Workflow Steps and Code Snippets
785 tagged steps and code snippets that match keyword matplotlib
Snakemake workflow: dna-seq-gatk-variant-calling (v2.1.1)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | import sys sys.stderr = open(snakemake.log[0], "w") import common import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns calls = pd.read_table(snakemake.input[0], header=[0, 1]) samples = [name for name in calls.columns.levels[0] if name != "VARIANT"] sample_info = calls.loc[:, samples].stack([0, 1]).unstack().reset_index(1, drop=False) sample_info = sample_info.rename({"level_1": "sample"}, axis=1) sample_info = sample_info[sample_info["DP"] > 0] sample_info["freq"] = sample_info["AD"] / sample_info["DP"] sample_info.index = np.arange(sample_info.shape[0]) plt.figure() sns.stripplot(x="sample", y="freq", data=sample_info, jitter=True) plt.ylabel("allele frequency") plt.xticks(rotation="vertical") plt.savefig(snakemake.output.freqs) plt.figure() sns.stripplot(x="sample", y="DP", data=sample_info, jitter=True) plt.ylabel("read depth") plt.xticks(rotation="vertical") plt.savefig(snakemake.output.depths) |
Snakemake workflow: dna-seq-gatk-variant-calling (v2.1.1)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | import sys sys.stderr = open(snakemake.log[0], "w") import common import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns calls = pd.read_table(snakemake.input[0], header=[0, 1]) samples = [name for name in calls.columns.levels[0] if name != "VARIANT"] sample_info = calls.loc[:, samples].stack([0, 1]).unstack().reset_index(1, drop=False) sample_info = sample_info.rename({"level_1": "sample"}, axis=1) sample_info = sample_info[sample_info["DP"] > 0] sample_info["freq"] = sample_info["AD"] / sample_info["DP"] sample_info.index = np.arange(sample_info.shape[0]) plt.figure() sns.stripplot(x="sample", y="freq", data=sample_info, jitter=True) plt.ylabel("allele frequency") plt.xticks(rotation="vertical") plt.savefig(snakemake.output.freqs) plt.figure() sns.stripplot(x="sample", y="DP", data=sample_info, jitter=True) plt.ylabel("read depth") plt.xticks(rotation="vertical") plt.savefig(snakemake.output.depths) |
Snakemake workflow: dna-seq-gatk-variant-calling (v2.1.1)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | import sys sys.stderr = open(snakemake.log[0], "w") import common import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns calls = pd.read_table(snakemake.input[0], header=[0, 1]) samples = [name for name in calls.columns.levels[0] if name != "VARIANT"] sample_info = calls.loc[:, samples].stack([0, 1]).unstack().reset_index(1, drop=False) sample_info = sample_info.rename({"level_1": "sample"}, axis=1) sample_info = sample_info[sample_info["DP"] > 0] sample_info["freq"] = sample_info["AD"] / sample_info["DP"] sample_info.index = np.arange(sample_info.shape[0]) plt.figure() sns.stripplot(x="sample", y="freq", data=sample_info, jitter=True) plt.ylabel("allele frequency") plt.xticks(rotation="vertical") plt.savefig(snakemake.output.freqs) plt.figure() sns.stripplot(x="sample", y="DP", data=sample_info, jitter=True) plt.ylabel("read depth") plt.xticks(rotation="vertical") plt.savefig(snakemake.output.depths) |
Snakemake workflow: dna-seq-gatk-variant-calling (v2.1.1)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | import sys sys.stderr = open(snakemake.log[0], "w") import common import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns calls = pd.read_table(snakemake.input[0], header=[0, 1]) samples = [name for name in calls.columns.levels[0] if name != "VARIANT"] sample_info = calls.loc[:, samples].stack([0, 1]).unstack().reset_index(1, drop=False) sample_info = sample_info.rename({"level_1": "sample"}, axis=1) sample_info = sample_info[sample_info["DP"] > 0] sample_info["freq"] = sample_info["AD"] / sample_info["DP"] sample_info.index = np.arange(sample_info.shape[0]) plt.figure() sns.stripplot(x="sample", y="freq", data=sample_info, jitter=True) plt.ylabel("allele frequency") plt.xticks(rotation="vertical") plt.savefig(snakemake.output.freqs) plt.figure() sns.stripplot(x="sample", y="DP", data=sample_info, jitter=True) plt.ylabel("read depth") plt.xticks(rotation="vertical") plt.savefig(snakemake.output.depths) |
In this repository, we present the code for the analysis of study of the transcription's impact on Escherichia coli chromosome.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 | import bacchus.directional as bcd import cooler import matplotlib.pyplot as plt import numpy as np import os import scipy.sparse as sp mat_file = snakemake.input.mat res = snakemake.params.res cmap = snakemake.params.cmap macro_output = str(snakemake.output.macrodomain) CID_output = str(snakemake.output.cid) out_file = str(snakemake.output.compare) # Create outdir if necessary. os.makedirs(str(snakemake.params.outdir), exist_ok=True) mat = cooler.Cooler(f"{mat_file}::/resolutions/{res}").matrix( balance=True, sparse=True )[:] # Positions of the CIDs borders from Lioy et al., Cell, 2018. lioy = [ 40, 145, 220, 440, 510, 760, 980, 1145, 1195, 1300, 1585, 1670, 1795, 1845, 2100, 2255, 2380, 2525, 2720, 2895, 2990, 3165, 3295, 3430, 3645, 3800, 3935, 4030, 4160, 4205, 4465, ] # Length of E coli chromosome in kb n = 4642 # Comput min max size max_cid = n - lioy[-1] + lioy[0] min_cid = n - lioy[-1] + lioy[0] prev_cid = lioy[0] for i in lioy[1:]: size = i - prev_cid prev_cid = i if size > max_cid: max_cid = size if size < min_cid: min_cid = size print(f"Longest CID- Lioy: {max_cid}kb") print(f"Shortest CID - Lioy: {min_cid}kb") # Compute macrodomains on our matrix based on directional index. di_macro = bcd.directional_index(mat, 80) plt.subplots(figsize=(12, 1)) plt.fill_between( x=np.arange(0, len(di_macro) * 5, 5), y1=0, y2=di_macro, where=di_macro > 0, color="g", ) plt.fill_between( x=np.arange(0, len(di_macro) * 5, 5), y1=0, y2=di_macro, where=di_macro <= 0, color="r", ) plt.ylim(-2, 2) plt.xlim(0, n) plt.savefig(macro_output) borders_macro = bcd.di_borders(di_macro) print("Numbers of CIDs:", len(borders_macro)) # Compute CIDs on our matrix based on directional index. di_CIDs = bcd.directional_index(mat, 20) plt.subplots(figsize=(12, 2)) plt.fill_between( x=np.arange(0, len(di_CIDs) * 5, 5), y1=0, y2=di_CIDs, where=di_CIDs > 0, color="g", ) plt.fill_between( x=np.arange(0, len(di_CIDs) * 5, 5), y1=0, y2=di_CIDs, where=di_CIDs <= 0, color="r", ) plt.ylim(-2, 2) plt.xlim(0, n) plt.savefig(CID_output) borders_CIDs = bcd.di_borders(di_CIDs) print("Numbers of CIDs:", len(borders_CIDs)) from