Workflow Steps and Code Snippets
217 tagged steps and code snippets that match keyword tidyr
Snakemake workflow: rna-seq-kallisto-sleuth
1 2 3 4 5 6 7 8 9 10 11 12 | log <- file(snakemake@log[[1]], open="wt") sink(log) sink(log, type="message") library("sleuth") library("ggplot2") library("tidyr") diffexp <- sleuth_load(snakemake@input[["diffexp_rds"]]) %>% drop_na(pval) ggplot(diffexp) + geom_histogram(aes(pval), bins = 100) ggsave(file = snakemake@output[[1]], width = 14) |
Metagenomic pipeline managed by snakemake (1.0)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 | args <- commandArgs(trailingOnly = TRUE) library(dplyr) library(tidyr) library(data.table) fixCollapsed <- function(df){ colnames(df) <- c("key", "value") df <- df %>% mutate(key = strsplit(key, "; ")) %>% unnest(key) df <- df[, c(2, 1)] return(df) } fixDuplicated <- function(df){ df <- df %>% group_by(key) %>% summarise(value = paste(value, collapse = "; ")) values <- strsplit(df$value, "; ") values <- lapply(values, unique) values <- sapply(values, paste, collapse = "; ") df$value <- values return(df) } removeUnknown <- function(df){ idx <- grepl("^-", df$key) df <- df[!idx,] return(df) } df <- fread(args[2], stringsAsFactors = FALSE, head = FALSE, nThread = as.integer(args[4])) df <- as.data.frame(df) df %>% fixCollapsed() %>% fixDuplicated() %>% removeUnknown() %>% fwrite(file = args[1], sep = "\t", nThread = as.integer(args[4])) df <- fread(args[3], stringsAsFactors = FALSE, head = FALSE, nThread = as.integer(args[4])) df <- as.data.frame(df) df %>% fixCollapsed() %>% fixDuplicated() %>% removeUnknown() %>% fwrite(file = args[1], sep = "\t", append = TRUE, nThread = as.integer(args[4])) |
Integrated Mapping and Profiling of Allelically-expressed Loci with Annotations (1.0.0)
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 | library(optparse) ## --------------------------------------------------------------------------- ## OPT PARSE ## --------------------------------------------------------------------------- # options option_list = list( make_option(c("-c", "--chromSize"), type="character", help="chromosome sizes", metavar="character"), make_option(c("-p", "--centPos"), type="character", help="centred centromere positions", metavar="character"), make_option(c("-n", "--cna"), type="character", help="copy number segment file (preferably condensed)", metavar="character"), make_option(c("-d", "--dmr"), type="character", help="DMR positions", metavar="character"), make_option(c("-a", "--ase"), type="character", help="ASE summary table file", metavar="character"), make_option(c("-g", "--genes"), type="character", help="Gene annotation file", metavar="character"), make_option(c("-o", "--out"), type="character", help="output file prefix", metavar="character") ) opt_parser = OptionParser(option_list=option_list) opt = parse_args(opt_parser) #Note: these packages need to be installed. suppressMessages(library(dplyr)) suppressMessages(library(reshape2)) suppressMessages(library(ggplot2)) suppressMessages(library(tidyr)) suppressMessages(library(cowplot)) # chromosome size/position info #chromSize <- read.delim("/projects/hpv_nanopore_prj/refs/hg38_no_alt_TCGA_HTMCP_HPVs_chromSizes.txt", header = F) #centPos <- read.delim("/projects/hpv_nanopore_prj/refs/hg38_centromere_positions_merged.bed", header = F) #genes <- read.delim("/projects/hpv_nanopore_prj/htmcp/ase/pull_trial/vporter-allelespecificexpression/output/HTMCP.03.06.02058/3_cancer/raw/gene_annotation.bed", header = F) chromSize <- read.delim(opt$chromSize, header = F) centPos <- read.delim(opt$centPos, header = F) genes <- read.delim(opt$genes, header = F) ## --------------------------------------------------------------------------- ## POSITION CHROMOSOME INFO ## --------------------------------------------------------------------------- # subset to the main chromosomes chromSize <- chromSize[chromSize$V1 %in% c(paste0("chr", 1:22), "chrX"),] # Rename columns to chromosome and size colnames(chromSize) <- c("chr","size") # Reorder levels for plotting chromSize$chr <- factor(chromSize$chr,levels=c(paste0("chr", 1:22), "chrX")) chromSize <- chromSize[chromSize$chr %in% c(paste0("chr", 1:22), "chrX"),] # Divide by 1Mb to clean up axis chromSize$size <- chromSize$size/1000000 # centromere mapping colnames(centPos) <- c("chr", "start", "end") centPos$chr <- factor(centPos$chr,levels=c(paste0("chr", 1:22), "chrX")) centPos$centre <- centPos$start + ((centPos$end - centPos$start)/2) centPos$centre <- centPos$centre/1000000 ## --------------------------------------------------------------------------- ## COPY NUMBER ## --------------------------------------------------------------------------- if (!is.null(opt$cna) & opt$cna != ""){ #cna <- read.delim("/projects/hpv_nanopore_prj/htmcp/ploidetect/illumina/Ploidetect-pipeline/ploidetect_out/HTMCP-03-06-02058/A37261_A37189/cna_condensed.txt", header = T) cna <- read.delim(opt$cna, header = T) cna$chr <- paste0("chr", cna$chr) # rearrange to make a bed file cna_bed <- cna[,c("chr", "pos", "end", "CN", "zygosity", "A", "B")] # categorize copy number cna_bed <- cna_bed %>% mutate(CN.Status = case_when( zygosity == "HOM" ~ "LOH", A > B ~ "imbalance", TRUE ~ "balance" )) # Divide by 1Mb for axis cna_bed$end <- cna_bed$end/1000000 cna_bed$pos <- cna_bed$pos/1000000 # Change to factor and reorder levels cna_bed$chr <- factor(cna_bed$chr,levels=c(paste0("chr", 1:22), "chrX")) cnaLOH <- cna_bed %>% filter(CN.Status == "LOH") cnaGAIN <- cna_bed %>% filter(CN.Status == "imbalance") } ## --------------------------------------------------------------------------- ## DIFFERENTIAL METHYLATION ## --------------------------------------------------------------------------- if (!is.null(opt$dmr) & opt$dmr != ""){ #dmr <- read.delim("/projects/hpv_nanopore_prj/htmcp/call_integration/output/HTMCP-03-06-02058/methylation/diff_meth.csv", header = T) dmr <- read.delim(opt$dmr, header = T) # Divide by 1Mb for axis dmr$start <- dmr$start/1000000 dmr$end <- dmr$end/1000000 dmr$middle <- (dmr$start + dmr$end) / 2 # Change to factor and reorder levels dmr$chr <- factor(dmr$chr, levels=c(paste0("chr", 1:22), "chrX")) # count in 1Mb bins dmrCount <- data.frame(table(as.factor(paste0(dmr$chr, ":", as.integer(dmr$middle))))) # split the chromosome name and bin position dmrPlot <- separate(dmrCount, col = Var1, into = c("chr", "pos"), sep = ":", remove = T) # scale to fit the plot - i.e. make the maximum width 