Workflow Steps and Code Snippets
165 tagged steps and code snippets that match keyword pysam
A pipeline for simulating viral or vector integration into a host genome (v0.0.2)
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 | from sys import argv from os import path, SEEK_CUR from scipy.stats import norm from collections import defaultdict import argparse import csv import pysam import pdb genome_length = int(3e9) def main(argv): #get arguments parser = argparse.ArgumentParser(description='simulate viral integrations') parser.add_argument('--sim-info', help='information from simulation', required = True, type=str) parser.add_argument('--sim-bam', help='bam file from read simulation (must be sorted, indexed)', required = True, type=str) parser.add_argument('--soft-threshold', help='threshold for number of bases that must be mapped when finding integrations in soft-clipped reads', type=int, default=20) parser.add_argument('--discordant-threshold', help='threshold for number of bases that may be unmapped when finding integrations in discordant read pairs', type=int, default=20) parser.add_argument('--mean-frag-len', help='mean framgement length used when simulating reads', type=int, default=500) parser.add_argument('--sd-frag-len', help='standard devation of framgement length used when simulating reads', type=int, default=30) parser.add_argument('--window-frac', help='fraction of the distribution of fragment sizes to use when searching for discordant read pairs', type=float, default=0.99) parser.add_argument('--output', help='output file', required=False, default='annotated.tsv') args = parser.parse_args() # read in bam file samfile = pysam.AlignmentFile(args.sim_bam) # iterate over integrations in info file and pull out reads crossing each one # the sam/bam file has the same coordinates as the info file # so just use the coordinates of the left and right junctions from this files with open(args.sim_info, newline='') as info_file, open(args.output, 'w', newline='') as output: # use csv to read and write files reader = csv.DictReader(info_file, delimiter = '\t') writer_fieldnames = list(reader.fieldnames) + ['left_chimeric', 'right_chimeric', 'left_discord', 'right_discord', 'multiple_discord', 'fake_discord', 'discordant_and_chimeric'] writer = csv.DictWriter(output, delimiter = '\t', fieldnames = writer_fieldnames) writer.writeheader() # set window size for looking for discordant pairs and # looking for multiple ints with the same discordant pair window_width = window_size(args.mean_frag_len, args.sd_frag_len, args.window_frac) # create a buffer of integrations that all fall within this window width buffer = [next(reader)] while True: buffer, next_buffer = get_ints_in_window(buffer, window_width, reader, info_file) # find reads crossing each integration in the buffer buffer = find_reads_crossing_ints(buffer, samfile, args, window_width) # check for read pairs that cross multiple junctions buffer = find_multiple_discordant(buffer) # check for read pairs that are discordant at one integration and chimeric at another integration # assume that integrations are independent (even though they aren't in simulation), so these are not detectable buffer = find_multiple_chimeric_discordant(buffer) # write rows in buffer for row in buffer: writer.writerow(row) buffer = next_buffer # check if we've reached the end of the file if len(buffer) == 0: break samfile.close() def find_multiple_chimeric_discordant(buffer): """ Assume that in real data, integrations are independent, so two integrations do not occur close enough to each other in the same cell that we can detect them. This may or may not be the case, but the number of these kinds of pairs of integrations is assumed to be small enough that they're not worth worrying about. If a read pair has one read that is chimeric, but it's also discordant about the same or a different integration, only the chimeric read will be detected (and it won't be flagged as a discordant read pair). Assuming that these events are a tiny minority in real data, here don't flag the discordant pairs as something that should be detected (but instead add them to the 'discordant_and_chimeric' category) """ to_delete = {} for i, row in enumerate(buffer): # for each row, find reads that are both chimeric # and discordant for any other integration left_discord = row['left_discord'].split(';') right_discord = row['right_discord'].split(';') to_delete[i] = {'left' : [], 'right' : []} # check for these reads in other rows for row_2 in buffer: # skip if this is the same as the one we're looking at if row_2 == row: continue # get read names for chimeric reads for this row chimeric = row_2['left_chimeric'].split(";") chimeric += row_2['right_chimeric'].split(";") chimeric = [read[:-2] for read in chimeric] # check if chimeric reads in row_2 also occur in the list # of discordant reads in row for read in chimeric: if read in left_discord: to_delete[i]['left'].append(read) if read in right_discord: to_delete[i]['right'].append(read) # remove reads in to_delete for row_num in to_delete.keys(): # remove reads from left_discord left_discord = buffer[row_num]['left_discord'].split(';') left_discord = [read for read in left_discord if read not in to_delete[row_num]['left']] buffer[row_num]['left_discord'] = ";".join(left_discord) # remove reads from right_discord right_discord = buffer[row_num]['right_discord'].split(';') right_discord = [read for read in right_discord if read not in to_delete[row_num]['right']] buffer[row_num]['right_discord'] = ";".join(right_discord) # removed reads go to 'discordant_and_chimeric' buffer[row_num]['discordant_and_chimeric'] = [f"{read}_left" for read in to_delete[row_num]['left']] buffer[row_num]['discordant_and_chimeric'] += [f"{read}_right" for read in to_delete[row_num]['right']] buffer[row_num]['discordant_and_chimeric'] = ";".join(buffer[row_num]['discordant_and_chimeric']) return