matplotlib.patches import Patch from matplotlib.lines import Line2D # Plot the CID on a matrix at 5kb with their rspectives positions marked with # stars. axis = "kb" start = 0 title = "WT E. coli domains - binning 5kb" dpi = 300 vmax = 99 fig, ax = plt.subplots( 3, 1, figsize=(11, 13), dpi=dpi, gridspec_kw={"height_ratios": [10, 1, 1]}, sharex=True, ) # Axis values scaling_factor = res // 1000 end = n // scaling_factor # Display plots im = ax[0].imshow( mat.toarray()[start:end, start:end], cmap=cmap, vmin=0, vmax=np.percentile(mat.toarray(), vmax), extent=( start * scaling_factor, end * scaling_factor, end * scaling_factor, start * scaling_factor, ), ) # Legend ax[2].set_xlabel(f"Genomic coordinates ({axis:s})", fontsize=16) ax[0].set_ylabel(f"Genomic coordinates ({axis:s})", fontsize=16) ax[0].tick_params(axis="both", labelsize=16) ax[1].tick_params(axis="both", labelsize=16) ax[2].tick_params(axis="both", labelsize=16) ax[2].tick_params(axis="x", which="major", pad=15) ax[1].set_ylabel("DI\n(400kb)", fontsize=16) ax[2].set_ylabel("DI\n(100kb)", fontsize=16) ax[0].set_title(title, size=18) ax[1].set_title("Macrodomains", size=16) ax[2].set_title("CIDs", size=16) # Colorbar cbar = plt.colorbar(im, ax=ax.ravel().tolist(), shrink=0.33, anchor=(0, 0.7)) cbar.ax.tick_params(labelsize=16) # Add DI plots ax[1].fill_between( x=np.arange(0, len(di_macro) * 5, 5), y1=0, y2=di_macro, where=di_macro > 0, color="#33a02c", ) ax[1].fill_between( x=np.arange(0, len(di_macro) * 5, 5), y1=0, y2=di_macro, where=di_macro <= 0, color="#e31a1c", ) ax[1].set_ylim(-2, 2) ax[1].set_xlim(start, end * scaling_factor) for i in borders_macro: if i > start and i < end: ax[1].text(x=(i * 5) - 25, y=-3, s="*", color="k", fontweight="bold") ax[2].fill_between( x=np.arange(0, len(di_CIDs) * 5, 5), y1=0, y2=di_CIDs, where=di_CIDs >= 0, color="#33a02c", interpolate=True, ) ax[2].fill_between( x=np.arange(0, len(di_CIDs) * 5, 5), y1=0, y2=di_CIDs, where=di_CIDs <= 0, color="#e31a1c", interpolate=True, ) ax[2].set_ylim(-2, 2) ax[2].set_xlim(start * scaling_factor, end * scaling_factor) for i in borders_CIDs: if i > start and i < end: ax[0].axvline(x=i * 5, linestyle="dashed", color="k") ax[2].text(x=(i * 5) - 25, y=-3, s="*", color="k", fontweight="bold") for i in [133, 176, 394, 713, 872]: if i > start and i < end: ax[2].text( x=(i * 5) - 25, y=-3, s="*", color="#33a02c", fontweight="bold" ) for i in [102, 239, 317, 369, 420, 505, 633, 729, 832]: if i > start and i < end: ax[2].text( x=(i * 5) - 25, y=-3, s="*", color="#e31a1c", fontweight="bold" ) # Add legend of stars legend_elements = [ Line2D( [], [], color="k", marker="*", linestyle="None", markersize=10, label="Conserved borders", ), Line2D( [], [], color="#33a02c", marker="*", linestyle="None", markersize=10, label="New borders", ), Line2D( [], [], color="#e31a1c", marker="*", linestyle="None", markersize=10, label="Missing borders", ), ] ax[2].legend(handles=legend_elements, bbox_to_anchor=(1.3, 1.05)) # Savefig if out_file is not None: plt.savefig(out_file, dpi=dpi) |
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 | import bacchus.directional as bcd import bacchus.insulation as bci import bacchus.io as bcio import cooler import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.collections as mc import numpy as np import os import pandas as pd import scipy.sparse as sp import scipy.stats as st import seaborn as sns from random import choices mat_file = snakemake.input.mat rna_file = snakemake.input.rna annotation_file = snakemake.input.annotation cmap = snakemake.params.cmap dpi = snakemake.params.dpi text_file = str(snakemake.output.text_file) full_mat_file = str(snakemake.output.full_mat) zoom_1_file = str(snakemake.output.zoom1) zoom_2_file = str(snakemake.output.zoom2) full_mat_di_file = str(snakemake.output.full_mat_di) zoom_1_di_file = str(snakemake.output.zoom1_di) zoom_2_di_file = str(snakemake.output.zoom2_di) out_files_mat = [full_mat_file, zoom_1_file, zoom_2_file] out_files_mat_di = [full_mat_di_file, zoom_1_di_file, zoom_2_di_file] bor_trans = str(snakemake.output.bor_trans) trans_bor = str(snakemake.output.trans_bor) # Create outdir if necessary. os.makedirs(str(snakemake.params.outdir), exist_ok=True) def write_stats(text_file, text, writing_type="a"): with open(text_file, writing_type) as out: out.write(f"{text}\n") # Compute CIDs at 5kb resolution with 100kb window size. M5000 = cooler.Cooler(f"{mat_file}::/resolutions/{5000}").matrix( balance=True, sparse=True )[:] di5000 = bcd.directional_index(M5000, 20) l5000 = bcd.di_borders(di5000) write_stats( text_file, f"Numbers of CIDs at 5kb with 100kb window size: {len(l5000)}", "w", ) # Compute CIDs at 2kb resolution with 50kb window size. M2000 = cooler.Cooler(f"{mat_file}::/resolutions/{2000}").matrix( balance=True, sparse=True )[:] di2000 = bcd.directional_index(M2000, 25) l2000 = bcd.di_borders(di2000) write_stats( text_file, f"Numbers of CIDs at 2kb with 50kb window size: {len(l2000)}" ) # Compute CIDs at 1kb resolution using insulation score. M1000 = cooler.Cooler(f"{mat_file}::/resolutions/{1000}").matrix( balance=True, sparse=True )[:] di1000 = bcd.directional_index(M1000, 20) l1000 = bcd.di_borders(di1000) write_stats( text_file, f"Numbers of CIDs at 1kb with 50kb window size: {len(l1000)}" ) mat = cooler.Cooler(f"{mat_file}::/resolutions/{1000}").matrix( balance=True, sparse=False )[:] mat[np.isnan(mat)] = 0 final_borders_1000, lri_1000 = bci.get_insulation_score( mat, [10, 15, 20, 25, 30] ) write_stats( text_file, f"{len(final_borders_1000)} CIDs have been detected with insulation score at 1kb resolution.", ) rna, _ = bcio.extract_big_wig(rna_file, ztransform=False) annotation = pd.DataFrame( columns=["type", "start", "end", "strand", "gene_name", "rpkm"] ) n = 0 with open(annotation_file, "r") as file: for line in file: if line.startswith("#"): continue elif line.startswith(">"): break else: line = line.split("\t") if line[2] in ["gene", "tRNA", "rRNA"]: if line[2] == "gene": name = line[8].split("Name=")[-1].split(";")[0] annot = { "type": line[2], "start": int(line[3]), "end": int(line[4]), "strand": line[6], "gene_name": name, "rpkm": np.mean(rna[int(line[3]) : int(line[4])]), } annotation = annotation.append(annot, ignore_index=True) ### # Print matrices with CIDs borders (Fig 1e). ### starts = [0, 2500, 3000] ends = [len(mat), 3000, 3500] col = ["blue", "lime", "cyan"] for i in range(3): out_file, start, end = out_files_mat[i], starts[i], ends[i] vmax = 99 title = None fig, ax = plt.subplots(1, 