0.65 maxDMR <- max(dmrPlot$Freq) dmrPlot$percMax <- dmrPlot$Freq/maxDMR dmrPlot$percMax <- dmrPlot$percMax * 0.65 # Change to factor and reorder levels dmrPlot$chr <- factor(dmrPlot$chr, levels=c(paste0("chr", 1:22), "chrX")) dmrPlot$pos <- as.numeric(dmrPlot$pos) } ## --------------------------------------------------------------------------- ## ASE GENE HISTOGRAM ## --------------------------------------------------------------------------- #ase <- read.delim("/projects/hpv_nanopore_prj/htmcp/ase/pull_trial/vporter-allelespecificexpression/output/HTMCP.03.06.02058/summaryTable.tsv", header = T) ase <- read.delim(opt$ase, header = T) # filter for ASE genes ase <- ase[ase$aseResults == "ASE",] # get gene positions ase$chr <- genes$V1[match(ase$gene, genes$V4)] ase$start <- genes$V2[match(ase$gene, genes$V4)] ase$end <- genes$V3[match(ase$gene, genes$V4)] # get the middle of the gene for plotting ase$middle <- (ase$start + ase$end)/2 # get the data frame ready for plotting ase <- ase[,c("chr", "start", "end","middle")] ase <- ase[complete.cases(ase),] # Divide by 1Mb for axis ase$middle <- ase$middle/1000000 # count in 1Mb bins aseCount <- data.frame(table(as.factor(paste0(ase$chr, ":", as.integer(ase$middle))))) # split the chromosome name and bin position asePlot <- separate(aseCount[aseCount$Var1 != "NA:NA",], col = Var1, into = c("chr", "pos"), sep = ":", remove = T) # scale to fit the plot - i.e. make the maximum width 0.65 maxASE <- max(asePlot$Freq) asePlot$percMax <- asePlot$Freq/maxASE asePlot$percMax <- asePlot$percMax * 0.65 # Change to factor and reorder levels asePlot$chr <- factor(asePlot$chr, levels=c(paste0("chr", 1:22), "chrX")) asePlot$pos <- as.numeric(asePlot$pos) ## --------------------------------------------------------------------------- ## PLOT OPTIONS ## --------------------------------------------------------------------------- ##### CNV AND DMRs AVAILABLE if (!is.null(opt$dmr) & opt$dmr != "" & !is.null(opt$cna) & opt$cna != ""){ # legend adL <- data.frame(xmin = c(9.7, 9.7, 9.7, 10.3,9.7,10.3,7.1,7.1), xmax = c(10.35, 10.35,9.75,10.35,9.75,10.35,7.26,7.26), ymin = c(240,210,238,238,208,208,235,205), ymax = c(243,213,243,243,213,213,245,215), fill = c("ase","dmr","ase","ase","dmr","dmr", "gain", "loh")) adW <- data.frame(x = c(11.5, 11.2,8.25,7.6,10,10), y = c(240,210,240,210,250,220), label = c("ASE Gene Density","DMR Density", "Imbalanced CNV", "LOH", as.character(c(maxASE,maxDMR)))) # plot # chromosomes 1 - 12 p1 <- ggplot() + # chromosome bars geom_segment(data = chromSize %>% filter(chr %in% paste0("chr", 1:12)), aes(x = chr, xend = chr, y = 0, yend = size), lineend = "round", color = "lightgrey", size = 5) + # LOH geom_rect(data = cnaLOH %>% filter(chr %in% paste0("chr", 1:12)), aes(xmin = as.integer(chr) - 0.08, xmax = as.integer(chr) + 0.08, ymin = pos, ymax = end), fill="#94d2bd",size = 0.2) + # Imbalanced CNV geom_rect(data = cnaGAIN %>% filter(chr %in% paste0("chr", 1:12)), aes(xmin = as.integer(chr) - 0.08, xmax = as.integer(chr) + 0.08, ymin = pos, ymax = end), fill="#ee9b00",size = 0.2) + # ASE genes geom_rect(data = asePlot %>% filter(chr %in% paste0("chr", 1:12)), aes(xmin = as.integer(chr) + 0.1, xmax = (as.integer(chr) + 0.1 + percMax), ymin = pos, ymax = pos+1), fill = "#005f73", size = 0.25) + # DMRs geom_rect(data = dmrPlot %>% filter(chr %in% paste0("chr", 1:12)), aes(xmin = (as.integer(chr) - 0.1 - percMax), xmax = as.integer(chr) - 0.1, ymin = pos, ymax = pos+1), fill = "#ae2012", size = 0.25) + # centromeres geom_point(data = centPos %>% filter(chr %in% paste0("chr", 1:12)), aes(x = chr, y = centre), size = 5, colour = "gray") + # legend bars geom_rect(data = adL, aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax, fill = fill), size = 0.25) + # legend text geom_text(data = adW, aes(x = x, y = y, label = label))+ scale_fill_manual(values = c("#005f73","#ae2012","#ee9b00","#94d2bd")) + ylim(0, 250) + theme_classic() + theme(text = element_text(size=15),axis.line=element_blank(), axis.ticks.x=element_blank(), legend.position = "none")+ labs(x=NULL,y="Chromosome Size (Mb)") # chromosomes 13 - 22 + X # very annoying but you have to filter all the dataframes or else the factor levels won't match the integer value chromSizeFilt <- chromSize %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) chromSizeFilt$chr <- factor(chromSizeFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) centPosFilt <- centPos %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) centPosFilt$chr <- factor(centPosFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) cnaLOHFilt <- cnaLOH %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) cnaLOHFilt$chr <- factor(cnaLOHFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) cnaGAINFilt <- cnaGAIN %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) cnaGAINFilt$chr <- factor(cnaGAINFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) asePlotFilt <- asePlot %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) asePlotFilt$chr <- factor(asePlotFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) dmrPlotFilt <- dmrPlot %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) dmrPlotFilt$chr <- factor(dmrPlotFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) # chromosomes 13-22+X p2 <- ggplot() + # chromosome bars geom_segment(data = chromSizeFilt, aes(x = chr, xend = chr, y = 0, yend = size), lineend = "round", color = "lightgrey", size = 5) + # LOH geom_rect(data = cnaLOHFilt, aes(xmin = as.integer(chr) - 0.08, xmax = as.integer(chr) + 0.08, ymin = pos, ymax = end), fill="#94d2bd",size = 0.2) + # Imbalanced CNV geom_rect(data = cnaGAINFilt, aes(xmin = as.integer(chr) - 0.08, xmax = as.integer(chr) + 0.08, ymin = pos, ymax = end), fill="#ee9b00",size = 0.2) + # ASE genes geom_rect(data = asePlotFilt, aes(xmin = as.integer(chr) + 0.1, xmax = (as.integer(chr) + 0.1 + percMax), ymin = pos, ymax = pos+1), fill = "#005f73", size = 0.25) + # DMRs geom_rect(data = dmrPlotFilt, aes(xmin = (as.integer(chr) - 0.1 - percMax), xmax = as.integer(chr) - 0.1, ymin = pos, ymax = pos+1), fill = "#ae2012", size = 0.25) + # centromeres geom_point(data = centPosFilt, aes(x = chr, y = centre), size = 5, colour = "black") + ylim(0, 250) + theme_classic() + theme(text = element_text(size=15),axis.line=element_blank(), axis.ticks.x=element_blank(), legend.position = "none")+ labs(x=NULL,y=NULL) } else if (!is.null(opt$cna) & opt$cna != ""){ ### CNVs BUT NO DMRs # legend