buffer def find_multiple_discordant(buffer): """ a read might be discordant about two or more integration sites for example, if a read pair crosses the right border of one integration and the left border of a close by integration, both read pairs will be mapped to the virus and therefore this pair won't be detected as an integration deal with discordant pairs that cross multiple integrations in one of two ways: 1. if a pair is discordant about the right side of one integration and the left side of a close by integration, then both reads are mapped to the virus and this read should be removed from both. Keep track of these in a different category ('fake_discord') 2. if a pair crosses right side of one integration, and both sides of a nearby integration, then one read maps to virus (in the first integration), and the other maps to host (after the second) and therefore this pair should be indicated to be an integration. However, if we want to score based on integration position, we need to decide which integration this read 'belongs' to. Keep these reads in a seperate category ('multiple_discord') for all the integrations that they cross, to reflect the fact that the 'belong' to multiple integrations """ # keep track of which reads we've already seen seen = dict() # for reads that we find at multiple junctions, # keep track of which junctions so we can work out what to do with that read multiples = dict() for i, row in enumerate(buffer): # check reads found around left side for read in row['left_discord'].split(';'): if read == '': continue if read in seen.keys(): # if this is the first double, add the entry from seen if read not in multiples: multiples[read] = [] multiples[read].append(seen[read]) # add entry to multiples for this time we found the read multiples[read].append({'int_id' : row['id'], 'side' : 'left' , 'buffer_row' : i}) else: seen[read] = {'int_id' : row['id'], 'side' : 'left', 'buffer_row' : i} # check right side for read in row['right_discord'].split(';'): if read == '': continue if read in seen.keys(): # if this is the first double, add the entry from seen if read not in multiples: multiples[read] = [] multiples[read].append(seen[read]) # add entry to multiples for this time we found the read multiples[read].append({'int_id' : row['id'], 'side' : 'right', 'buffer_row' : i}) else: seen[read] = {'int_id' : row['id'], 'side' : 'right', 'buffer_row' : i} # add extra keys to dicts row['multiple_discord'] = [] row['fake_discord'] = [] # deal with reads crossing multiple integrations for read in multiples: # if the side of the first junction matches the side of the last junction # this is a 'multiple_discord' sides = [find['side'] for find in multiples[read]] if sides[0] == sides[-1]: new_type = 'multiple_discord' else: new_type = 'fake_discord' for find in multiples[read]: # find row and side buffer_row = find['buffer_row'] old_type = f"{find['side']}_discord" # remove from list of reads of old type reads = buffer[buffer_row][old_type].split(";") reads.remove(read) buffer[buffer_row][old_type] = ";".join(reads) # add to list of new type buffer[buffer_row][new_type].append(f"{read}_{find['side']}") # for each row, join lists of 'multiple_disord' and 'fake_discord' for row in buffer: row['multiple_discord'] = ";".join(row['multiple_discord']) row['fake_discord'] = ";".join(row['fake_discord']) return buffer def times_already_found(read, multiples): """ check how many times a read has already been found when checking for discordant about multiple integration sides """ if read in multiples: return len(multiples[read]) else: return 0 def find_reads_crossing_ints(buffer, samfile, args, window_width): """ find reads crossing the integration site, and add them to the row reads crossing the integration site can be chimeric about the left or right junction or discordant about the left or right junction if they're discordant about both junctions, they actually go from host sequence to host sequence and therefore aren't actually discordant """ for row in buffer: # get information about integration site location chr = row['chr'] left_start = int(row['leftStart']) left_stop = int(row['leftStop']) right_start = int(row['rightStart']) right_stop = int(row['rightStop']) assert left_start >= 0 and right_start >= 0 # find chimeric reads left_chimeric = get_chimeric(chr, left_start, left_stop, samfile, args.soft_threshold, buffer) right_chimeric = get_chimeric(chr, right_start, right_stop, samfile, args.soft_threshold, buffer) row['left_chimeric'] = ";".join(left_chimeric) row['right_chimeric'] = ";".join(right_chimeric) # find discordant read pairs left_discord = get_discordant(chr, left_start, left_stop, samfile, args.discordant_threshold, window_width, buffer) right_discord = get_discordant(chr, right_start, right_stop, samfile, args.discordant_threshold, window_width, buffer) # if a read is both chimeric and discordant, chimeric takes priority # (but it shouldn't be both if the clipping threshold is the same for both read types) left_chimeric, left_discord = remove_chimeric_from_discord(left_chimeric, left_discord) right_chimeric, right_discord = remove_chimeric_from_discord(right_chimeric, right_discord) left_chimeric, right_discord = remove_chimeric_from_discord(left_chimeric, right_discord) right_chimeric, left_discord = remove_chimeric_from_discord(right_chimeric, left_discord) row['left_discord'] = ";".join(left_discord) row['right_discord'] = ";".join(right_discord) return buffer def get_ints_in_window(buffer, window_width, reader, reader_handle): """ get a list of integrations (dicts corresponding to one row from the int-info file) that are within window_width of each other """ assert len(buffer) == 1 # get position and chromosome from buffer start = int(buffer[0]['rightStop']) chr = buffer[0]['chr'] # get more integraions until we're not in the window anymore or we're at the end of the file # to avoid having to go back a line, save the first line not added to 'next_buffer' while True: # get next row try: row = next(reader) except StopIteration: next_buffer = [] break # compare previous integration with this integration prev_start = start prev_chr = chr start = int(row['leftStart']) chr = row['chr'] # check if next row is a window width away if (start - prev_start < window_width) and prev_chr == chr: # add to buffer buffer.append(row) start = int(row['rightStop']) else: # don't add the row but this will be the start of the next buffer next_buffer = [row] break return buffer, next_buffer def get_discordant(chr, start, stop, samfile, threshold, window_width, buffer): """ Get any discordant read pairs which cross an integration site In other words, get pairs where one mate is mapped on the host side, and the other on the virus side A read is considered mapped if it has at most threshold (default 20) unmapped bases This includes any pairs where the integration site falls within threshold (default 20) bases of the end of the read (for a read mapped on the left of the integration), or within threshold bases of the start of the read for a read on the mapped on the right of the integration Avoid an exhaustive search by extracting only the reads in a window around the integration site Set this window based on the mean length and standard deviation of fragment size used in simulation and the fraction of the fragment length distribution we want to cover. Find discordant pairs by finding pairs for which an integration (start, stop) falls between the 20th base from the end of the left read and the 20th base of the right read Current criteria in discordant.pl is that a pair must have one read mapped and the other unmapped to be considered a discordant read pair. To be considered 'mapped', a read must have 20 or fewer unmapped bases. To be considered 'unmapped', a read must have less than 20 unmapped bases Note that a read pair might have one integration fall between read1 and read2, but read1 or read2 might also cross a second integration. This pair is therefore both discordant about one integration, and also one member of the pair is chimeric A consequence of this is that one read maps only to vector or host, but the other maps to both. This discordant pair cannot currently be detected, since the pipeline currently detects discordant read-pairs only if one read is mapped to vector and not host, and vice versa for the other read. However, this pair really is evidence for integration at the first site (as a discordant read-pair), so include it in the output as such. """ reads = [] # extract read pairs in the desired window # pysam numbering is 0-based, with the only exception being the region string in the fetch() and pileup() methods. window_start = start - window_width if window_start < 1: window_start = 1 window_stop = stop + window_width if window_stop > samfile.get_reference_length(chr): window_stop = samfile.get_reference_length(chr) if window_stop == window_start: window_stop += 1 for read1, read2 in read_pair_generator(samfile, f"{chr}:{window_start}-{window_stop}"): # check mate is mapped if read1.is_unmapped or read2.is_unmapped: continue # check reference for this read is the same as mate if read1.reference_name != read2.reference_name: continue # if this read is forward, mate must be reverse and vice versa if (read1.is_reverse == read2.is_reverse): continue # if the integration site falls between left_boundary and right_boundary # (which are coordinates within the reference) # this pair crosses the integration site if read1.is_reverse is False: left_boundary = get_boundary(read1, threshold, side = "right") right_boundary = get_boundary(read2, threshold, side = "left") else: left_boundary = get_boundary(read2, threshold, side = "right") right_boundary = get_boundary(read1, threshold, side = "left") # if left_boundary is greater than right_boundary, reads overlap if left_boundary >= right_boundary: continue assert left_boundary is not None assert right_boundary is not None assert left_boundary < right_boundary if within(start, stop, left_boundary, right_boundary): reads.append(read1.qname) # # # TODO - need to decide if integrations should be excluded on the basis # # below (if it's not the case that one read is mapped to host and the other to virus) # # these events can't be currently detected in the pipeline, but are real evidence # # of integration, so for now include them in the output # # r1_mapped = get_mapped_ref(read1, buffer, threshold) # r2_mapped = get_mapped_ref(read2, buffer, threshold) # # assert r1_mapped['host'] or r1_mapped['virus'] # assert r2_mapped['host'] or r2_mapped['virus'] # # if r1_mapped['host'] != r2_mapped['host'] and r1_mapped['virus'] != r2_mapped['virus']: # reads.append(read1.qname) return reads def get_mapped_ref(read, buffer, threshold): """ figure out if each read in this read pair will be mapped to host or vector/virus returns a dict with the keys 'host' and 'virus', and values True or False depending on if the read is mapped to either or not """ assert read.is_unmapped is False read_mapped = {'host':False, 'virus':False, 'int' : []} # get first and last position to which read is mapped in reference first = read.get_reference_positions()[0] last = read.get_reference_positions()[-1] prev_start = 0 for row in buffer: # figure out if we need to include the ambiguous bases or not if row['juncTypes'].split(',')[0] == 'gap': left_host_junc = int(row['leftStart']) left_virus_junc = int(row['leftStop']) else: left_host_junc = int(row['leftStop']) left_virus_junc = int(row['leftStart']) if row['juncTypes'].split(',')[1] == 'gap': right_virus_junc = int(row['rightStart']) right_host_junc = int(row['rightStop']) else: right_virus_junc = int(row['rightStop']) right_host_junc = int(row['rightStart']) # if read is between the start of the chromosome and the start of the integration if intersects(first, last, prev_start, left_host_junc): # check we have at least threshold bases mapped if check_threshold(read, prev_start, left_host_junc, threshold): read_mapped['host'] = True # if read is between the left and right junctions if intersects(first, last, left_virus_junc, right_virus_junc): if check_threshold(read, left_virus_junc, right_virus_junc, threshold): read_mapped['virus'] = True read_mapped['int'].append(row['id']) prev_start = right_host_junc # if the prev_start is to the right of the position of the last mapped base in the read # then we don't need to continue if prev_start > last: break # check if read is between the end of the last integration and the end of the chromosome # don't know what the end of the chromosome is, so just use a large number (genome_length) if intersects(first, last, prev_start, genome_length): if check_threshold(read, prev_start, genome_length, threshold): read_mapped['host'] = True return read_mapped def get_chimeric(chr, start, stop, samfile, threshold, buffer): """ find reads that cross an interval defined as chr:start-stop in samfile the interval must be at least threshold bases from the start and end of the read """ reads = [] # get reads that cross interval # pysam numbering is 0-based, with the only exception being the region string in the fetch() and pileup() methods. # The same is true for any coordinates passed to the samtools command utilities directly, such as pysam.fetch(). for read in samfile.fetch(chr, start, stop + 1): # check that interval is at least threshold bases from either end of the read mapped = get_mapped_ref(read, buffer, threshold) assert (mapped['host'] or mapped['virus']) if mapped['host'] is True and mapped['virus'] is True: reads.append(read.query_name + read_num(read)) return reads def read_num(read): """ return '/1' if read is R1, '/2' if read is R2, or empty string otherwise """ if read.is_read1 is True: return "/1" elif read.is_read2 is True: return "/2" else: return "" def check_threshold(read, start, stop, threshold): """" check that there are least threshold bases that map to an interval (defined by start and stop) """ rstart = read.get_reference_positions()[0] # need to account for 0-based numbering (stop already has this accounted for) rstop = read.get_reference_positions()[-1] + 1 assert intersects(rstart, rstop, start, stop) if (rstop - start) < threshold: return False if (stop - rstart) < threshold: return False return True def window_size(mean_frag_len, sd_frag_len, window_frac): """ to avoid exhaustive search for discordant reads, work out window size for extracting reads when finding discordant read pairs based on mean and standard deviation of fragment length distribution, and fraction of this distribution we want to cover For example, if the mean fragment length is 500 bp, the standard deviation is 30 bp, and we want to cover 0.99 of this distribution, the window size would be 570 bp, which accounts for 99% of the fragment sizes in this distribution (one-tailed) """ # get one-tailed value which contains window_frac of fragments upper = norm.ppf(window_frac, loc = mean_frag_len, scale = sd_frag_len) return int(round(upper)) def get_boundary(read, threshold, side = "left"): """ get first position in reference that is at least threshold bases from the start or end of the read and isn't None if side is 'left', return the 0-based position after threshold mapped bases from the start of the read if side is 'right', return the 0-based position before threshold mapped bases from the end of the read """ assert isinstance(threshold, int) assert threshold >= 0 assert threshold <= read.qlen assert side in ['left', 'right'] aligned_pairs = read.get_aligned_pairs() if side == "left": # if we want to look on the right hand side, we need to look backwards # through the aligned pairs aligned_pairs = list(reversed(aligned_pairs)) # python numbering is zero-based and half-open threshold -= 1 # iterate over bases in aligned_pairs, starting from the threshold value for pair in aligned_pairs[threshold:]: # check the base is aligned if (pair[1] is not None): return pair[1] def within(start1, stop1, start2, stop2): """ compare two intervals, each with a start and stop value return true if the first interval is completely within in the second use half-open intervals, so [8, 8) is not within [5, 8) within(8, 8, 5, 8) => False within(6, 6, 5, 8) => True within(5, 8, 5, 8) => True within(4, 6, 5, 8) => False within(5, 9, 5, 8) => False """ assert start1 <= stop1 assert start2 <= stop2 assert isinstance(start1, int) assert isinstance(start2, int) assert isinstance(stop1, int) assert isinstance(stop2, int) if start1 >= start2 and start1 < stop2: if stop1 - 1 >= start2 and stop1 - 1 < stop2: return True return False def intersects(start1, stop1, start2, stop2): """ compare two intervals, each with a start and stop value return true if the first interval is intersects the second use half-open intervals, so [2, 3) and [3, 4) don't intersect """ assert start1 <= stop1 assert start2 <= stop2 assert isinstance(start1, int) assert isinstance(start2, int) assert isinstance(stop1, int) assert isinstance(stop2, int) # if first interval is completely to the left of the second interval if stop1 <= start2: return False # if first interval is completely to the right of the second interval if start1 >= stop2: return False # otherwise, they intersect return True def read_pair_generator(bam, region_string=None): """ https://www.biostars.org/p/306041/ Generate read pairs in a BAM file or within a region string. Reads are added to read_dict until a pair is found. """ read_dict = defaultdict(lambda: [None, None]) for read in