1, figsize=(7, 7), dpi=dpi) # Axis values scaling_factor = 1.0 axis = "kb" # No end values given. if end == 0: end = len(mat) # Display plots im = ax.imshow( mat[start:end, start:end], cmap=cmap, vmin=0, vmax=np.nanpercentile(mat, vmax), extent=( start * scaling_factor, end * scaling_factor, end * scaling_factor, start * scaling_factor, ), ) # Legend ax.set_xlabel(f"Genomic coordinates ({axis:s})", fontsize=16) ax.set_ylabel(f"Genomic coordinates ({axis:s})", fontsize=16) ax.tick_params(axis="both", labelsize=16) # Title if title is not None: ax.set_title(title, size=18) # Colorbar cbar = plt.colorbar(im, shrink=0.33, anchor=(0, 0.5)) cbar.ax.tick_params(labelsize=16) first = True for i in [x * 5 for x in l5000]: if i in np.arange(start, end): # plt.axvline(i, lw=1, ls='dashed', c='blue') if first: s = i first = False ax.axvline( s, ymin=(end - s) / (end - start), ymax=1, c=col[0], lw=1, zorder=0.5, ) ax.axhline( s, xmin=0, xmax=1 - ((end - s) / (end - start)), c=col[0], lw=1, zorder=0.5, ) else: e = i ax.add_patch( patches.Rectangle( (s, s), e - s, e - s, edgecolor=col[0], fill=False ) ) s = i ax.axvline( s, ymin=(end - s) / (end - start), ymax=0, c=col[0], lw=1, zorder=0.5 ) ax.axhline( s, xmin=1, xmax=1 - ((end - s) / (end - start)), c=col[0], lw=1, zorder=0.5, ) first = True for i in [x * 5 for x in l2000]: if i in np.arange(start, end): # plt.axvline(i, lw=1, ls='dashed', c='cyan') if first: s = i first = False ax.axvline( s, ymin=(end - s) / (end - start), ymax=1, c=col[1], lw=1, zorder=0.5, ) ax.axhline( s, xmin=0, xmax=1 - ((end - s) / (end - start)), c=col[1], lw=1, zorder=0.5, ) else: e = i ax.add_patch( patches.Rectangle( (s, s), e - s, e - s, edgecolor=col[1], fill=False ) ) s = i ax.axvline( s, ymin=(end - s) / (end - start), ymax=0, c=col[1], lw=1, zorder=0.5 ) ax.axhline( s, xmin=1, xmax=1 - ((end - s) / (end - start)), c=col[1], lw=1, zorder=0.5, ) first = True for i in final_borders_1000: if i in np.arange(start, end): # plt.axvline(i, lw=1, ls='dashed', c='magenta') if first: s = i first = False ax.axvline( s, ymin=(end - s) / (end - start), ymax=1, c=col[2], lw=1, zorder=0.5, ) ax.axhline( s, xmin=0, xmax=1 - ((end - s) / (end - start)), c=col[2], lw=1, zorder=0.5, ) else: e = i ax.add_patch( patches.Rectangle( (s, s), e - s, e - s, edgecolor=col[2], fill=False ) ) s = i ax.axvline( s, ymin=(end - s) / (end - start), ymax=0, c=col[2], lw=1, zorder=0.5 ) ax.axhline( s, xmin=1, xmax=1 - ((end - s) / (end - start)), c=col[2], lw=1, zorder=0.5, ) # Savefig plt.savefig(out_file, dpi=dpi, bbox_inches="tight") plt.close() ### # Print full matrices with CIDs borders using DI only (Supp Fig 1f). ### for i in range(3): out_file, start, end = out_files_mat_di[i], starts[i], ends[i] vmax = 99 title = None fig, ax = plt.subplots(1, 1, figsize=(7, 7), dpi=dpi) # Axis values scaling_factor = 1.0 axis = "kb" # No end values given. if end == 0: end = len(mat) # Display plots im = ax.imshow( mat[start:end, start:end], cmap=cmap, vmin=0, vmax=np.percentile(mat, vmax), extent=( start * scaling_factor, end * scaling_factor, end * scaling_factor, start * scaling_factor, ), ) # Legend ax.set_xlabel(f"Genomic coordinates ({axis:s})", fontsize=16) ax.set_ylabel(f"Genomic coordinates ({axis:s})", fontsize=16) ax.tick_params(axis="both", labelsize=16) # Title if title is not None: ax.set_title(title, size=18) # Colorbar cbar = plt.colorbar(im, shrink=0.33, anchor=(0, 0.5)) cbar.ax.tick_params(labelsize=16) first = True for i in [x * 5 for x in l5000]: if i in np.arange(start, end): # plt.axvline(i, lw=1, ls='dashed', c='blue') if first: s = i first = False ax.axvline( s, ymin=(end - s) / (end - start), ymax=1, c=col[0], lw=1, zorder=0.5, ) ax.axhline( s, xmin=0, xmax=1 - ((end - s) / (end - start)), c=col[0], lw=1, zorder=0.5, ) else: e = i ax.add_patch( patches.Rectangle( (s, s), e - s, e - s, edgecolor=col[0], fill=False ) ) s = i ax.axvline( s, ymin=(end - s) / (end - start), ymax=0, c=col[0], lw=1, zorder=0.5 ) ax.axhline( s, xmin=1, xmax=1 - ((end - s) / (end - start)), c=col[0], lw=1, zorder=0.5, ) first = True for i in [x * 5 for x in l2000]: if i in np.arange(start, end): # plt.axvline(i, lw=1, ls='dashed', c='cyan') if first: s = i first = False ax.axvline( s, ymin=(end - s) / (end - start), ymax=1, c=col[1], lw=1, zorder=0.5, ) ax.axhline( s, xmin=0, xmax=1 - ((end - s) / (end - start)), c=col[1], lw=1, zorder=0.5, ) else: e = i ax.add_patch( patches.Rectangle( (s, s), e - s, e - s, edgecolor=col[1], fill=False ) ) s = i ax.axvline( s, ymin=(end - s) / (end - start), ymax=0, c=col[1], lw=1, zorder=0.5 ) ax.axhline( s, xmin=1, xmax=1 - ((end - s) / (end - start)), c=col[1], lw=1, zorder=0.5, ) first = True for i in [x * 5 for x in l1000]: if i in np.arange(start, end): # plt.axvline(i, lw=1, ls='dashed', c='cyan') if first: s = i first = False ax.axvline( s, ymin=(end - s) / (end - start), ymax=1, c=col[2], lw=1, zorder=0.5, ) ax.axhline( s, xmin=0, xmax=1 - ((end - s) / (end - start)), c=col[2], lw=1, zorder=0.5, ) else: e = i ax.add_patch( patches.Rectangle( (s, s), e - s, e - s, edgecolor=col[2], fill=False ) ) s = i ax.axvline( s, ymin=(end - s) / (end - start), ymax=0, c=col[2], lw=1, zorder=0.5 ) ax.axhline( s, xmin=1, xmax=1 - ((end - s) / (end - start)), c=col[2], lw=1, zorder=0.5, ) # Savefig plt.savefig(out_file, dpi=dpi, bbox_inches="tight") plt.close() ### # Transcription at borders. ### def get_borders_transcriptions(annotation, borders, size, step): borders_transcriptions = [] for i in annotation.index: if annotation.loc[i, "strand"] == "-": pos = annotation.loc[i, "end"] else: pos = annotation.loc[i, "start"] for j in borders: a = j * size + step if abs(pos - a) < 2500: borders_transcriptions.append(annotation.loc[i, "rpkm"]) return borders_transcriptions borders_trans_5000 = get_borders_transcriptions(annotation, l5000, 5000, 2500) borders_trans_2000 = get_borders_transcriptions(annotation, l2000, 5000, 1000) borders_trans_1000 = get_borders_transcriptions( annotation, final_borders_1000, 1000, 500 ) data = { "RPKM (log)": np.log( list(annotation.rpkm) + list(np.log(borders_trans_5000)) + list(np.log(borders_trans_2000)) + list(np.log(borders_trans_1000)) ), "Genes": list(np.repeat(f"All genes\nn={len(annotation)}", len(annotation))) + list( np.repeat(f"5kb\nn={len(borders_trans_5000)}", len(borders_trans_5000)) ) + list( np.repeat(f"2kb\nn={len(borders_trans_2000)}", len(borders_trans_2000)) ) + list( np.repeat(f"1kb\nn={len(borders_trans_1000)}", len(borders_trans_1000)) ), } data = pd.DataFrame(data) data.replace([np.inf, -np.inf, np.nan], 0, inplace=True) sns.violinplot(x="Genes", y="RPKM (log)", data=data, palette="tab10") plt.xlabel("Resolution of the matrix to detect the borders", size=14) plt.ylabel("RPKM (log)", size=14) plt.title( "Genes transcription of genes at less\nthan 5kb of a detected border", size=16, ) plt.xticks(size=12) plt.yticks(size=12) plt.savefig(bor_trans, bbox_inches="tight") plt.close() write_stats( text_file, f"p-value between 5kb borders and whole genome: {st.mannwhitneyu(np.log(list(annotation.rpkm)), np.log(borders_trans_5000))[1]}", ) write_stats( text_file, f"p-value between 2kb borders and whole genome: {st.mannwhitneyu(np.log(list(annotation.rpkm)), np.log(borders_trans_2000))[1]}", ) write_stats( text_file, f"p-value between 1kb borders and whole genome: {st.mannwhitneyu(np.log(list(annotation.rpkm)), np.log(borders_trans_1000))[1]}", ) ## # Transcription depending on distance borders ### annotation["dist_5kb"] = 0 annotation["dist_2kb"] = 0 annotation["dist_1kb"] = 0 annotation["log1p_rpkm"] = np.log1p(annotation["rpkm"]) for i in annotation.index: value = np.inf if annotation.loc[i, "strand"] == "+": for x in l5000: pos = annotation.loc[i, "start"] if pos < x * 5000: a = x * 5000 - pos elif pos > (x + 1) * 5000: a = pos - (x + 1) * 5000 else: a = -1 value = min(a, value) else: for x in l5000: pos = annotation.loc[i, "end"] if pos < x * 5000: a = x * 5000 - pos elif pos > (x + 1) * 5000: a = pos - (x + 1) * 5000 else: a = -1 value = min(a, value) annotation.loc[i, "dist_5kb"] = value for i in annotation.index: value = np.inf if annotation.loc[i, "strand"] == "+": for x in l2000: pos = annotation.loc[i, "start"] if pos < x * 5000: a = x * 5000 - pos elif pos > (x + 0.4) * 5000: a = pos - (x + 0.4) * 5000 else: a = -1 value = min(a, value) else: for x in l2000: pos = annotation.loc[i, "end"] if pos < x * 5000: a = x * 5000 - pos elif pos > (x + 0.4) * 5000: a = pos - (x + 0.4) * 5000 else: a = -1 value = min(a, value) annotation.loc[i, "dist_2kb"] = value for i in annotation.index: value = np.inf if annotation.loc[i, "strand"] == "+": for x in final_borders_1000: pos = annotation.loc[i, "start"] if pos < x * 1000: a = x * 1000 - pos elif pos > (x + 1) * 1000: a = pos - (x + 1) * 1000 else: a = -1 value = min(a, value) else: for x in final_borders_1000: pos = annotation.loc[i, "end"] if pos < x * 1000: a = x * 1000 - pos elif pos > (x + 1) * 1000: a = pos - (x + 1) * 1000 else: a = -1 value = min(a, value) annotation.loc[i, "dist_1kb"] = value bin_means_l3, bin_edges_l3, binnumber_l3 = st.binned_statistic( annotation.dist_1kb, annotation.rpkm, statistic="mean", bins=41, range=(-5000, 200000), ) bin_means_l2, bin_edges_l2, binnumber_l2 = st.binned_statistic( annotation.dist_2kb, annotation.rpkm, statistic="mean", bins=41, range=(-5000, 200000), ) bin_means_l1, bin_edges_l1, binnumber_l1 = st.binned_statistic( annotation.dist_5kb, annotation.rpkm, statistic="mean", bins=41, range=(-5000, 200000), ) def bootstrap_down(data): l = np.zeros((10000)) for i in range(10000): l[i] = np.mean(choices(data, k=len(data))) return np.percentile(l, 5) def bootstrap_up(data): l = np.zeros((10000)) for i in range(10000): l[i] = np.mean(choices(data, k=len(data))) return np.percentile(l, 95) bin_perc5_l1, bin_edges_l1, binnumber_l1 = st.binned_statistic( annotation.dist_5kb, annotation.rpkm, statistic=bootstrap_down, bins=41, range=(-5000, 200000), ) bin_perc95_l1, bin_edges_l1, binnumber_l1 = st.binned_statistic( annotation.dist_5kb, annotation.rpkm, statistic=bootstrap_up, bins=41, range=(-5000, 200000), ) bin_perc5_l2, bin_edges_l2, binnumber_l2 = st.binned_statistic( annotation.dist_2kb, annotation.rpkm, statistic=bootstrap_down, bins=41, range=(-5000, 200000), ) bin_perc95_l2, bin_edges_l2, binnumber_l2 = st.binned_statistic( annotation.dist_2kb, annotation.rpkm, statistic=bootstrap_up, bins=41, range=(-5000, 200000), ) bin_perc5_l3, bin_edges_l3, binnumber_l3 = st.binned_statistic( annotation.dist_1kb, annotation.rpkm, statistic=bootstrap_down, bins=41, range=(-5000, 200000), ) bin_perc95_l3, bin_edges_l3, binnumber_l3 = st.binned_statistic( annotation.dist_1kb, annotation.rpkm, statistic=bootstrap_up, bins=41, range=(-5000, 200000), ) plt.plot(bin_edges_l1[1:] / 1000, bin_means_l1, label="5kb") plt.fill_between( bin_edges_l1[1:] / 1000, bin_perc5_l1, bin_perc95_l1, alpha=0.5 ) plt.plot(bin_edges_l2[1:] / 1000, bin_means_l2, label="2kb") plt.fill_between( bin_edges_l2[1:] / 1000, bin_perc5_l2, bin_perc95_l2, alpha=0.5 ) plt.plot(bin_edges_l3[1:] / 1000, bin_means_l3, label="1kb") plt.fill_between( bin_edges_l3[1:] / 1000, bin_perc5_l3, bin_perc95_l3, alpha=0.5 ) plt.xlabel("Distance from the closest border (kb)", size=14) plt.ylabel("Mean RPKM", size=14) plt.xlim(0, 50) plt.title( "Genes transcription depending on\nthe distance to the closest border", size=16, ) plt.xticks(size=12) plt.yticks(size=12) plt.legend() plt.savefig(trans_bor, bbox_inches="tight") plt.close() |
Python
Pandas
numpy
matplotlib
seaborn
scipy
cooler
cooler
bacchus
From
line
4
of
scripts/CIDs_analysis_resolution.py
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 | import bacchus.io as bcio import bacchus.plot as bcp import bacchus.hic as bch import matplotlib.pyplot as plt import numpy as np import scipy.stats as st import os from os.path import dirname # Make sure that the figures directory exists. os.makedirs(dirname(snakemake.output.mat_fig), exist_ok=True) os.makedirs(dirname(snakemake.output.corr_fig), exist_ok=True) # Import parameters binning = int(snakemake.params.binning) label = str(snakemake.params.species) circular = str(snakemake.params.circular) # Import contact map as a dense matrix. M = bcio.build_map( matrix_files=[str(snakemake.input.hic)], fragment_file="none", bin_size=binning, mat_format="cool", normalize=True, subsample=0, ) # Plot the contact map. bcp.contact_map( M, axis="Mb", binning=binning, cmap="Reds", dpi=500, out_file=str(snakemake.output.mat_fig), title=label, vmax=99, ) # Import RNA tracks. rna, chrom_start = bcio.extract_big_wig( file=str(snakemake.input.rna), binning=binning, circular=circular, sigma=None, ztransform=None, ) # Ugly loop to have the chrom length... chrom_start_size = {} for i, name in enumerate(chrom_start): if i != 0: chrom_start_size[prev_name] = { "start": start, "length": chrom_start[name] - start, } prev_name = name start = chrom_start[name] chrom_start_size[prev_name] = { "start": start, "length": chrom_start[name] - start, } # Compute HiC signal. hic = bch.compute_hic_signal(M, binning=binning, start=5000, stop=10000) print(st.spearmanr(hic, rna[:-2])[0]) # Plot correlation between HiC signal and RNAseq. fig, ax = plt.subplots(1, 1, figsize=(10, 10)) ax.scatter(hic, np.log(rna[:-2])) ax.set_xlabel("HiC signal") ax.set_ylabel("Transcription (log)") ax.set_title(label) ax.text( x=np.nanpercentile(hic, 99), y=np.nanpercentile(np.log(rna), 1), s=f"corr={st.spearmanr(hic, rna[:-2])[0]:.2f}", ) plt.savefig(snakemake.output.corr_fig, dpi=100) |