adL <- data.frame(xmin = c(9.7, 9.7, 10.3,7.1,7.1), xmax = c(10.35, 9.75,10.35,7.26,7.26), ymin = c(240,238,238,235,205), ymax = c(243,243,243,245,215), fill = c("ase","ase","ase","gain", "loh")) adW <- data.frame(x = c(11.5,8.25,7.6,10), y = c(240,240,210,250), label = c("ASE Gene Density", "Imbalanced CNV", "LOH", as.character(c(maxASE)))) # plot # chromosomes 1 - 12 p1 <- ggplot() + # chromosome bars geom_segment(data = chromSize %>% filter(chr %in% paste0("chr", 1:12)), aes(x = chr, xend = chr, y = 0, yend = size), lineend = "round", color = "lightgrey", size = 5) + # LOH geom_rect(data = cnaLOH %>% filter(chr %in% paste0("chr", 1:12)), aes(xmin = as.integer(chr) - 0.08, xmax = as.integer(chr) + 0.08, ymin = pos, ymax = end), fill="#94d2bd",size = 0.2) + # Imbalanced CNV geom_rect(data = cnaGAIN %>% filter(chr %in% paste0("chr", 1:12)), aes(xmin = as.integer(chr) - 0.08, xmax = as.integer(chr) + 0.08, ymin = pos, ymax = end), fill="#ee9b00",size = 0.2) + # ASE genes geom_rect(data = asePlot %>% filter(chr %in% paste0("chr", 1:12)), aes(xmin = as.integer(chr) + 0.1, xmax = (as.integer(chr) + 0.1 + percMax), ymin = pos, ymax = pos+1), fill = "#005f73", size = 0.25) + # centromeres geom_point(data = centPos %>% filter(chr %in% paste0("chr", 1:12)), aes(x = chr, y = centre), size = 5, colour = "gray") + # legend bars geom_rect(data = adL, aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax, fill = fill), size = 0.25) + # legend text geom_text(data = adW, aes(x = x, y = y, label = label))+ scale_fill_manual(values = c("#005f73","#ee9b00","#94d2bd")) + ylim(0, 250) + theme_classic() + theme(text = element_text(size=15),axis.line=element_blank(), axis.ticks.x=element_blank(), legend.position = "none")+ labs(x=NULL,y="Chromosome Size (Mb)") # chromosomes 13 - 22 + X # very annoying but you have to filter all the dataframes or else the factor levels won't match the integer value chromSizeFilt <- chromSize %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) chromSizeFilt$chr <- factor(chromSizeFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) centPosFilt <- centPos %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) centPosFilt$chr <- factor(centPosFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) cnaLOHFilt <- cnaLOH %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) cnaLOHFilt$chr <- factor(cnaLOHFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) cnaGAINFilt <- cnaGAIN %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) cnaGAINFilt$chr <- factor(cnaGAINFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) asePlotFilt <- asePlot %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) asePlotFilt$chr <- factor(asePlotFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) # chromosomes 13-22+X p2 <- ggplot() + # chromosome bars geom_segment(data = chromSizeFilt, aes(x = chr, xend = chr, y = 0, yend = size), lineend = "round", color = "lightgrey", size = 5) + # LOH geom_rect(data = cnaLOHFilt, aes(xmin = as.integer(chr) - 0.08, xmax = as.integer(chr) + 0.08, ymin = pos, ymax = end), fill="#94d2bd",size = 0.2) + # Imbalanced CNV geom_rect(data = cnaGAINFilt, aes(xmin = as.integer(chr) - 0.08, xmax = as.integer(chr) + 0.08, ymin = pos, ymax = end), fill="#ee9b00",size = 0.2) + # ASE genes geom_rect(data = asePlotFilt, aes(xmin = as.integer(chr) + 0.1, xmax = (as.integer(chr) + 0.1 + percMax), ymin = pos, ymax = pos+1), fill = "#005f73", size = 0.25) + # centromeres geom_point(data = centPosFilt, aes(x = chr, y = centre), size = 5, colour = "black") + ylim(0, 250) + theme_classic() + theme(text = element_text(size=15),axis.line=element_blank(), axis.ticks.x=element_blank(), legend.position = "none")+ labs(x=NULL,y=NULL) } else if (!is.null(opt$dmr) & opt$dmr != ""){ ## DMRs BUT NO CNV # legend adL <- data.frame(xmin = c(9.7, 9.7, 9.7, 10.3,9.7,10.3), xmax = c(10.35, 10.35,9.75,10.35,9.75,10.35), ymin = c(240,210,238,238,208,208), ymax = c(243,213,243,243,213,213), fill = c("ase","dmr","ase","ase","dmr","dmr")) adW <- data.frame(x = c(11.5, 11.2,10,10), y = c(240,210,250,220), label = c("ASE Gene Density","DMR Density", as.character(c(maxASE,maxDMR)))) # plot # chromosomes 1 - 12 p1 <- ggplot() + # chromosome bars geom_segment(data = chromSize %>% filter(chr %in% paste0("chr", 1:12)), aes(x = chr, xend = chr, y = 0, yend = size), lineend = "round", color = "lightgrey", size = 5) + # ASE genes geom_rect(data = asePlot %>% filter(chr %in% paste0("chr", 1:12)), aes(xmin = as.integer(chr) + 0.1, xmax = (as.integer(chr) + 0.1 + percMax), ymin = pos, ymax = pos+1), fill = "#005f73", size = 0.25) + # DMRs geom_rect(data = dmrPlot %>% filter(chr %in% paste0("chr", 1:12)), aes(xmin = (as.integer(chr) - 0.1 - percMax), xmax = as.integer(chr) - 0.1, ymin = pos, ymax = pos+1), fill = "#ae2012", size = 0.25) + # centromeres geom_point(data = centPos %>% filter(chr %in% paste0("chr", 1:12)), aes(x = chr, y = centre), size = 5, colour = "black") + # legend bars geom_rect(data = adL, aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax, fill = fill), size = 0.25) + # legend text geom_text(data = adW, aes(x = x, y = y, label = label))+ scale_fill_manual(values = c("#005f73","#ae2012")) + ylim(0, 250) + theme_classic() + theme(text = element_text(size=15),axis.line=element_blank(), axis.ticks.x=element_blank(), legend.position = "none")+ labs(x=NULL,y="Chromosome Size (Mb)") # chromosomes 13 - 22 + X # very annoying but you have to filter all the dataframes or else the factor levels won't match the integer value chromSizeFilt <- chromSize %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) chromSizeFilt$chr <- factor(chromSizeFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) centPosFilt <- centPos %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) centPosFilt$chr <- factor(centPosFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) asePlotFilt <- asePlot %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) asePlotFilt$chr <- factor(asePlotFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) dmrPlotFilt <- dmrPlot %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) dmrPlotFilt$chr <- factor(dmrPlotFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) # chromosomes 13-22+X p2 <- ggplot() + # chromosome bars geom_segment(data = chromSizeFilt, aes(x = chr, xend = chr, y = 0, yend = size), lineend = "round", color = "lightgrey", size = 5) + # ASE genes geom_rect(data = asePlotFilt, aes(xmin = as.integer(chr) + 