bam.fetch(region=region_string): if read.is_secondary or read.is_supplementary: continue qname = read.query_name if qname not in read_dict: if read.is_read1: read_dict[qname][0] = read else: read_dict[qname][1] = read else: if read.is_read1: yield read, read_dict[qname][1] else: yield read_dict[qname][0], read del read_dict[qname] def remove_chimeric_from_discord(chimeric, discord): """ check for read ids that are in both chimeric and discord - remove them from discord if they're in both """ # chimeric reads have /1 or /2 added to_delete = [] chimeric_tmp = [read[:-2] for read in chimeric] for read in discord: if read in chimeric_tmp: print(f" removed a read that was in both chimeric and discord: {read}") to_delete.append(read) # remove reads flagged for deletion discord = [read for read in discord if read not in to_delete] return chimeric, discord if __name__ == "__main__": main(argv[1:]) |
kGWASflow is a Snakemake workflow for performing k-mers-based GWAS. (v1.2.3)
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 | import csv import os, glob, shutil import re import sys import pandas as pd import numpy as np import matplotlib.pyplot as plt from qmplot import manhattanplot import natsort from natsort import natsorted import seaborn as sns import pysam if __name__ == "__main__": ## Logging with open(snakemake.log[0], "w") as f: sys.stderr = sys.stdout = f ## Read the alignment data align_kmers_sam = pd.read_table(snakemake.input[0], sep='\t', comment='@', header=None, usecols=[0,2,3], names=['kmer_id', 'chr', 'bp']) ## Preparing the data for plotting align_kmers_sam['kmer'] = align_kmers_sam['kmer_id'].str.split('_').str[0] align_kmers_sam['p_value'] = align_kmers_sam['kmer_id'].str.split('_').str[1] align_kmers_sam['p_value'] = align_kmers_sam['p_value'].astype(float) align_kmers_sam['bp'] = align_kmers_sam['bp'].astype(int) # Sort the data by chromosome and chromosome position align_kmers_sam_sorted = align_kmers_sam.sort_values(by=["chr", "bp"], key=natsort.natsort_keygen()) # Get colors for manhattan plot colors = sns.color_palette("colorblind").as_hex() colors_2 = sns.color_palette("husl").as_hex() # Make a column of minus log10 p-values align_kmers_sam_sorted['minuslog10pvalue'] = -np.log10(align_kmers_sam_sorted.p_value) ## Get min & max minus log10 p-values for y axis limits y_max = align_kmers_sam_sorted['minuslog10pvalue'].max() y_min = align_kmers_sam_sorted['minuslog10pvalue'].min() print("y_max: " + str(y_max)) print("y_min: " + str(y_min)) ## Check if only one chromosome is provided for the manhattan plot num_of_chrs = len(pd.unique(align_kmers_sam_sorted['chr'])) # Define a function to extract chromosome names and lengths from a SAM file header def extract_chromosome_info(sam_file): """ Extract chromosome names and lengths from a SAM file header and return as a Pandas DataFrame with columns "chr" and "bp". """ chromosome_info = {} # dictionary to store chromosome names and lengths pattern = re.compile(r'^([Cc][Hh][Rr])?\d*[XYM]?$') # chromosome names pattern with pysam.AlignmentFile(sam_file, "r") as sam: # open SAM file for header_line in sam.header["SQ"]: # iterate over SQ header lines chromosome_name = header_line["SN"] # get chromosome name length = header_line["LN"] # get chromosome length if chromosome_name.startswith("chr"): # if chromosome name starts with "chr" name = chromosome_name # use name as is else: # if chromosome name does not start with "chr" match = pattern.match(chromosome_name) # if match: # if chromosome name matches pattern # Convert name to "chrX" format name = "chr" + match.group(1) else: # if chromosome name does not match pattern continue # skip chromosome chromosome_info[name] = length # add chromosome name and length to dictionary # Convert dictionary to DataFrame df = pd.DataFrame(chromosome_info.items(), columns=["chr", "bp"]) return df # return the DataFrame # Plotting the manhattan plot print("Plotting...") # Set font sizes tick_fontsize = snakemake.params["tick_fontsize"] label_fontsize = snakemake.params["label_fontsize"] title_fontsize = snakemake.params["title_fontsize"] # Set the figure dpi dpi = snakemake.params["dpi"] ## If only one chromosome is provided, plot the k-mer's position on ## that chromosome on the x axis if num_of_chrs == 1: f, ax = plt.subplots(figsize=(18, 9), facecolor='w', edgecolor='k') manhattanplot(data=align_kmers_sam_sorted, snp="kmer_id", chrom="chr", CHR= pd.unique(align_kmers_sam_sorted['chr']), color=colors_2, pos="bp", pv="p_value", suggestiveline=None, # Turn off suggestiveline genomewideline=None, # Turn off genomewideline xticklabel_kws={"rotation": "vertical"}, ax=ax, s = snakemake.params["point_size"], clip_on=False) ax.set_ylim([y_min-0.5, y_max+1]) # Set y axis limits # Set x axis tick interval xtick_interval = snakemake.params["xtick_interval"] # Calculate the minimum and maximum of your data, rounded to the nearest multiple of 5000 min_val = align_kmers_sam_sorted['bp'].min() // xtick_interval * xtick_interval max_val = (align_kmers_sam_sorted['bp'].max() // xtick_interval + 1) * xtick_interval # Generate the tick locations xtick_locs = np.arange(min_val, max_val, xtick_interval) f.suptitle('k-mer Based GWAS Manhattan Plot for ' + snakemake.params["pheno"], fontsize=title_fontsize) plt.xlabel('Chromosome: ' + pd.unique(align_kmers_sam_sorted['chr'])[0], fontsize=label_fontsize) plt.ylabel(r"$-log_{10}{(P)}$", fontsize=label_fontsize) plt.xticks(xtick_locs, fontsize = tick_fontsize) plt.yticks(fontsize = tick_fontsize) plt.tight_layout() ## If more than one chromosome is provided, use all chromosomes if num_of_chrs > 1: # Extract chromosome names and lengths from the SAM file header chrom_info_tab = extract_chromosome_info(snakemake.input[0]) chrom_names = natsorted(chrom_info_tab['chr'].tolist()) # Add extra chromosome names and lengths to the data frame align_kmers_sam_with_all_chrom = pd.concat([align_kmers_sam, chrom_info_tab], ignore_index=True) align_kmers_sam_with_all_chrom = align_kmers_sam_with_all_chrom[align_kmers_sam_with_all_chrom['chr'].isin(chrom_names)] # Sort the data by chromosome and chromosome position align_kmers_sam_with_all_chrom_sorted = align_kmers_sam_with_all_chrom.sort_values(by=["chr", "bp"], key=natsort.natsort_keygen()) # Fill NaN values with 1 align_kmers_sam_with_all_chrom_sorted['p_value'] = align_kmers_sam_with_all_chrom_sorted['p_value'].fillna(1) # Plot the dots of chromosome length rows wiht the lowest opacity extra_rows = align_kmers_sam_with_all_chrom_sorted[align_kmers_sam_with_all_chrom_sorted['p_value'] == 1] f, ax = plt.subplots(figsize=(18, 9), facecolor='w', edgecolor='k') manhattanplot(data=align_kmers_sam_with_all_chrom_sorted, snp="kmer_id", chrom="chr", color=colors, pos="bp", pv="p_value", suggestiveline=None, # Turn off suggestiveline genomewideline=None, # Turn off genomewideline xticklabel_kws={"rotation": "vertical"}, ax=ax, s = snakemake.params["point_size"], clip_on=True) ax.set_ylim([y_min-2, y_max+1]) # Set y axis limits plt.scatter(extra_rows['bp'], -np.log10(extra_rows['p_value']), alpha=0) # Calculate the cumulative distances from the start of each chromosome and store them in a list chrom_ends = chrom_info_tab['bp'].cumsum().tolist() # Plot the vertical lines for the end of each chromosome for end_position in chrom_ends: plt.axvline(x=end_position, color='grey', linestyle='--', alpha=0.2) # Add a caption to the right bottom corner of the outside of the plot caption = '*Vertical dashed lines indicate chromosome boundaries.' ax.text(1.0, -0.2, caption, transform=ax.transAxes, ha='right', va='bottom', fontsize=12) # Set the title of the plot f.suptitle('k-mer Based GWAS Manhattan Plot for ' + snakemake.params["pheno"], fontsize=title_fontsize) # Set the x and y axis labels plt.xlabel('Chromosome', fontsize=label_fontsize) # Set the x axis label plt.ylabel(r"$-log_{10}{(P)}$", fontsize=label_fontsize) # Set the y axis label plt.xticks(fontsize = tick_fontsize) plt.yticks(fontsize = tick_fontsize) # Adjust the plot layout plt.tight_layout() ## Saving the plot as pdf print("Plotting is done. Saving the plot...") plt.savefig(snakemake.output["manhattan_plot"], dpi=dpi) |
2
of
scripts/plot_manhattan.py
Evaluating the robustness of polygenic adaptation to the choice of the GWAS cohort
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | import pysam from optparse import OptionParser parser = OptionParser("$prog [options]") parser.add_option("-i", "--infile", dest="infile", help="Input GWAS+freq file", default=None, type="string") parser.add_option("-p", "--minp", dest="minp", help="Minimum p-value allowed", default=1, type="float") parser.add_option("-o", "--outfile", dest="outfile", help="Output file", default=None, type="string") parser.add_option("-s", "--sep", dest="sep", help="Number of valid SNPs separating each printed SNP", default=None, type="int") (options,args) = parser.parse_args() infile = pysam.Tabixfile(options.infile, mode='r') outfile = open(options.outfile,"w") readheader = infile.header for x in readheader: header = x header = header.split("\t") header = list(filter(lambda a: a != "REF" and a != "ALT" and a != "ANC" and a != "DER" and a!= "SE" and a != "PVAL", header)) header = "\t".join(header) outfile.write(''.join(header) + '\n') i=0 for line in infile.fetch(): fields = line.strip().split("\t") Pval = float(fields[9]) if Pval > options.minp: if i == options.sep: i = 0 finalvec = fields[0:3]+[fields[7]]+fields[10:] outfile.write("\t".join(finalvec)+ '\n') i += 1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 | import pysam import numpy as np from optparse import OptionParser import subprocess parser = OptionParser("$prog [options]") parser.add_option("-i", "--infile", dest="infile", help="Input GWAS+freq file", default=None, type="string") parser.add_option("-b", "--bedfile", dest="bedfile", help="Bed file with LD partitions (def None)", default=None, type="string") parser.add_option("-p", "--maxp", dest="maxp", help="Maximum p-value allowed", default=1, type="float") parser.add_option("-o", "--outfile", dest="outfile", help="Output file", default=None, type="string") (options,args) = parser.parse_args() bedfile = open(options.bedfile,"r") infile = pysam.Tabixfile(options.infile, mode='r') outfile = open(options.outfile,"w") logmaxp = np.log10(options.maxp) readheader = infile.header for x in readheader: header = x header = header.split("\t") header = list(filter(lambda a: a != "REF" and a != "ALT" and a != "ANC" and a != "DER" and a!= "SE" and a != "PVAL", header)) header = "\t".join(header) outfile.write(''.join(header) + '\n') for line in bedfile: regfields = line.strip("\n").split("\t") regchr = regfields[0].strip() regstart = int(regfields[1]) regend = int(regfields[2]) CurrLogPval = 0 CurrPval = None CurrBest = None try: for elem in infile.fetch(regchr,regstart-1,regend): fields = elem.strip().split("\t") Pval = float(fields[9]) if Pval == 0.0: Pval = 1e-20 LogPval = np.log10(Pval) if LogPval < CurrLogPval: CurrBest = fields[0:3]+[fields[7]]+fields[10:] CurrLogPval = LogPval CurrPval = Pval except: continue if CurrLogPval < logmaxp and CurrBest != None: outfile.write("\t".join(CurrBest) + '\n') |
Multiplex Accurate Sensitive Quantitation (MASQ) analysis and primer design