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 | import bacchus.hic as bch import bacchus.io as bcio import cooler import matplotlib.pyplot as plt import numpy as np import os import scipy.stats as st # Import snakemake. mat_t7 = snakemake.input.mat_t7 mat_t7_2p100 = snakemake.input.mat_t7_2p100 mat_t7_2p60 = snakemake.input.mat_t7_2p60 mat_t7_2p100_dv = snakemake.input.mat_t7_2p100_dv mat_t7_2p60_dv = snakemake.input.mat_t7_2p60_dv mat_t7_2p100_cv = snakemake.input.mat_t7_2p100_cv rna_t7 = snakemake.input.rna_t7 rna_t7_2p100 = snakemake.input.rna_t7_2p100 rna_t7_2p60 = snakemake.input.rna_t7_2p60 rna_t7_2p100_dv = snakemake.input.rna_t7_2p100_dv rna_t7_2p60_dv = snakemake.input.rna_t7_2p60_dv rna_t7_2p100_cv = snakemake.input.rna_t7_2p100_cv chip_RNA_t7 = snakemake.input.chip_RNA_t7 chip_RNA_t7_2p100 = snakemake.input.chip_RNA_t7_2p100 chip_RNA_t7_2p60 = snakemake.input.chip_RNA_t7_2p60 chip_RNA_t7_2p100_dv = snakemake.input.chip_RNA_t7_2p100_dv chip_RNA_t7_2p60_dv = snakemake.input.chip_RNA_t7_2p60_dv chip_RNA_t7_2p100_cv = snakemake.input.chip_RNA_t7_2p100_cv chip_gapr_t7 = snakemake.input.chip_gapr_t7 chip_gapr_t7_2p100 = snakemake.input.chip_gapr_t7_2p100 chip_gapr_t7_2p60 = snakemake.input.chip_gapr_t7_2p60 chip_gapr_t7_2p100_dv = snakemake.input.chip_gapr_t7_2p100_dv chip_gapr_t7_2p60_dv = snakemake.input.chip_gapr_t7_2p60_dv chip_gapr_t7_2p100_cv = snakemake.input.chip_gapr_t7_2p100_cv chip_gapr_control = snakemake.input.chip_gapr_control cmap = snakemake.params.cmap res = snakemake.params.res tracks_res = snakemake.params.tracks_res outdir = snakemake.params.outdir out_plot = str(snakemake.output.plot) out_txt = str(snakemake.output.txt) # Make sure output directory exists. os.makedirs(outdir, exist_ok=True) # Import matrices mat_t7 = cooler.Cooler(f"{mat_t7}::/resolutions/{res}").matrix( balance=True, sparse=False )[:] mat_t7[np.isnan(mat_t7)] = 0 mat_t7_2p100 = cooler.Cooler(f"{mat_t7_2p100}::/resolutions/{res}").matrix( balance=True, sparse=False )[:] mat_t7_2p100[np.isnan(mat_t7_2p100)] = 0 mat_t7_2p60 = cooler.Cooler(f"{mat_t7_2p60}::/resolutions/{res}").matrix( balance=True, sparse=False )[:] mat_t7_2p60[np.isnan(mat_t7_2p60)] = 0 mat_t7_2p100_dv = cooler.Cooler(f"{mat_t7_2p100_dv}::/resolutions/{res}").matrix( balance=True, sparse=False )[:] mat_t7_2p100_dv[np.isnan(mat_t7_2p100_dv)] = 0 mat_t7_2p60_dv = cooler.Cooler(f"{mat_t7_2p60_dv}::/resolutions/{res}").matrix( balance=True, sparse=False )[:] mat_t7_2p60_dv[np.isnan(mat_t7_2p60_dv)] = 0 mat_t7_2p100_cv = cooler.Cooler(f"{mat_t7_2p100_cv}::/resolutions/{res}").matrix( balance=True, sparse=False )[:] mat_t7_2p100_cv[np.isnan(mat_t7_2p100_cv)] = 0 # Import RNA tracks rna_t7, _ = bcio.extract_big_wig(rna_t7, tracks_res) rna_t7_2p100, _ = bcio.extract_big_wig(rna_t7_2p100, tracks_res) rna_t7_2p60, _ = bcio.extract_big_wig(rna_t7_2p60, tracks_res) rna_t7_2p100_dv, _ = bcio.extract_big_wig(rna_t7_2p100_dv, tracks_res) rna_t7_2p60_dv, _ = bcio.extract_big_wig(rna_t7_2p60_dv, tracks_res) rna_t7_2p100_cv, _ = bcio.extract_big_wig(rna_t7_2p100_cv, tracks_res) # Import chip RNA pol T7 chip_RNA_t7, _ = bcio.extract_big_wig(chip_RNA_t7, res) chip_RNA_t7_2p100, _ = bcio.extract_big_wig(chip_RNA_t7_2p100, res) chip_RNA_t7_2p60, _ = bcio.extract_big_wig(chip_RNA_t7_2p60, res) chip_RNA_t7_2p100_dv, _ = bcio.extract_big_wig(chip_RNA_t7_2p100_dv, res) chip_RNA_t7_2p60_dv, _ = bcio.extract_big_wig(chip_RNA_t7_2p60_dv, res) chip_RNA_t7_2p100_cv, _ = bcio.extract_big_wig(chip_RNA_t7_2p100_cv, res) # Import chip GapR chip_gapr_t7, _ = bcio.extract_big_wig(chip_gapr_t7, res) chip_gapr_t7_2p100, _ = bcio.extract_big_wig(chip_gapr_t7_2p100, res) chip_gapr_t7_2p60, _ = bcio.extract_big_wig(chip_gapr_t7_2p60, res) chip_gapr_t7_2p100_dv, _ = bcio.extract_big_wig(chip_gapr_t7_2p100_dv, res) chip_gapr_t7_2p60_dv, _ = bcio.extract_big_wig(chip_gapr_t7_2p60_dv, res) chip_gapr_t7_2p100_cv, _ = bcio.extract_big_wig(chip_gapr_t7_2p100_cv, res) # Control GapR chip_gapr_control, _ = bcio.extract_big_wig(chip_gapr_control, res) # Compute the log fold change between signal chip_gapr_t7 = np.log2(chip_gapr_t7) - np.log2(chip_gapr_control) chip_gapr_t7_2p100 = np.log2(chip_gapr_t7_2p100) - np.log2(chip_gapr_control) chip_gapr_t7_2p60 = np.log2(chip_gapr_t7_2p60) - np.log2(chip_gapr_control) chip_gapr_t7_2p100_dv = np.log2(chip_gapr_t7_2p100_dv) - np.log2(chip_gapr_control) chip_gapr_t7_2p60_dv = np.log2(chip_gapr_t7_2p60_dv) - np.log2(chip_gapr_control) chip_gapr_t7_2p100_cv = np.log2(chip_gapr_t7_2p100_cv) - np.log2(chip_gapr_control) # Compute HiC signal hic_t7 = bch.compute_hic_signal(mat_t7, 1000, 0, 5000) hic_t7_2p100 = bch.compute_hic_signal(mat_t7_2p100, 1000, 0, 5000) hic_t7_2p60 = bch.compute_hic_signal(mat_t7_2p60, 1000, 0, 5000) hic_t7_2p100_dv = bch.compute_hic_signal(mat_t7_2p100_dv, 1000, 0, 5000) hic_t7_2p60_dv = bch.compute_hic_signal(mat_t7_2p60_dv, 1000, 0, 5000) hic_t7_2p100_cv = bch.compute_hic_signal(mat_t7_2p100_cv, 1000, 0, 5000) list_rna = [ rna_t7, rna_t7_2p100, rna_t7_2p60, rna_t7_2p100_dv, rna_t7_2p60_dv, rna_t7_2p100_cv, ] list_chip_T7 = [ chip_RNA_t7, chip_RNA_t7_2p100, chip_RNA_t7_2p60, chip_RNA_t7_2p100_dv, chip_RNA_t7_2p60_dv, chip_RNA_t7_2p100_cv, ] list_chip_gapr = [ chip_gapr_t7, chip_gapr_t7_2p100, chip_gapr_t7_2p60, chip_gapr_t7_2p100_dv, chip_gapr_t7_2p60_dv, chip_gapr_t7_2p100_cv, ] list_hic_signal = [ hic_t7, hic_t7_2p100, hic_t7_2p60, hic_t7_2p100_dv, hic_t7_2p60_dv, hic_t7_2p100_cv, ] list_hic = [ mat_t7, mat_t7_2p100, mat_t7_2p60, mat_t7_2p100_dv, mat_t7_2p60_dv, mat_t7_2p100_cv, ] def z_transform(values): return (values - np.nanmean(values) / np.nanstd(values)) # for i in range(6): # list_rna[i] = z_transform(list_rna[i]) # list_chip_T7[i] = z_transform(list_chip_T7[i]) # list_chip_gapr[i] = z_transform(list_chip_gapr[i]) # list_hic_signal[i] = z_transform(list_hic_signal[i]) # Make the plots start, end = 0, 750 binning = 10 fig, ax = plt.subplots(4,6 , figsize=(20,15), sharex=True, gridspec_kw={'height_ratios': [8, 4, 4, 4]}) # Define max values for x_lim max_rna = 