0.1, xmax = (as.integer(chr) + 0.1 + percMax), ymin = pos, ymax = pos+1), fill = "#005f73", size = 0.25) + # DMRs geom_rect(data = dmrPlotFilt, aes(xmin = (as.integer(chr) - 0.1 - percMax), xmax = as.integer(chr) - 0.1, ymin = pos, ymax = pos+1), fill = "#ae2012", size = 0.25) + # centromeres geom_point(data = centPosFilt, aes(x = chr, y = centre), size = 5, colour = "black") + ylim(0, 250) + theme_classic() + theme(text = element_text(size=15),axis.line=element_blank(), axis.ticks.x=element_blank(), legend.position = "none")+ labs(x=NULL,y=NULL) } else{ ## NO DMRs OR CNVs # legend adL <- data.frame(xmin = c(9.7, 9.7, 10.3), xmax = c(10.35,9.75,10.35), ymin = c(240,238,238), ymax = c(243,243,243), fill = c("ase","ase","ase")) adW <- data.frame(x = c(11.5,10), y = c(240,250), label = c("ASE Gene Density", as.character(c(maxASE)))) # plot # chromosomes 1 - 12 p1 <- ggplot() + # chromosome bars geom_segment(data = chromSize %>% filter(chr %in% paste0("chr", 1:12)), aes(x = chr, xend = chr, y = 0, yend = size), lineend = "round", color = "lightgrey", size = 5) + # ASE genes geom_rect(data = asePlot %>% filter(chr %in% paste0("chr", 1:12)), aes(xmin = as.integer(chr) + 0.1, xmax = (as.integer(chr) + 0.1 + percMax), ymin = pos, ymax = pos+1), fill = "#005f73", size = 0.25) + # centromeres geom_point(data = centPos %>% filter(chr %in% paste0("chr", 1:12)), aes(x = chr, y = centre), size = 5, colour = "black") + # legend bars geom_rect(data = adL, aes(xmin = xmin, xmax = xmax, ymin = ymin, ymax = ymax, fill = fill), size = 0.25) + # legend text geom_text(data = adW, aes(x = x, y = y, label = label))+ scale_fill_manual(values = c("#005f73")) + ylim(0, 250) + theme_classic() + theme(text = element_text(size=15),axis.line=element_blank(), axis.ticks.x=element_blank(), legend.position = "none")+ labs(x=NULL,y="Chromosome Size (Mb)") # chromosomes 13 - 22 + X # very annoying but you have to filter all the dataframes or else the factor levels won't match the integer value chromSizeFilt <- chromSize %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) chromSizeFilt$chr <- factor(chromSizeFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) centPosFilt <- centPos %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) centPosFilt$chr <- factor(centPosFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) asePlotFilt <- asePlot %>% filter(chr %in% c(paste0("chr", 13:22), "chrX")) asePlotFilt$chr <- factor(asePlotFilt$chr,levels=c(paste0("chr", 13:22), "chrX")) # chromosomes 13-22+X p2 <- ggplot() + # chromosome bars geom_segment(data = chromSizeFilt, aes(x = chr, xend = chr, y = 0, yend = size), lineend = "round", color = "lightgrey", size = 5) + # ASE genes geom_rect(data = asePlotFilt, aes(xmin = as.integer(chr) + 0.1, xmax = (as.integer(chr) + 0.1 + percMax), ymin = pos, ymax = pos+1), fill = "#005f73", size = 0.25) + # centromeres geom_point(data = centPosFilt, aes(x = chr, y = centre), size = 5, colour = "black") + ylim(0, 250) + theme_classic() + theme(text = element_text(size=15),axis.line=element_blank(), axis.ticks.x=element_blank(), legend.position = "none")+ labs(x=NULL,y=NULL) } ## --------------------------------------------------------------------------- ## PLOT ## --------------------------------------------------------------------------- # put them together plot <- plot_grid(p1, p2, align = "v", axis = "l", nrow = 2) # save plot ggsave(plot, filename = paste0(opt$out,".pdf"), width = 10, height = 7, units = "in") |
7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 | suppressMessages(library(optparse)) suppressMessages(library(dplyr)) suppressMessages(library(reshape2)) suppressMessages(library(prob)) suppressMessages(library(tidyr)) suppressMessages(library(MBASED)) suppressMessages(library(SummarizedExperiment)) suppressMessages(library(stats)) suppressMessages(library(tibble)) ## --------------------------------------------------------------------------- ## LOAD INPUT ## --------------------------------------------------------------------------- # Make help options option_list = list( make_option(c("-p", "--phase"), type="character", default=NULL, help="Phased VCF file (from WhatsHap)", metavar="character"), make_option(c("-r", "--rna"), type="character", default=NULL, help="Tumour RNA vcf file (from Strelka2)", metavar="character"), make_option(c("-o", "--outdir"), type="character", default = "mBASED", help="Output directory name", metavar="character"), make_option(c("-t", "--threads"), type="integer", default = "mBASED", help="Threads used for mbased", metavar="integer") ) # load in options opt_parser <- OptionParser(option_list=option_list) opt <- parse_args(opt_parser) out <- opt$outdir threads <- opt$threads ## --------------------------------------------------------------------------- ## USER FUNCTIONS ## --------------------------------------------------------------------------- # extract info from a list list_n_item <- function(list, n){ sapply(list, `[`, n) } # define function to print out the summary of ASE results summarizeASEResults_1s <- function(MBASEDOutput) { geneOutputDF <- data.frame( majorAlleleFrequency = assays(MBASEDOutput)$majorAlleleFrequency[,1], pValueASE = assays(MBASEDOutput)$pValueASE[,1], pValueHeterogeneity = assays(MBASEDOutput)$pValueHeterogeneity[,1]) geneAllele <- as.data.frame(assays(metadata(MBASEDOutput)$locusSpecificResults)$allele1IsMajor) %>% rownames_to_column(var = "rowname") %>% dplyr::mutate(gene = unlist(lapply(strsplit(rowname, split = ":"),function(x){x = x[1]}))) %>% dplyr::group_by(gene) %>% summarise(allele1IsMajor = unique(mySample)) geneOutputDF$allele1IsMajor <- geneAllele$allele1IsMajor[match(rownames(geneOutputDF), geneAllele$gene)] lociOutputGR <- rowRanges(metadata(MBASEDOutput)$locusSpecificResults) lociOutputGR$allele1IsMajor <- assays(metadata(MBASEDOutput)$locusSpecificResults)$allele1IsMajor[,1] lociOutputGR$MAF <- assays(metadata(MBASEDOutput)$locusSpecificResults)$MAF[,1] lociOutputList <- split(lociOutputGR, factor(lociOutputGR$aseID, levels=unique(lociOutputGR$aseID))) return( list( geneOutput=geneOutputDF, locusOutput=lociOutputList ) ) } ## --------------------------------------------------------------------------- ## READ IN THE RNA SNV CALLS ## --------------------------------------------------------------------------- # read in the RNA calls rna_filt <- read.delim(opt$rna, header = T, comment.char = "#", stringsAsFactors = F) colnames(rna_filt) <- c("CHROM", "POS", "AD","REF","ALT","gene", "gene_biotype") rna_filt$variant <- paste0(rna_filt$CHROM, ":", rna_filt$POS) ## --------------------------------------------------------------------------- ## EXTRACT REF/ALT READ COUNTS ## --------------------------------------------------------------------------- # Extract and add the read counts expr <- strsplit(rna_filt$AD, ",") rna_filt$REF.COUNTS <- as.numeric(list_n_item(expr, 1)) rna_filt$ALT.COUNTS <- as.numeric(list_n_item(expr, 2)) ## --------------------------------------------------------------------------- ## MBASED WITH OR WITHOUT PHASING ## --------------------------------------------------------------------------- ### WITH PHASING if (!is.null(opt$phase)){ ### ### PHASING ### # WhatsHap phased VCF from ONT sequencing pipeline wh <- read.delim(opt$phase, header = F, comment.char = "#", stringsAsFactors = F) colnames(wh) <- c("CHROM", "POS", "ID", "REF", "ALT", "QUAL", "FILTER", "INFO", "FORMAT", "SAMPLE") wh$variant <- paste0(wh$CHROM, ":", wh$POS) # remove unphased variants - phased variants have the pipe "|" symbol in column 10 - and remove indels wh <- wh[grep("|", wh$SAMPLE, fixed=TRUE),] wh <- wh %>% dplyr::filter(nchar(REF) == 1 & nchar(ALT) == 1) # add genotype from the SAMPLE column as a new column info2 <- strsplit(wh$SAMPLE, ":") wh$GT <- list_n_item(info2, 1) # Add the genotype from WhatsHap rna_filt$GT <- wh$GT[match(rna_filt$variant, wh$variant)] # Find unphased genes with one variant (test) singleUnphased <- rna_filt %>% mutate(phase = variant %in% wh$variant) %>% left_join(rna_filt %>% group_by(gene) %>% summarize(n=n())) %>% dplyr::filter(!phase & n == 1) # Add genotype to unphased gene with one variant (test) rna_filt$GT[which(rna_filt$variant %in% singleUnphased$variant)] <- "1|0" # annotate the phased variants as alleleA and alleleB rna_filt$alleleA <- ifelse(rna_filt$GT == "1|0", rna_filt$ALT, rna_filt$REF) rna_filt$alleleB <- ifelse(rna_filt$GT == "1|0", rna_filt$REF, rna_filt$ALT) # add the phased COUNTS variants as alleleA and alleleB rna_filt$alleleA.counts <- ifelse(rna_filt$GT == "1|0", rna_filt$ALT.COUNTS, rna_filt$REF.COUNTS) rna_filt$alleleB.counts <- ifelse(rna_filt$GT == "1|0", rna_filt$REF.COUNTS, rna_filt$ALT.COUNTS) # phased only variants rna_phased <- rna_filt[complete.cases(rna_filt),] # make SNV IDs rna_phased <- rna_phased %>% arrange(CHROM, POS) %>% group_by(gene) %>% mutate(label = paste0("SNV",1:n())) rna_phased$SNV.ID <- paste0(rna_phased$gene, ":", rna_phased$label) ### ### MBASED ### print("Beginning MBASED ...") # make the GRanges object of the loci mySNVs <- GRanges(seqnames=rna_phased$CHROM, ranges=IRanges(start=rna_phased$POS, width=1), aseID=rna_phased$gene, allele1=rna_phased$REF, allele2=rna_phased$ALT) names(mySNVs) <- rna_phased$SNV.ID # create input RangedSummarizedExperiment object mySample <- SummarizedExperiment( assays=list(lociAllele1Counts=matrix(rna_phased$alleleA.counts, ncol=1, dimnames=list(names(mySNVs),'mySample')), lociAllele2Counts=matrix(rna_phased$alleleB.counts, ncol=1, dimnames=list(names(mySNVs),'mySample'))), rowRanges=mySNVs ) # run MBASED ASEresults_1s_haplotypesKnown <- runMBASED(ASESummarizedExperiment=mySample, isPhased=TRUE, numSim=10^6, BPPARAM = MulticoreParam(workers = threads)) saveRDS(ASEresults_1s_haplotypesKnown, file=paste0(out, "/ASEresults_1s_haplotypesKnown.rds")) # extract results results <- summarizeASEResults_1s(ASEresults_1s_haplotypesKnown) # adjust the pvalue with BH correction results$geneOutput$padj <- p.adjust(p = results$geneOutput$pValueASE, method = "BH") results$geneOutput$significance <- as.factor(ifelse(results$geneOutput$padj < 0.05, "padj < 0.05", "padj > 0.05")) results$geneOutput$gene <- rownames(results$geneOutput) results$geneOutput$allele1IsMajor[results$geneOutput$gene %in% singleUnphased$gene] = NA # add the locus results$geneOutput$geneBiotype <- rna_filt$gene_biotype[match(results$geneOutput$gene, rna_filt$gene)] ### WITHOUT PHASING } else { # make SNV labels rna_filt <- rna_filt %>% arrange(CHROM, POS) %>% group_by(gene) %>% mutate(label = paste0("SNV",1:n())) rna_filt$SNV.ID <- paste0(rna_filt$gene, ":", rna_filt$label) ### ### MBASED ### print("Beginning MBASED ...") # make the GRanges object of the loci mySNVs <- GRanges(seqnames=rna_filt$CHROM, ranges=IRanges(start=rna_filt$POS, width=1), aseID=rna_filt$gene, allele1=rna_filt$REF, allele2=rna_filt$ALT) names(mySNVs) <- rna_filt$SNV.ID ## create input RangedSummarizedExperiment object mySample <- SummarizedExperiment( assays=list(lociAllele1Counts=matrix(rna_filt$REF.COUNTS, ncol=1, dimnames=list(names(mySNVs),'mySample')), lociAllele2Counts=matrix(rna_filt$ALT.COUNTS, ncol=1, dimnames=list(names(mySNVs),'mySample'))), rowRanges=mySNVs ) # run MBASED ASEresults_1s_haplotypesUnknown <- runMBASED(ASESummarizedExperiment=mySample, isPhased=FALSE, numSim=10^6, BPPARAM = MulticoreParam(workers = threads)) saveRDS(ASEresults_1s_haplotypesUnknown, file=paste0(out, "/ASEresults_1s_haplotypesUnknown.rds")) # extract results results <- summarizeASEResults_1s(ASEresults_1s_haplotypesUnknown) # adjust the pvalue with BH correction results$geneOutput$padj <- p.adjust(p = results$geneOutput$pValueASE, method = "BH") results$geneOutput$significance <- as.factor(ifelse(results$geneOutput$padj < 0.05, "padj < 0.05", "padj > 0.05")) results$geneOutput$gene <- rownames(results$geneOutput) # add the locus results$geneOutput$geneBiotype <- rna_filt$gene_biotype[match(results$geneOutput$gene, rna_filt$gene)] } # save the results saveRDS(results, file=paste0(out, "/MBASEDresults.rds")) print("Finished MBASED") |
R
dplyr
tidyr
optparse
reshape2
tibble
SummarizedExperiment
MBASED
From
line
7
of
src/mbased.snpEff.R
Robust Optogenetic Inhibition with Red-light-sensitive Anion-conducting Channelrh