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 | import os,sys import numpy as np import gzip from collections import Counter, defaultdict import fileinput import operator import pickle import time import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.pyplot import cm import editdistance import numpy as np import pysam from masq_helper_functions import tabprint from masq_helper_functions import reverseComplement from masq_helper_functions import convert_cigar_string from masq_helper_functions import setup_logger, load_snv_table, write_snv_table ######################################################################## # Start timer t0 = time.time() # Setup log file log = setup_logger(snakemake.log,'check_loci') log.info('Starting process') ######################################################################## # INPUT FILES AND PARAMETERS log.info('Getting input files and parameters from snakemake object') # WGS path to bam # Now allows multiple BAMs if isinstance(snakemake.input.bam,list) and isinstance(snakemake.params.wgs_name,list): WGS_BAM = snakemake.input.bam WGS_NAME = snakemake.params.wgs_name elif isinstance(snakemake.input.bam,str) and isinstance(snakemake.params.wgs_name,str): WGS_BAM = [snakemake.input.bam] WGS_NAME = [snakemake.params.wgs_name] else: logger.error("WGS_BAM and WGS_BAM should be lists or strings") # # Input SNV table SNV_table = open(snakemake.input.SNV_table,'r') ######################################################################## # OUTPUT FILES log.info('Getting output files from snakemake object') # Output plots list_of_plot_files = snakemake.output.plots # Updated SNP file updated_SNV_table = snakemake.output.new_SNV_table # Make plot folder if it doesn't exist plotfolder = os.path.dirname(list_of_plot_files[0]) os.makedirs(plotfolder, exist_ok=True) ######################################################################## # Plotting colors BASE_COLORS = ["#00ABBA", "#9ACA3C", "#F26421", "#672D8F"] ######################################################################## ## load the genome sequence from a pickle file log.info('Loading reference genome pickle') seq_pickle = snakemake.params.wgs_ref seq_dic = pickle.load(open(seq_pickle, 'rb')) log.info('Done loading reference genome pickle') ######################################################################## # Load the input SNV table log.info('Loading SNV table') snv_info = load_snv_table(SNV_table) for key,value in snv_info.items(): log.debug(key) log.debug(tabprint(value)) log.info('Done loading SNV table') ######################################################################## # Process input file to extend it with strand info and get coordinates of seq log.info('Parsing specific SNV info fields') target_info = [] target_locs_array = [list(map(int, x.split(";") ) ) if len(x)>0 else [] for x in snv_info['target_locs']] for i,loc in enumerate(snv_info['loc']): chrom=snv_info['chr'][i] pos = int(snv_info['posi'][i]) target_locs = target_locs_array[i] aml_loc = target_locs[0] log.debug('Position: %d' % pos) log.debug('AML Loc: %d' % aml_loc) int_seq = snv_info['trimmed-target-seq'][i] length = len(int_seq) if chrom=="0": strand="+" start=1 end=100 targets=target_locs elif ('strand' in snv_info.keys()) and ('fragment-start' in snv_info.keys()) and ('fragment-end' in snv_info.keys()) and ('add-targets' in snv_info.keys()): strand=snv_info['strand'][i] start=snv_info['fragment-start'][i] end=snv_info['fragment-end'][i] end=snv_info['add-targets'][i] else: log.info('Inferring strand, start, and end from match to reference genome') # identifying start and end genomic positions of the targeted region # and getting target sequence from ref genome top_start = pos - 1 - aml_loc top_end = top_start + length top_match = seq_dic[chrom][top_start:top_end] # if the target sequence was on the bottom strand... bottom_start = pos - (length - aml_loc) bottom_end = bottom_start + length bottom_match = reverseComplement(seq_dic[chrom][bottom_start:bottom_end]) log.debug('Target seq : %s' % int_seq) log.debug('Top match : %s' % top_match) log.debug('Btm match : %s' % bottom_match) # check which strand the sequence came from and set coordinates if top_match == int_seq: log.debug('Locus %s: positive strand' % (loc)) strand = "+" start = top_start end = top_end targets = target_locs else: log.debug('Locus %s: negative strand' % (loc)) strand = "-" start = bottom_start end = bottom_end targets = [length - x - 1 for x in target_locs] target_info.append([chrom, strand, start, end, targets]) ######################################################################## # Now go through WGS data and add non-ref bases to the input file... log.info('Finding additional variant positions from WGS BAM') BASES = ["A", "C", "G", "T"] #sample_names = [WGS_NAME] # EDIT TO ALLOW MULTIPLE BAMS... BASE2INT = dict([x[::-1] for x in enumerate(BASES)]) MIN_QUAL = 20 MIN_MAP = 40 buff = 30 region_buffer = 30 all_targets = [] loc_ind = 0 # counter for which loci we're on # # load each region from the target info read in and processed for chrom, strand, true_start, true_end, true_targets in target_info: if chrom=="0": # not human / mouse sequence (GFP seq for example) all_targets.append([]) image_filename = list_of_plot_files[loc_ind] fig = plt.figure(figsize=(20, 18)) plt.savefig(image_filename, dpi=200, facecolor='w', edgecolor='w', papertype=None, format=None, transparent=False) plt.close() loc_ind += 1 else: log.debug('Locus %d' % (loc_ind+1)) image_filename = list_of_plot_files[loc_ind] loc_ind += 1 # add buffer to target sequence on either side and update values start = true_start - region_buffer end = true_end + region_buffer targets = [x + region_buffer for x in true_targets] # get local sequence local_seq = seq_dic[chrom][start:end] log.debug('Chrom: %s' % chrom) log.debug('start: %d' % start) log.debug('end: %d' % end) log.debug('Local_seq: %s' % local_seq) L = len(local_seq) # also in integer form local_int = np.array([BASE2INT[x] for x in local_seq]) # intialize for keeping track of variants at this position has_something = np.zeros(L, dtype=bool) # for each sample fig = plt.figure(figsize=(20, 18)) locus_string = "%s:%d-%d %s" % (chrom, start, end, strand) fig.suptitle(locus_string, fontsize=20) ind = 1 for sample_name,sample_bam_fn in