15.5 min_gapr = -4 # Define color col = ["k", "#fdbf6f", "#1f78b4", '#e31a1c'] for i in range(6): # Hicmap im = ax[0, i].imshow( list_hic[i][start:end, start:end], cmap="Reds", vmax=np.nanpercentile(list_hic[0], 99.9), extent=(start, end, end, start), ) ax[0, i].get_xaxis().set_visible(False) ax[0, i].tick_params(axis='both', labelsize=16) # ax[0, i].set_ylabel("Genomic coordinates (kb)", size=16) # Settings plot 1, 2 # ax[1, i].set_xlabel("Genomic coordinates (kb)", size=16) ax[1, 0].set_ylabel("Transcription (CPM)", size=16) ax[1, i].spines['top'].set_visible(False) ax[1, i].spines['right'].set_visible(False) ax[1, i].set_ylim(-1, 3000) ax[1, i].tick_params(axis='both', labelsize=16, color=col[0], labelcolor=col[0]) # ax[2, i].set_xlabel("Genomic coordinates (kb)", size=16) ax[2, 0].set_ylabel("T7 RNA pol signal (CPM)", size=16) ax[2, i].spines['top'].set_visible(False) ax[2, i].spines['right'].set_visible(False) ax[2, i].set_ylim(-0.05, 1) ax[2, i].tick_params(axis='both', labelsize=16, color=col[0], labelcolor=col[0]) ax[3, i].set_xlabel("Genomic coordinates (kb)", size=16) ax[3, 0].set_ylabel("GapR signal (log2 fold change)", size=16) ax[3, i].spines['top'].set_visible(False) ax[3, i].spines['right'].set_visible(False) ax[3, i].set_ylim(-0.05, 1) ax[3, i].tick_params(axis='both', labelsize=16, color=col[0], labelcolor=col[0]) # RNAseq if list_rna[i].all() != None: p1 = ax[1, i].fill_between( np.arange(start, end, 1 / binning), list_rna[i][int(start * binning):int(end * binning)], color=col[0], label="RNAseq", linewidth=1, ) # HiC signal p2 = ax[2, i].plot( np.arange(start, end, 1), list_hic_signal[i][start:end], color=col[3], label="HiC signal", linewidth=1, alpha=.7, ) p2 = ax[3, i].plot( np.arange(start, end, 1), list_hic_signal[i][start:end], color=col[3], label="HiC signal", linewidth=1, alpha=.7, ) # T7 ChIPseq ax3 = ax[2, i].twinx() if list_chip_T7[i].all() != None: p3 = ax3.plot( np.arange(start, end, 1), list_chip_T7[i][start:end], color=col[2], label="T7 RNA pol ChIPseq", alpha=.7, linewidth=1, ) ax3.set_ylim(-100, 6000) # GapR ChIPseq ax4 = ax[3, i].twinx() if list_chip_gapr[i].all() != None: p4 = ax4.plot( np.arange(start, end, 1), list_chip_gapr[i][start:end], color=col[1], label="GapR ChIPseq", alpha=1, linewidth=1, ) # ax[3, i].set_ylim(-7.5, 10) ax4.set_ylim(-1.5, 1.5) # Colorbar cbar = fig.colorbar(im, ax=ax.ravel().tolist(), shrink=.2, anchor=(1.2, .89)) cbar.ax.tick_params(labelsize=16) # Legend leg = fig.legend( labels=["RNAseq", "GapR ChIPseq", "T7 RNA pol ChIPseq", "HiC signal"], loc=(0.9, 0.25), ) for i in range(4): leg.legendHandles[i].set_color(col[i]) # Adjust space between plot plt.subplots_adjust(wspace=.4, hspace=.2, left=0.05, right=0.88) plt.savefig(out_plot, dpi=250) # Correlation between tracks start=220 #kb end=580 #kb def get_binning(values, size=10): n = len(values) // size new_values = np.zeros(n + 1) for i in range(n): new_values[i] = np.nanmean(values[i * size:(i + 1) * size]) new_values[n] = np.nanmean(values[n * size:]) new_values return new_values for i in range(6): list_rna[i] = get_binning(list_rna[i]) # list_chip_T7[i] = get_binning(list_chip_T7[i]) # list_chip_gapr[i] = get_binning(list_chip_gapr[i]) with open(out_txt, 'w') as out: out.write('Correlation between signal:\n') label=["T7", "T7_CL_100", "T7_CL_60", "T7_DV_100", "T7_DV_60", "T7_CV"] for i in range(6): # out.write(f"{label[i]};RNA/T7 Pearson correlation: {st.pearsonr(list_rna[i][start:end], list_chip_T7[i][start:end])[0]:.2f}\n") # out.write(f"{label[i]};RNA/GapR Pearson correlation: {st.pearsonr(list_rna[i][start:end], list_chip_gapr[i][start:end])[0]:.2f}\n") # out.write(f"{label[i]};RNA/HiC Pearson correlation: {st.pearsonr(list_rna[i][start:end], list_hic_signal[i][start:end])[0]:.2f}\n") # out.write(f"{label[i]};T7/GapR Pearson correlation: {st.pearsonr(list_chip_T7[i][start:end], list_chip_gapr[i][start:end])[0]:.2f}\n") # out.write(f"{label[i]};T7/HiC Pearson correlation: {st.pearsonr(list_chip_T7[i][start:end], list_hic_signal[i][start:end])[0]:.2f}\n") # out.write(f"{label[i]};GapR/HiC Pearson correlation: {st.pearsonr(list_chip_gapr[i][start:end], list_hic_signal[i][start:end])[0]:.2f}\n") out.write(f"{label[i]};RNA/T7 Spearmann correlation: {st.spearmanr(list_rna[i][start:end], list_chip_T7[i][start:end])[0]:.2f}\n") out.write(f"{label[i]};RNA/GapR Spearmann correlation: {st.spearmanr(list_rna[i][start:end], list_chip_gapr[i][start:end])[0]:.2f}\n") out.write(f"{label[i]};RNA/HiC Spearmann correlation: {st.spearmanr(list_rna[i][start:end], list_hic_signal[i][start:end])[0]:.2f}\n") out.write(f"{label[i]};T7/GapR Spearmann correlation: {st.spearmanr(list_chip_T7[i][start:end], list_chip_gapr[i][start:end])[0]:.2f}\n") out.write(f"{label[i]};T7/HiC Spearmann correlation: {st.spearmanr(list_chip_T7[i][start:end], list_hic_signal[i][start:end])[0]:.2f}\n") out.write(f"{label[i]};GapR/HiC Spearmann correlation: {st.spearmanr(list_chip_gapr[i][start:end], list_hic_signal[i][start:end])[0]:.2f}\n") |
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 | import bacchus.hic as bch import cooler import hicstuff.hicstuff as hcs import matplotlib.pyplot as plt import numpy as np import copy import os from scipy import ndimage import serpentine as srp # Import snakemake. mat_t7_ara_file = snakemake.input.mat_ara mat_t7_novo_file = snakemake.input.mat_novo mat_t7_ara_rif_file = snakemake.input.mat_ara_rif mat_t7_novo_rif_file = snakemake.input.mat_novo_rif cmap = snakemake.params.cmap res = snakemake.params.res res_ratio = snakemake.params.res_ratio width = snakemake.params.width cpus = snakemake.threads outfile = str(snakemake.output.matrices) outfile_ratio = str(snakemake.output.ratio) outfile_ratio_rif = str(snakemake.output.ratio_rif) # out_zoom = str(snakemake.output.zoom) out_zoom_ratio = str(snakemake.output.zoom_ratio) # Make sure output directory exists. os.makedirs(str((snakemake.params.outdir)), exist_ok=True) # Import matrices subsample = 11675151 files = [mat_t7_ara_file, mat_t7_novo_file, mat_t7_ara_rif_file, mat_t7_novo_rif_file] hic = [0, 0, 0, 0] for i, file in enumerate(files): clr = cooler.Cooler(f"{file}::/resolutions/{res}") mat = clr.matrix(balance=False, sparse=True)[:, :] mat = hcs.subsample_contacts(mat, subsample) mat = hcs.normalize_sparse(mat, norm='ICE', iterations=100, n_mad=10) hic[i] = mat.toarray() # Ratio subsample = 10251593 hic_ratio = [0, 0, 0, 0] for i, file in enumerate(files): clr = cooler.Cooler(f"{file}::/resolutions/{res_ratio}") mat = clr.matrix(balance=False, sparse=True)[:, :] print(mat.sum()) mat = hcs.subsample_contacts(mat, subsample) mat = hcs.normalize_sparse(mat, norm='ICE', iterations=100, n_mad=10) hic_ratio[i] = mat.toarray() ratio = np.log10(hic_ratio[1]) - np.log10(hic_ratio[0]) ratio[np.isnan(ratio)] = 0 ratio[ratio == np.inf] = 0 ratio[ratio == -np.inf] = 0 ratio_rif = np.log10(hic_ratio[3]) - np.log10(hic_ratio[2]) ratio_rif[np.isnan(ratio_rif)] = 0 ratio_rif[ratio_rif == np.inf] = 0 ratio_rif[ratio_rif == -np.inf] = 0 ### # PLOT MATRICES ### title = ["novo- Rif-", "novo+ Rif-", "novo- Rif+", "novo+ Rif+"] ratios = [ratio, ratio_rif] start = 0 end = len(hic[0]) end_ratio = end * res // res_ratio fig, ax = plt.subplots(3, 2, figsize=(10, 10)) for i in range(2): for j in range(2): ax[i, j].imshow( hic[i + 2 * j][start:end, start:end], vmin=0, vmax=0.0012, cmap="Reds", extent=(start, end, end, start), ) ax[i, j].set_title(title[i + 2 * j]) ax[2, i].imshow( ratios[i][start:end_ratio, start:end_ratio], vmin=-2, vmax=2, cmap="seismic", extent=(start, end, end, start), ) ax[2, i].set_title("novo+/novo-") plt.savefig(outfile) plt.close() ### # Plot only ratio. ### fig, ax = plt.subplots(1, 1, figsize=(10, 10)) ax.imshow( ratios[0][start:end_ratio, start:end_ratio], vmin=-2, vmax=2, cmap="seismic", extent=(start, end, end, start), ) ax.set_title("novo+/novo-") plt.savefig(outfile_ratio, dpi=300) plt.close() fig, ax = plt.subplots(1, 1, figsize=(10, 10)) ax.imshow( ratios[1][start:end_ratio, start:end_ratio], vmin=-2, vmax=2, cmap="seismic", extent=(start, end, end, start), ) ax.set_title("novo+ Rif+/novo- Rif+") plt.savefig(outfile_ratio_rif, dpi=300) plt.close() ### # Plot zoom without RNAseq. ### # Rotate matrices. # hic_rot = copy.copy(hic) # for i in range(len(hic)): # hic_rot[i] = bch.interpolate_white_lines(hic_rot[i]) # hic_rot[i][np.isnan(hic_rot[i])] = 0 # hic_rot[i] = ndimage.rotate(hic_rot[i], 45, reshape=True) # fig, ax = plt.subplots( # 1, 4, figsize=(20, 10) # ) # start = 300_000 # end = 480_000 # row1 = len(hic_rot[0]) // 2 - int(np.sqrt(2) * (width / res)) # row2 = len(hic_rot[0]) // 2 + int(np.sqrt(2) * (width / res)) # col1 = int((start // res) * np.sqrt(2)) # col2 = int((end // res) * np.sqrt(2)) # for i in range(len(hic)): # # Hicmap # im = ax[i].imshow( # hic_rot[i][row1:row2, col1:col2], # cmap="Reds", # vmin=0, # vmax=0.002, # extent=(col1 / np.sqrt(2), col2 / np.sqrt(2), width // res, -width // res), # ) # ax[i].get_xaxis().set_visible(False) # ax[i].set_title(title[i], size=18) # if i == 0: # ax[i].tick_params(axis="both", labelsize=16) # ax[i].set_ylabel("Genomic coordinates (kb)", size=16) # else: # ax[i].get_yaxis().set_visible(False) # # Colorbar # cbar = fig.colorbar( # im, # ax=ax.ravel().tolist(), # shrink=0.5, # anchor=(1., 0.5) # ) # cbar.ax.tick_params(labelsize=16) # # Adjust space between plot # plt.subplots_adjust(wspace=0.4, hspace=0.0, left=0.05, right=0.88) # plt.savefig(out_zoom) # plt.close() ### # Plot zoom ratio. ### start, end = 0, 750 end_ratio = end * res // res_ratio fig, ax = plt.subplots(3, 2, figsize=(10, 10)) for i in range(2): for j in range(2): ax[i, j].imshow( hic[i + 2 * j][start:end, start:end], vmin=0, vmax=0.0012, cmap="Reds", extent=(start, end, end, start), ) ax[i, j].set_title(title[i + 2 * j]) for i in range(2): ax[2, i].imshow( ratios[i][start:end_ratio, start:end_ratio], vmin=-1, vmax=1, cmap="seismic", extent=(start, end, end, start), ) ax[2, i].set_title("novo+/novo-") plt.savefig(out_zoom_ratio) plt.close() |
Python
numpy
matplotlib
scipy
cooler
cooler
bacchus
hicstuff
Serpentine
From
line
4
of
scripts/novobiocin_matrices.py
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 | import bacchus.io as bcio import bacchus.hic as bch import bacchus.plot as bcp import bacchus.transcription as bct import cooler import matplotlib.pyplot as plt import numpy as np import pandas as pd import os import scipy.stats as sst from os.path import dirname, join # Make sure that the figures directory exists. os.makedirs(dirname(snakemake.output.pileup), exist_ok=True) os.makedirs(dirname(snakemake.output.pileup_zoom), exist_ok=True) # Import parameters binning = int(snakemake.params.binning) label = str(snakemake.params.species) circular = str(snakemake.params.circular) window = int(snakemake.params.window) threshold = int(snakemake.params.threshold) unit_length = int(snakemake.params.unit_length) # Import RNA tracks. rna, chrom_start = bcio.extract_big_wig( file=str(snakemake.input.rna), binning=binning, circular=circular, sigma=None, ztransform=None, ) # Ugly loop to have the chrom length... chrom_start_size = {} for i, name in enumerate(chrom_start): if i != 0: chrom_start_size[prev_name] = { "start": start, "length": chrom_start[name] - start, } prev_name = name start = chrom_start[name] chrom_start_size[prev_name] = { "start": start, "length": len(rna) - start, } # RNA at 1bp. rna_1bp, chrom_start_1bp = bcio.extract_big_wig( file=str(snakemake.input.rna), binning=1, circular=circular, sigma=None, ztransform=None, ) # Extract annotation from GFF. annotation = pd.DataFrame( columns=["type", "chr", "start", "end", "strand", "name", "tss", "tts", "rpkm"] ) with open(snakemake.input.annotation, "r") as file: for line in file: if line.startswith("#"): continue # Stop if fasta sequence at the end or empty line. elif line.startswith(">") or (line.startswith("\n")): break else: line = line.split("\t") if line[2] == "CDS": name = line[8].split("Name=")[-1].split(";")[0] annot = { "type": line[2], "chr": line[0], "start": int(line[3]), "end": int(line[4]), "strand": line[6], "name": name, } annotation = annotation.append(annot, ignore_index=True) print(annotation) # Find TSS/TTS positions. for i in annotation.index: if annotation.loc[i, "strand"] == "+": annotation.loc[i, "tss"] = annotation.loc[i, "start"] annotation.loc[i, "tts"] = annotation.loc[i, "end"] else: annotation.loc[i, "tts"] = annotation.loc[i, "start"] annotation.loc[i, "tss"] = annotation.loc[i, "end"] # Compute the RPKM values from the genes. for i in annotation.index: chr_start = chrom_start_1bp[annotation.loc[i, "chr"]] annotation.loc[i, "rpkm"] = np.nanmean( rna_1bp[ chr_start + annotation.loc[i, "start"] : chr_start + annotation.loc[i, "end"] ] ) # Compute coding density. n = 0 for i in annotation.index: n += annotation.loc[i, "end"] - annotation.loc[i, "start"] coding_density = n / len(rna_1bp) # Plot RPKM distribution. plt.hist(annotation.rpkm, bins=25) plt.text( x=np.nanpercentile(annotation.rpkm, 80), y=len(annotation.rpkm) // 