groups present in `grouping_var` column of metadata file to create merged SCE objects for. Default is 'All' which produces a merged object for each group in the metadata file. Specify groups by using a vector, e.g. c('group1','group2')" ), make_option( opt_str = c("--add_celltype"), action = "store_true", default = FALSE, help = "Boolean indicating whether or not celltype data should be added to the individual SCE object prior to merging." ), make_option( opt_str = c("--celltype_info"), type = "character", default = file.path(project_root, "sample-info", "hca-celltype-info.tsv"), help = "Path to file containing cell type information for each SCE object. Must contain columns named `library_biomaterial_id`, `celltype`, and `barcode`." ), make_option( opt_str = c("--batch_column"), type = "character", default = "batch", help = "The name of the column in colData that indicates the batches for each cell, typically this corresponds to the library id. Default is 'batch'." ), make_option( opt_str = c("--random_merge"), default = FALSE, action = "store_true", help = "Used to indicate whether or not to merge SCE objects in a random order. Default is FALSE." ), make_option( opt_str = c("--subset_hvg"), default = FALSE, action = "store_true", help = "Indicates whether or not to subset the merged SCE object by highly variable genes. If --subset_hvg is used, the merged SCE object will only contain genes identified as highly variable genes." ), make_option( opt_str = c("--pca_use_all_genes"), default = FALSE, action = "store_true", help = "Indicates whether or not to use the all genes as input to performing principal component analysis. Otherwise only highly variable genes are used as input." ), make_option( opt_str = c("-n", "--num_hvg"), dest = "num_genes", type = "integer", default = 5000, help = "Number of highly variable genes to select." ), make_option( opt_str = c("--merged_sce_dir"), type = "character", default = file.path(project_root, "results", "human_cell_atlas", "merged_sce"), help = "path to folder where all merged SCE objects files will be saved as RDS files" ), make_option( opt_str = c("--seed"), type = "integer", default = NULL, help = "random seed to set prior to merging" ) ) # Setup ------------------------------------------------------------------------ # Parse options opt <- parse_args(OptionParser(option_list = option_list)) set.seed(opt$seed) # check that num genes provided is an integer if(!is.integer(opt$num_genes)){ stop("--num_hvg must be an integer.") } # checks that provided metadata files exist if(!file.exists(opt$library_file)){ stop("--library_file provided does not exist.") } # read in library metadata and grab unfiltered sce file paths library_metadata_df <- readr::read_tsv(opt$library_file) # check that cell type file exists if using add_celltype option if(opt$add_celltype){ if(!file.exists(opt$celltype_info)){ stop("--celltype_info file provided does not exist.") } celltype_info_df <- readr::read_tsv(opt$celltype_info) } # check that grouping variable is present if(!opt$grouping_var %in% colnames(library_metadata_df)){ stop("Must provide a grouping_var that is a column in the library metadata file.") } # define groups to integrate groups <- library_metadata_df %>% dplyr::pull(opt$grouping_var) %>% unique() # check that groups to integrate isn't set to All if(length(opt$groups_to_integrate) == 1 && (opt$groups_to_integrate == "All")){ groups_to_integrate <- groups } else { # if All is not used then unlist groups, using space, needed to parse a list from snakemake groups_to_integrate <- unlist(stringr::str_split(opt$groups_to_integrate, " ")) # check that specified groups are present in grouping_var column if(!any(groups_to_integrate %in% groups)){ stop("Provided `--groups_to_integrate` must also be present in the `--grouping_var` column of the library metadata file.") } } # subset metadata file to only contain groups to integrate library_metadata_df <- library_metadata_df %>% dplyr::filter(.data[[opt$grouping_var]] %in% groups_to_integrate) # grab library ids library_ids <- library_metadata_df %>% dplyr::pull(library_biomaterial_id) # setup output directory create_dir(opt$merged_sce_dir) # Identify SCE files ----------------------------------------------------------- # grab all unique directories corresponding to projects considered for integration input_sce_dirs <- library_metadata_df %>% dplyr::pull(integration_input_dir) %>% unique() # find SCE files that match library ID, and throw an error if any are missing. sce_files <- find_input_sce_files(library_ids, input_sce_dirs) # Merge by group --------------------------------------------------------------- # get the library IDs from the SCE file names so that we can name the SCEs in the correct order library_ids_sce_order <- stringr::str_extract(sce_files, pattern = paste(library_ids, collapse = "|")) sce_file_df <- data.frame(sce_files = sce_files, library_id= library_ids_sce_order) %>% dplyr::left_join(library_metadata_df, by = c("library_id" = "library_biomaterial_id")) %>% dplyr::select(library_id, opt$grouping_var, sce_files) # group dataframe by the grouping variable grouped_sce_file_df <- split(sce_file_df, sce_file_df[,opt$grouping_var]) # create a list of SCE lists that is named by the grouping variable with # each individual inner SCE list named by the library IDs create_grouped_sce_list <- function(sce_info_dataframe, celltype_info_df = NULL, add_celltype){ library_sce_list = list() for (library_idx in 1:length(sce_info_dataframe$library_id)){ # read sce list for each library sce <- readr::read_rds(sce_info_dataframe$sce_files[library_idx]) library_name <- sce_info_dataframe$library_id[library_idx] if(add_celltype){ # if celltype info is provided add to sce object if(!is.null(celltype_info_df)){ # check that library has cell type information if(library_name %in% unique(celltype_info_df$library_biomaterial_id)){ # filter celltype info to only have info for specified library filtered_celltype_info <- celltype_info_df %>% dplyr::filter(library_biomaterial_id == library_name) %>% dplyr::select(barcode, celltype) # add celltype info sce <- add_celltype_info(sce_object = sce, celltype_info_df = filtered_celltype_info) # add flag indicating that cell type information is available metadata(sce)$celltype_info_available <- TRUE } # only add celltype column/metadata if add celltype is yes, but no celltype data is available } else { # note that no cell type information is available colData(sce)$celltype <- NA metadata(sce)$celltype_info_available <- FALSE } } # create a list for each group named by the library IDs library_sce_list[[library_name]] <- sce } return(library_sce_list) } # create grouped sce list with/without celltype addition if(opt$add_celltype){ grouped_sce_list <- grouped_sce_file_df %>% purrr::map(create_grouped_sce_list, celltype_info_df, add_celltype = opt$add_celltype) } else { grouped_sce_list <- grouped_sce_file_df %>% purrr::map(create_grouped_sce_list, add_celltype = opt$add_celltype) } # create a list of merged SCE objects by group # In this default usage, a batch column named `batch` will get created merged_sce_list <- grouped_sce_list %>% purrr::map(combine_sce_objects, preserve_rowdata_columns = c("Gene", "gene_names", "ensembl_ids"), random_merge = opt$random_merge) # HVG and dim reduction -------------------------------------------------------- # apply HVG calculation to list of merged SCEs # object will only be subset to HVG if subset_hvg is true merged_sce_list <- merged_sce_list %>% purrr::map(~ set_var_genes(.x, num_genes = opt$num_genes, subset_hvg = opt$subset_hvg, batch_column = opt$batch_column)) # add PCA and UMAP # if --pca_use_all_genes is used, use all genes, otherwise only HVG are used if(opt$pca_use_all_genes){ merged_sce_list <- merged_sce_list %>% purrr::map( ~ perform_dim_reduction(.x, var_genes = rownames(.x), pca_type = "multi")) } else { merged_sce_list <- merged_sce_list %>% purrr::map( ~ perform_dim_reduction(.x, var_genes = metadata(.x)$variable_genes, pca_type = "multi")) } # Write RDS -------------------------------------------------------------------- # create paths to merged SCE files # named with the name of the sce list which corresponds to the grouping variable, not library ID merged_sce_files <- file.path(opt$merged_sce_dir, paste0(names(merged_sce_list), "_merged_sce.rds")) # export files purrr::walk2(merged_sce_list, merged_sce_files, readr::write_rds) |
A repository to conduct experiments with omnitig-related models for genome assembly. (v0.4.3)
2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 | shell: """ mkdir -p '{params.external_software_dir}' cd '{params.external_software_dir}' rm -rf Flye git clone https://github.com/sebschmi/Flye cd Flye git checkout 38921327d6c5e57a59e71a7181995f2f0c04be75 mv bin/flye bin/flye.disabled # rename such that snakemake does not delete it """ |
2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 | shell: """ cd '{params.flye_directory}' export CXX=x86_64-conda-linux-gnu-g++ export CC=x86_64-conda-linux-gnu-gcc # export INCLUDES=-I/usr/include/ # Somehow this is not seen by minimap's Makefile, so we had to change it in our custom version of Flye # The following also doesn't seem to work when building minimap, so again we had to modify minimap's Makefile # export LD_LIBRARY_PATH=$CONDA_PREFIX/lib:${{LD_LIBRARY_PATH:=''}} # Redirect library path to include conda libraries # make # This does not create the python script anymore /usr/bin/env python3 setup.py install mv bin/flye.disabled bin/flye # was renamed such that snakemake does not delete it """ |
2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 | shell: """ mkdir -p '{params.external_software_dir}' cd '{params.external_software_dir}' rm -rf rust-mdbg git clone https://github.com/sebschmi/rust-mdbg cd rust-mdbg git checkout 4ff0122a8c63210820ba0341fa7365d6ac216612 cargo fetch # rename such that snakemake does not delete them mv utils/magic_simplify utils/magic_simplify.original mv utils/multik utils/multik.original """ |
tool / biotools
Snakemake
Workflow engine and language. It aims to reduce the complexity of creating workflows by providing a fast and comfortable execution environment, together with a clean and modern domain specific specification language (DSL) in python style.