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | library(dplyr) library(tidyr) library(bio3d) template_file <- unlist(snakemake@input) output_file <- unlist(snakemake@output) templates <- read.table("pdb/template.txt", col.names = c("ID", "_P_", "fname")) %>% mutate(ID = substring(ID, 2)) data <- lapply(templates$fname, read.pdb) %>% setNames(templates$ID) sheets <- lapply(data, `[[`, "sheet") %>% lapply(data.frame) %>% setNames(templates$ID) %>% bind_rows(.id = "ID") %>% mutate(sense = ifelse("sense" %in% names(.), as.numeric(sense), NA), sense = ifelse(sense < 0, "-", "+")) helices <- lapply(data, `[[`, "helix") %>% lapply(data.frame) %>% setNames(templates$ID) %>% bind_rows(.id = "ID") list(sheet = sheets, helix = helices) %>% bind_rows(.id = "ss") %>% filter(chain == "A") %>% replace_na(list(sense = ".")) %>% mutate(source = "SS", score = ".", frame = ".", attrib = ".") %>% select(ID, source, ss, start, end, score, sense, frame, attrib) %>% write.table(output_file, quote = F, sep = "\t", col.names = F, row.names = F) |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 | library(dplyr) library(tidyr) library(treeio) library(ggtree) library(readxl) library(photobiology) library(ggplot2) library(ggnewscale) library(castor) library(ape) with(snakemake@input, { tree_file <<- tree metadata_file <<- metadata }) output_file <- unlist(snakemake@output) to_treedata <- function(tree) { class(tree) <- c("tbl_tree", "tbl_df", "tbl", "data.frame") as.treedata(tree) } add_hsp <- function(tree, colname) { colname <- deparse(substitute(colname)) treedata <- to_treedata(tree) categories <- setNames(tree[[colname]], tree[["label"]]) %>% `[`(treedata@phylo$tip.label) %>% as.factor hsp <- hsp_max_parsimony(treedata@phylo, as.numeric(categories), edge_exponent = 0.1) %>% `$`("likelihoods") %>% as.data.frame %>% setNames(levels(categories)) %>% mutate(node = 1:n()) %>% gather(value, likelihood, -node) %>% filter(likelihood > 0.99) %>% setNames(c("node", paste0(colname, "_hsp"), paste0(colname, "_hsp_lh"))) left_join(tree, hsp, by = "node") } get_mrca <- function(phylo, tips) { getMRCA(phylo, tips) %>% replace(is.null(.), NA) } add_mrca <- function(tree, colname) { colname <- deparse(substitute(colname)) treedata <- to_treedata(tree) mrca <- mutate(tree, my_column = !!as.name(colname)) %>% group_by(my_column) %>% mutate(is.tip = label %in% treedata@phylo$tip.label) %>% mutate(no_data = all(is.na(my_column))) %>% mutate(mrca = get_mrca(treedata@phylo, node[is.tip])) %>% mutate(mrca = ifelse(no_data | is.na(mrca), node, mrca)) %>% group_by(mrca) %>% mutate(enough_tips = sum(is.tip) > 1) %>% mutate(ifelse(node == mrca & enough_tips, first(na.omit(my_column)), NA)) %>% pull tree[[paste0(colname, "_mrca")]] <- mrca return(tree) } metadata <- read_xlsx(metadata_file, .name_repair = "universal") %>% mutate(Sequence.name = sub(",.+", "", Sequence.name)) %>% mutate(Sequence.name = gsub("@", "_", Sequence.name)) %>% mutate(Maximum..nm = ifelse(is.na(Action.maximum..nm), Absorption.maximum..nm, Action.maximum..nm)) tree <- read.iqtree(tree_file) %>% as_tibble %>% left_join(metadata, by = c(label = "Sequence.name")) %>% mutate(Color = unname(w_length2rgb(Maximum..nm))) %>% mutate(Category = case_when(Currents %in% c("no photocurrents", "channel") ~ NA_character_, T ~ gsub("[][]", "", Currents))) %>% mutate(Symbol = gsub(",.+", "", Symbol)) %>% mutate(Symbol_show = ifelse(Currents.reference == "[Oppermann23](in_prep)", Symbol, NA)) %>% add_mrca(ChR.group) %>% add_hsp(Category) cat_colors <- list( "anion channel" = "indianred", "cation channel" = "deepskyblue", "potassium channel" = "purple", "channel" = "yellow4" ) p <- ggtree(to_treedata(tree), aes(color = Category_hsp), layout = "ape") + scale_color_manual(values = cat_colors) + new_scale_color() + geom_nodepoint(aes(x = branch.x, y = branch.y, subset = !is.na(UFboot) & UFboot >= 95), size = 0.2, color = "#4d4d4dff") + geom_nodepoint(aes(x = branch.x, y = branch.y, subset = !is.na(UFboot) & UFboot >= 90 & UFboot < 95), size = 0.2, color = "#b3b3b3ff") + geom_tippoint(aes(subset = !is.na(Category) & is.na(Color)), color = "darkgray") + geom_tippoint(aes(subset = !is.na(Color), color = Color)) + scale_colour_identity() + new_scale_color() + geom_tiplab2(aes(label = Symbol_show), hjust = -0.2) + geom_treescale(width = 0.5) + geom_cladelab(mapping = aes(subset = !is.na(ChR.group_mrca), node = node, label = ChR.group_mrca), offset = -0.1) + xlim(-10, 10) ggsave(output_file, p, width = 7, height = 7) |
R
ggplot2
dplyr
tidyr
readxl
APE
ggtree
treeio
ggnewscale
castor
photobiology
From
line
1
of
scripts/plot_tree.R
Carotenoid Antenna Workflow for Energy Transfer in Rhodopsin Pumps
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 | library(treeio) library(ggtree) library(ape) library(phytools) library(dplyr) library(tidyr) library(ggplot2) library(phangorn) library(ggnewscale) library(castor) library(seqinr) if (interactive()) { Snakemake <- setClass("Snakemake", slots = list(input = "list", output = "list")) snakemake <- Snakemake( input = list(outgroup = "input/outgroups.fasta", tree = "analysis/phylogeny/rhodopsins.treefile", metadata = "analysis/parse/phylogeny.tsv"), output = list("tmp.pdf") ) } with(snakemake@input, { outgroup_file <<- outgroup tree_file <<- tree tsv_file <<- tsv colors_file <<- colors a2m_file <<- a2m }) with(snakemake@output, { output_file_small <<- small output_file_big <<- big output_jtree <<- jtree }) taxa <- read.table("metadata/taxa.txt", sep = "\t", comment.char = "") %>% arrange(1) %>% with(setNames(V2, V1)) outgroups <- names(read.fasta(outgroup_file)) tsv <- read.table(tsv_file, header = T, sep = "\t", na.strings = "", fill = T) %>% select(-target) metadata <- read.fasta(a2m_file, seqtype = "AA", as.string = T) %>% {data.frame(label = names(.), sequence = as.character(.))} %>% left_join(tsv, by = c(label = "record_id")) %>% mutate(is_outgroup = label %in% outgroups) %>% mutate(Alias = gsub(",.+", "", Alias)) %>% mutate(Activity = ifelse(grepl("\\]$", Activity), NA, gsub("[][]", "", Activity))) %>% mutate(Highlight = !is.na(Highlight)) %>% mutate(D85 = substr(motif, 1, 1), T89 = substr(motif, 2, 2), D96 = substr(motif, 3, 3), G156 = window) tree <- read.tree(tree_file) tree.unrooted <- as_tibble(tree) %>% left_join(metadata, by = "label") %>% `class<-`(c("tbl_tree", "data.frame")) %>% as.treedata write.jtree(tree.unrooted, file = output_jtree) tree.tib <- ape::root(tree, outgroups, edgelabel = T, resolve.root = T) %>% drop.tip(outgroups) %>% as_tibble %>% mutate(support = suppressWarnings(as.numeric(label))) %>% left_join(metadata, by = "label") %>% mutate(is_outgroup = ifelse(label %in% outgroups, T, NA)) %>% `class<-`(c("tbl_tree", "data.frame")) tree.phylo <- as.treedata(tree.tib)@phylo clustalx <- c( A = "BLUE", I = "BLUE", L = "BLUE", M = "BLUE", F = "BLUE", W = "BLUE", V = "BLUE", C = "BLUE", K = "RED", R = "RED", E = "MAGENTA", D = "MAGENTA", N = "GREEN", Q = "GREEN", S = "GREEN", T = "GREEN", G = "ORANGE", P = "YELLOW", H = "CYAN", Y = "CYAN" ) clades <- filter(tree.tib, ! node %in% parent) %>% pull(Clade) %>% as.factor hsp <- hsp_max_parsimony(tree.phylo, as.numeric(clades)) %>% `$`("likelihoods") %>% data.frame(check.names = F) %>% mutate(node = row_number()) %>% gather(hsp, prob, -node) %>% filter(prob > 0.9) %>% mutate(hsp = levels(clades)[as.numeric(hsp)]) tree <- left_join(tree.tib, hsp, by = "node") %>% mutate(hsp.parent = .