25, s=f"corr={coding_density:.2f}", ) plt.savefig(snakemake.output.rpkm) # Compute pileup for tu_length in [0, 3000]: for threshold2 in np.arange(5, 30, 5): rna_pileup_pos, _, pileup_pos, _ = bct.pileup_genes( clr=cooler.Cooler(f"{snakemake.input.hic}::/resolutions/{binning}"), annotation=annotation, rna=rna, chrom_start_size=chrom_start_size, window_size=25000, binning=binning, threshold=threshold2, neg="detrend", tu_length=tu_length, operation="mean", circular=circular, ) # Plot pileup # Parameters ax_kb = 1000 window_plot = 25000 // ax_kb # Plot fig, ax = plt.subplots( 2, 1, figsize=(8, 13), gridspec_kw={"height_ratios": [7, 3]} ) # RNA ax[1].axvline( 0, color="black", linestyle="dashed", linewidth=1.5, alpha=0.4 ) ax[1].tick_params(axis="both", labelsize=14) ax[1].plot( np.arange( -window_plot, window_plot + (1 * binning / ax_kb), binning / ax_kb, ), rna_pileup_pos, ) ax[1].set_ylabel("Transcription (CPM)", fontsize=15) ax[1].set_xlabel("Genomic distance (kb)", fontsize=15) # HiC if tu_length == 0: vmax = 0.012 else: vmax = 0.008 ax[0].get_xaxis().set_visible(False) im = ax[0].imshow( pileup_pos**0.8, cmap="Reds", vmin=0, vmax=vmax, extent=[-window_plot, window_plot, window_plot, -window_plot], ) # ax[0].axvline(0, color="black", linestyle="dashed", linewidth=1.5, alpha=0.4) # ax[0].axhline(0, color="black", linestyle="dashed", linewidth=1.5, alpha=0.4) ax[0].tick_params(axis="both", labelsize=14) ax[0].set_ylabel("Genomic distance (kb)", fontsize=15) # Add colorbar, title and savefig fig.colorbar( im, ax=ax.ravel().tolist(), shrink=0.33, anchor=(1.3, 0.75) ) plt.subplots_adjust(hspace=0.1) ax[0].set_title(label, fontsize=20) plt.savefig( join( snakemake.params.out_dir, f"pileup_pos_{threshold2}_TU{tu_length}.pdf", ), dpi=200, ) hic_signal = bch.compute_hic_signal( pileup_pos, binning=500, start=0, stop=5000 ) print( f"{label} (Gene) - Pearson correlation: {sst.pearsonr(hic_signal[10:40], rna_pileup_pos[10:40])[0]:.2f}" ) print( f"{label} (Gene) - p-value: {sst.pearsonr(hic_signal[10:40], rna_pileup_pos[10:40])[1]:.5f}" ) # Log ratio pileup rna_pileup_pos, rna_pileup_neg, pileup_pos, pileup_neg = bct.pileup_genes( clr=cooler.Cooler(f"{snakemake.input.hic}::/resolutions/{binning}"), annotation=annotation, rna=rna, chrom_start_size=chrom_start_size, window_size=window, binning=binning, threshold=threshold, neg="random-neighbor", tu_length=unit_length, operation="mean", circular=circular, ) # Print correlation: hic_signal = bch.compute_hic_signal(pileup_pos, binning=500, start=0, stop=5000) print( f"{label} (TU) - Pearson correlation: {sst.pearsonr(hic_signal[10:window//500 - 10], rna_pileup_pos[10:window//500 - 10])[0]:.2f}" ) print( f"{label} (TU) - p-value: {sst.pearsonr(hic_signal[10:window//500 - 10], rna_pileup_pos[10:window//500 - 10])[1]:.5f}" ) # Plot pileup pos. # Plot pileup # Parameters ax_kb = 1000 window_plot = 25000 // ax_kb # Plot pos fig, ax = plt.subplots( 2, 1, figsize=(8, 13), gridspec_kw={"height_ratios": [7, 3]} ) # RNA ax[1].axvline(0, color="black", linestyle="dashed", linewidth=1.5, alpha=0.4) ax[1].tick_params(axis="both", labelsize=14) ax[1].plot( np.arange( -window_plot, window_plot + (1 * binning / ax_kb), binning / ax_kb, ), rna_pileup_pos[window // 500 - 50 : window // 500 + 51], ) ax[1].set_ylabel("Transcription (CPM)", fontsize=15) ax[1].set_xlabel("Genomic distance (kb)", fontsize=15) # HiC ax[0].get_xaxis().set_visible(False) im = ax[0].imshow( pileup_pos[ window // 500 - 50 : window // 500 + 51, window // 500 - 50 : window // 500 + 51, ] ** 0.8, cmap="Reds", vmin=0.003, vmax=0.007, extent=[-window_plot, window_plot, window_plot, -window_plot], ) # ax[0].axvline(0, color="black", linestyle="dashed", linewidth=1.5, alpha=0.4) # ax[0].axhline(0, color="black", linestyle="dashed", linewidth=1.5, alpha=0.4) ax[0].tick_params(axis="both", labelsize=14) ax[0].set_ylabel("Genomic distance (kb)", fontsize=15) # Add colorbar, title and savefig fig.colorbar(im, ax=ax.ravel().tolist(), shrink=0.33, anchor=(1.3, 0.75)) plt.subplots_adjust(hspace=0.1) ax[0].set_title(label, fontsize=20) plt.savefig(snakemake.output.pileup_pos_TU, dpi=200) # Plot neg fig, ax = plt.subplots( 2, 1, figsize=(8, 13), gridspec_kw={"height_ratios": [7, 3]} ) # RNA ax[1].axvline(0, color="black", linestyle="dashed", linewidth=1.5, alpha=0.4) ax[1].tick_params(axis="both", labelsize=14) ax[1].plot( np.arange( -window_plot, window_plot + (1 * binning / ax_kb), binning / ax_kb, ), rna_pileup_neg[window // 500 - 50 : window // 500 + 51], ) ax[1].set_ylabel("Transcription (CPM)", fontsize=15) ax[1].set_xlabel("Genomic distance (kb)", fontsize=15) # HiC ax[0].get_xaxis().set_visible(False) im = ax[0].imshow( pileup_neg[ window // 500 - 50 : window // 500 + 51, window // 500 - 50 : window // 500 + 51, ] ** 0.8, cmap="Reds", vmin=0, vmax=np.nanpercentile( pileup_pos[ window // 500 - 50 : window // 500 + 51, window // 500 - 50 : window // 500 + 51, ] ** 0.8, 99, ), extent=[-window_plot, window_plot, window_plot, -window_plot], ) # ax[0].axvline(0, color="black", linestyle="dashed", linewidth=1.5, alpha=0.4) # ax[0].axhline(0, color="black", linestyle="dashed", linewidth=1.5, alpha=0.4) ax[0].tick_params(axis="both", labelsize=14) ax[0].set_ylabel("Genomic distance (kb)", fontsize=15) # Add colorbar, title and savefig fig.colorbar(im, ax=ax.ravel().tolist(), shrink=0.33, anchor=(1.3, 0.75)) plt.subplots_adjust(hspace=0.1) ax[0].set_title(label, fontsize=20) plt.savefig(snakemake.output.pileup_neg_TU, dpi=200) # Plot pileup genes # Plot the pileup ratio. bcp.pileup_plot( pileup=pileup_pos, pileup_control=pileup_neg, gen_tracks=[rna_pileup_pos], gen_tracks_control=[rna_pileup_neg], binning=binning, window=50000, ratio="log", out_file=snakemake.output.pileup, title=label, dpi=200, vmax=0.2, ) bcp.pileup_plot( pileup=pileup_pos, pileup_control=pileup_neg, gen_tracks=[rna_pileup_pos], gen_tracks_control=[rna_pileup_neg], binning=binning, window=25000, ratio="log", out_file=snakemake.output.pileup_zoom, title=label, dpi=200, vmax=0.2, ) bcp.pileup_plot( pileup=pileup_pos, pileup_control=pileup_neg, gen_tracks=[rna_pileup_pos], gen_tracks_control=[rna_pileup_neg], binning=binning, window=10000, ratio="log", out_file=snakemake.output.pileup_zoom2, title=label, dpi=200, vmax=0.2, ) |
tool / pypi
matplotlib
Matplotlib produces publication-quality figures in a variety of hardcopy formats and interactive environments across platforms. Matplotlib can be used in Python scripts, Python/IPython shells, web application servers, and various graphical user interface toolkits.