[match(parent, node),"hsp"]) %>% mutate(hsp = ifelse(!is.na(hsp.parent) & hsp == hsp.parent, NA, hsp)) %>% as.treedata p_small <- ggtree(tree, layout = "circular") + geom_highlight(mapping = aes(subset = !is.na(hsp), fill = hsp), alpha = 0.1) + geom_treescale() + geom_tiplab(mapping = aes(subset = !is.na(Alias), label = Alias, size = Highlight), offset = 0.1) + # geom_tippoint(mapping = aes(subset = !is.na(Activity), color = Activity), size = 1) + scale_size_manual(values = c(2.5, 5)) + new_scale("size") + # labels geom_point2(aes(subset = !is.na(support) & support >= 90, size = support >= 95), color = "darkgray") + scale_size_manual(values = c(0.5, 1)) + # support values new_scale("color") + geom_text2(aes(label = G156, color = G156, angle = angle - 90, x = 4.3), size = 3) + scale_color_manual(values = clustalx) # residues p_big <- ggtree(tree, aes(color = Taxon), layout = "rectangular") + geom_highlight(mapping = aes(subset = !is.na(hsp), fill = hsp), alpha = 0.1) + scale_color_manual(values = taxa) + new_scale("color") + geom_treescale() + geom_tiplab(mapping = aes(label = sprintf("%s [%s]", ifelse(is.na(Alias), label, Alias), Organism)), size = 2, offset = 0.1) + geom_tippoint(mapping = aes(subset = !is.na(Activity), color = Activity), size = 1) + geom_point2(aes(subset = !is.na(support) & support >= 90, size = support >= 95, x = branch), shape = 15, color = "darkgray") + scale_size_manual(values = c(0.5, 1)) + # support values new_scale("color") + geom_text2(aes(label = D85, color = D85, x = 4.8), size = 1.5) + geom_text2(aes(label = T89, color = T89, x = 5.0), size = 1.5) + geom_text2(aes(label = D96, color = D96, x = 5.2), size = 1.5) + geom_text2(aes(label = G156, color = G156, x = 5.4), size = 2) + scale_color_manual(values = clustalx) # residues ggsave(output_file_small, p_small, height = 7, width = 8) ggsave(output_file_big, p_big, height = 6.5, width = 5) |
Gezelvirus Workflow: Studying a Polinton-like Virus in Phaeocystis globosa
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 | suppressPackageStartupMessages(library(dplyr)) suppressPackageStartupMessages(library(tidyr)) suppressPackageStartupMessages(library(stringr)) stdin_fd <- file("stdin") all.lines <- readLines(stdin_fd) close(stdin_fd) param.start <- 1 data.start <- which(grepl("^ *No Hit", all.lines)) %>% first %>% `+`(1) align.start <- which(grepl("^No 1", all.lines)) %>% first param.end <- data.start - 2 data.end <- align.start - 1 align.end <- length(all.lines) if (is.na(align.start)) { data <- tibble( Query = character(), No = integer(), Hit.ID = character(), Hit.Description = character(), Q.ss_pred = character(), Q.query = character(), Q.consensus = character(), Q.Start = integer(), Q.End = integer(), Q.Length = integer(), T.consensus = character(), T.Start = integer(), T.End = integer(), T.Length = integer(), T.hit = character(), T.ss_dssp = character(), T.ss_pred = character(), Aligned_cols = integer(), E.value = numeric(), Identities = numeric(), Probab = numeric(), Score = numeric(), Similarity = numeric(), Sum_probs = numeric(), Template_Neff = numeric() ) } else { metadata <- data.frame(key = all.lines[param.start:param.end]) %>% mutate(value = substr(key, 14, 10000) %>% trimws, key = substr(key, 1, 14) %>% trimws) %>% filter(key != "") %>% {setNames(.$value, .$key)} %>% as.list data <- data.frame(Query = sub(" .*", "", metadata$Query), line = all.lines[align.start:align.end], stringsAsFactors = F) %>% filter(line != "") %>% extract(line, into = c("name", "value"), regex = "([^ ]+) ?(.+)?", remove = F) %>% mutate(No = ifelse(name == "No", value, NA) %>% as.integer) %>% mutate(Hit.ID = ifelse(substr(name, 1, 1) == ">", substr(name, 2, nchar(.)), NA)) %>% mutate(Hit.Description = ifelse(substr(name, 1, 1) == ">", value, NA)) %>% mutate(Match = ifelse(grepl("=", name), line, NA)) %>% mutate(name = ifelse(grepl("Q Consensus", lag(line)) & grepl("T Consensus", lead(line)), "M", name)) %>% mutate(value = ifelse(name == "M", line, value)) %>% fill(No) %>% group_by(Query, No) %>% summarize( Hit.ID = na.omit(Hit.ID) %>% first, Hit.Description = na.omit(Hit.Description) %>% first, Match = na.omit(Match) %>% first, Q.ss_pred = value[name == "Q" & grepl("^ss_pred ", value)] %>% substr(., 16, nchar(.)) %>% paste(collapse = "") %>% gsub(" +", "", .), Q.query = value[name == "Q" & grepl("^Consensus ", lead(value))] %>% substr(., 16, nchar(.)) %>% paste(collapse = " "), Q.consensus = value[name == "Q" & grepl("^Consensus ", value)] %>% substr(., 16, nchar(.)) %>% paste(collapse = " "), T.consensus = value[name == "T" & grepl("^Consensus ", value)] %>% substr(., 16, nchar(.)) %>% paste(collapse = " "), T.hit = value[name == "T" & grepl("^Consensus ", lag(value))] %>% substr(., 16, nchar(.)) %>% paste(collapse = " "), T.ss_dssp = value[name == "T" & grepl("^ss_dssp ", value)] %>% substr(., 16, nchar(.)) %>% paste(collapse = " ") %>% gsub(" +", "", .), T.ss_pred = value[name == "T" & grepl("^ss_pred ", value)] %>% substr(., 16, nchar(.)) %>% paste(collapse = "") %>% gsub(" ", "", .), .groups = "drop" ) %>% extract(Q.consensus, into = c("Q.Start", "Q.End", "Q.Length"), regex = "^ *(\\d+) .+ (\\d+) +[(](\\d+)[)]$", remove = F, convert = T) %>% extract(T.consensus, into = c("T.Start", "T.End", "T.Length"), regex = "^ *(\\d+) .+ (\\d+) +[(](\\d+)[)]$", remove = F, convert = T) %>% mutate( Q.consensus = gsub("[0-9() ]+", "", Q.consensus), Q.query = gsub("[0-9() ]+", "", Q.query), T.consensus = gsub("[0-9() ]+", "", T.consensus), T.hit = gsub("[0-9() ]+", "", T.hit), ) %>% #extract(Hit.Description, into = "Hit.Organism", regex = "[{]([^}]+)[}]", remove = F) %>% #extract(Hit.Description, into = "Hit.Description", regex = "([^;]+)", remove = F) %>% #extract(Hit.Description, into = "Hit.Keywords", regex = "[^;]+; ([^;]+)", remove = F) %>% mutate(Match = str_split(Match, " +")) %>% unnest(cols = Match) %>% separate(Match, into = c("key", "value"), "=") %>% mutate(value = sub("%", "", value) %>% as.numeric) %>% spread(key, value) %>% rename(E.value = `E-value`) %>% mutate(Aligned_cols = as.integer(Aligned_cols)) } write.table(data, quote = F, sep = "\t", row.names = F) |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | library(dplyr) library(tidyr) with(snakemake@input, { clu_tsv_file <<- clu_tsv segment_tsv_files <<- segment_tsv virus_tsv_files <<- virus_tsv }) with(snakemake@params, { coverage <<- coverage probab <<- probab coverage_q_frag <<- coverage_q_frag coverage_t_frag <<- coverage_t_frag identities_frag <<- identities_frag probab_frag <<- probab_frag }) output_file <- unlist(snakemake@output) clusters <- read.table(clu_tsv_file, sep = "\t", col.names = c("Cluster", "ID")) segment_tsv <- lapply(segment_tsv_files, read.table, header = T, sep = "\t", quote = "") virus_tsv <- lapply(virus_tsv_files, read.table, header = T, sep = "\t", quote = "") data <- c(segment_tsv, virus_tsv) %>% bind_rows %>% mutate(Q.Coverage = (Q.End - Q.Start + 1) / Q.Length * 100, T.Coverage = (T.End - T.Start + 1) / T.Length * 100) %>% # filter(Probab >= probab, Q.Coverage >= coverage, T.Coverage >= coverage) %>% filter(Probab >= probab, Q.Coverage >= coverage & T.Coverage >= coverage | Q.Coverage >= coverage_q_frag & T.Coverage >= coverage_t_frag & Identities >= identities_frag & Probab >= probab_frag) %>% left_join(clusters, by = c(Hit.ID = "Cluster")) %>% select(Query, ID, Probab) write.table(data, output_file, sep = "\t", row.names = F, col.names = F, quote = F) |
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 | library(dplyr) library(tidyr) library(ape) library(ggtree) library(treeio) library(phangorn) library(stringr) library(ggplot2) library(phytools) if (interactive()) { setClass("snake", slots = list(input = "list", output = "list")) snakemake <- new("snake", input = list( tree = "analysis/phylogeny/MCP_NCLDV_epa/epa_result.newick", fasta = "analysis/phylogeny/MCP_NCLDV.fasta", outgroups = "metadata/queries/MCP_NCLDV_outgroups.faa", synonyms = "metadata/organisms.txt", hmm = Sys.glob("hmm_algae/*.hmm") ), output = list( image = "test.svg", jtree = "output/MCP_NCLDV.jtree" )) } with(snakemake@input, { tree_file <<- tree fasta_file <<- fasta synonyms_file <<- synonyms outgroup_file <<- outgroups }) with(snakemake@output, { out_image_file <<- image out_jtree_file <<- jtree }) with(snakemake@params, { outgroup_rooting <<- outgroup_rooting }) read.fasta.headers <- function(fnames) { file.info(fnames) %>% filter(size > 0) %>% rownames %>% lapply(treeio::read.fasta) %>% lapply(names) %>% unlist %>% data.frame(title = .) } synonyms <- read.table(synonyms_file, header = T, sep = "\t", fill = T, na.strings = "") %>% mutate(Collapse = ifelse(is.na(Collapse), Name, Collapse)) headers <- read.fasta.headers(fasta_file) %>% extract(title, into = c("label", "ID"), regex = "^([^ ]+) ([^ ]+)", remove = F) %>% left_join(synonyms, by = "ID") no_name <- filter(headers, is.na(Name)) %>% pull(label) %>% paste(collapse = ", ") if (no_name != "") { print(paste("No aliases found for: ", no_name)) quit(status = 1) } tree <- read.tree(tree_file) tree <- phangorn::midpoint(tree, node.labels = "support") if (outgroup_rooting) { outgroup_df <- read.fasta.headers(outgroup_file) outgroups <- with(outgroup_df, sub(" .*", "", title)) tree <- ape::root(tree, node = MRCA(tree, outgroups), edgelabel = T, resolve.root = T) } tree <- as_tibble(tree) %>% mutate(support = ifelse(node %in% parent & label != "", label, NA)) %>% separate(support, into = c("SH_aLRT", "UFboot"), sep = "/", convert = T) %>% left_join(headers, by = "label") %>% mutate(label.show = Name) %>% mutate(isInternal = node %in% parent) %>% `class<-`(c("tbl_tree", "tbl_df", "tbl", "data.frame")) tree_data <- as.treedata(tree) write.jtree(tree_data, file = out_jtree_file) ntaxa <- filter(tree, ! node %in% parent) %>% nrow colors <- list( Haptophyta = "orange", Chlorophyta = "green", Streptophyta = "darkgreen", MAG = "purple", Stramenopiles = "brown", Cryptophyta = "red", Amoebozoa = "gold4", Euglenozoa = "yellow", Choanoflagellata = "darkslateblue", Glaucophyta = "cyan", Animals = "blue", Dinoflagellata = "gray50", Rhizaria = "gray30" ) scaleClades <- function(p, df) { with(df, Reduce(function(.p, .node) { offs <- offspring(.p$data, .node) scale <- 0.5 / (nrow(offs) - 1) scaleClade(.p, .node, scale) }, node, p)) } collapseClades <- function(p, df) { with(df, Reduce(function(.p, .node) { fill <- unlist(colors[Host[node == .node]]) .p$data[.p$data$node == .node, "label.show"] <- label.show[node == .node] collapse(.p, .node, "mixed", fill = fill) }, node, p)) } #labelClades <- function(p) { # with(df, Reduce(function(.p, .node) { # .p + geom_cladelab(node = .node, label = label[node == .node], align = T, offset = .2, textcolor = 'blue') # }, node, p)) #} multi_species <- allDescendants(tree_data@phylo) %>% lapply(function(x) filter(tree, node %in% x)) %>% bind_rows(.id = "ancestor") %>% group_by(ancestor) %>% filter(n_distinct(Collapse, na.rm = T) == 1, sum(!isInternal) > 1) %>% # , !any(Group == "Haptophyta")) %>% ungroup %>% mutate(ancestor = as.numeric(ancestor)) %>% filter(! ancestor %in% node) %>% filter(!is.na(Collapse)) %>% group_by(ancestor, Collapse) %>% summarize(num_tips = sum(!isInternal), Host = first(na.omit(Host))) %>% mutate(label.show = sprintf("%s (%d)", Collapse, num_tips)) %>% rename(node = ancestor) p <- ggtree(tree_data) + geom_nodepoint(aes(x = branch, subset = !is.na(UFboot) & UFboot >= 90, size = UFboot)) + geom_tiplab(aes(label = label.show), size = 4, align = T, linesize = 0) + geom_text2(aes(subset = node %in% multi_species$node, x = max(x, na.rm = T), label = label.show), nudge_x = 0.01, size = 4, hjust = 0) + geom_tippoint(aes(color = Host), size = 3) + geom_treescale(width = 0.5) + scale_size_continuous(limits = c(90, 100), range = c(1, 3)) + scale_shape_manual(values = seq(0,15)) + scale_color_manual(values = colors) p <- scaleClades(p, multi_species) p <- collapseClades(p, multi_species) # p <- facet_plot(p, mapping = aes(x = as.numeric(as.factor(query.name)), shape = DESC), data = genes, geom = geom_point, panel = 'Genes') ggsave(out_image_file, p, height = ntaxa * 0.1, width = 7, limitsize = F) |
tool / cran
tidyr
Tidy Messy Data: Tools to help to create tidy data, where each column is a variable, each row is an observation, and each cell contains a single value. 'tidyr' contains tools for changing the shape (pivoting) and hierarchy (nesting and 'unnesting') of a dataset, turning deeply nested lists into rectangular data frames ('rectangling'), and extracting values out of string columns. It also includes tools for working with missing values (both implicit and explicit).