zip(WGS_NAME,WGS_BAM): log.info('Plotting locus %d' % loc_ind) # Set up the plot ax1 = fig.add_subplot(len(WGS_NAME), 1, ind) ax2 = ax1.twinx() ax1.tick_params(axis='both', labelsize=15) ax2.tick_params(axis='both', labelsize=15) ind += 1 # open the bam file sample_bam = pysam.AlignmentFile(sample_bam_fn, "rb") # for each position of interest # get an iterator that walks over the reads that include our event read_iterator = sample_bam.fetch( chrom, start - buff, end + buff) # ref has chr1,chr2,etc. # store as pairs read_names = [] read_pair_dict = dict() for read in read_iterator: try: read_pair_dict[read.qname].append(read) # if pair is there except: read_pair_dict[read.qname] = [read] # if pair is absent read_names.append(read.qname) # keys to dictionary N = len(read_names) # number of read pairs in this region # store an integer at every position for each read(pair) in interval # matrix (number of reads (N) by number of positions (end-start)) read_stack = np.zeros(shape=(N, end - start), dtype=int) # get all read pairs for rcounter, read_name in enumerate(read_names): reads = read_pair_dict[read_name] for read in reads: read_sequence = read.query_sequence read_qualities = read.query_qualities # get_aligned_pairs: # returns paired list of ref seq position and read seq position for rindex, pindex in read.get_aligned_pairs(): # rindex and pindex return ALL positions, including soft-clipped # rindex: position in read (1-150 for example) # pindex: position in reference genome # if there's a base in the read # and we are in range if rindex is not None and pindex is not None: # Separated these lines, added pindex None check if pindex >= start and pindex < end: # compute the base score base_score = read_qualities[rindex] # if it's good enough if base_score >= MIN_QUAL: # check if there is already a value in place current = read_stack[rcounter, pindex - start] base = read_sequence[rindex] if base == "N": baseint = 0 else: # A-1, C-2, G-3, T-4 baseint = BASE2INT[base] + 1 # if there is no value, store the value if current == 0: read_stack[rcounter, pindex - start] = baseint else: # if there is a mismatch between the two reads, # set value back to 0 # this value is just for the 2 paired reads if current != baseint: read_stack[rcounter, pindex - start] = 0 summary = [] # iterating over numpy array - by rows # transpose first to iterate over positions for x in read_stack.transpose(): # gets counts of N,A,C,G,T per position as array # append to summary list summary.append(np.bincount(x, minlength=5)) # convert summary to array, fills by row # drop the N count, and transpose again # .T tranposes, only if num dimensions>1 summary = np.array(summary)[:, 1:].T # now we have base (4) by position array as summary # base_cover: coverage at each position (sum of A/C/G/T counts) base_cover = np.sum(summary, axis=0) # base_ratio: A/C/G/T counts over total coverage # aka frequency of each base base_ratio = summary.astype(float) / np.maximum(1, base_cover) # update has something # EDIT - 0 coverage is not has_something?? has_something += ( (base_ratio[local_int, np.arange(L)] < 0.9) & (base_cover>3) ) # reference ratio is less than 0.9 ######################################################################## # Plot variants in each region # plot the coverage first ax1.plot(base_cover, color='k', label='coverage', alpha=0.5) # draw lines for boundaries of event # and targets if strand == "+": ax2.axvline(region_buffer-0.5, color='g', lw=2) ax2.axvline(L-region_buffer-0.5, color='g', linestyle='--', lw=2) else: ax2.axvline(region_buffer-0.5, color='g', linestyle='--', lw=2) ax2.axvline(L-region_buffer-0.5, color='g', lw=2) for pos in targets: ax1.axvline(pos, color='r', lw=2) # Plot colored circle for each base at position vs. frequency for BASE_COLOR, BASE, yvals in zip(BASE_COLORS, BASES, base_ratio): ax2.plot(yvals, 'o', markersize=13, label=BASE, color=BASE_COLOR) base_filter = local_int == BASE2INT[BASE] # same as ref base x = np.arange(L) # label ref bases with black circle ax2.plot(x[base_filter], yvals[base_filter], 'o', markersize=13, mfc="None", mec='black', mew=2) ax1.set_ylabel(sample_name, fontsize=25) # for non-ref sites... # label number of reads for non-ref base in red for hs_ind in np.where(has_something)[0]: base_counts, total = summary[:, hs_ind], base_cover[hs_ind] ref_base = local_int[hs_ind] for bind in range(4): # loop through A/C/G/T, find the non-zero counts if bind != ref_base and base_counts[bind] > 0: # text_string = r"$\frac{%d}{%d}$" % ( # base_counts[bind],total) # text_string = r"%d/%d" % (base_counts[bind], total) text_string = r"%d" % (base_counts[bind]) # add the count to the plot ax2.text(hs_ind + 1, base_ratio[bind, hs_ind], text_string, fontsize=20, color='red', weight='semibold') ax2.set_xlim(-10, 10+L) ax2.set_ylim(0, 1) ax2.legend(loc="upper center", numpoints=1, ncol=4, fontsize=18, columnspacing=0.8, handletextpad=-0.2) ax1.legend(loc="lower center", numpoints=2, fontsize=18, columnspacing=0.5) plt.tight_layout(rect=(0, 0, 1, 0.98)) plt.savefig(image_filename, dpi=200, facecolor='w', edgecolor='w', papertype=None, format=None, transparent=False) plt.close() ######################################################################## # Add non-ref het/homo sites to "target" list rlen = true_end - true_start new_targets = np.where(has_something)[0] - region_buffer if strand == "-": new_targets = true_end - true_start - new_targets - 1 # new_targets>=0 (in original target region) new_targets = new_targets[(new_targets >= 0) * (new_targets < rlen)] all_targets.append(new_targets) ######################################################################## # Add new het/homo non-ref sites to original input file log.info('Writing updated SNV info table') outfile = open(updated_SNV_table, 'w') snv_info['add-targets']=[] snv_info['strand']=[] snv_info['fragment-start']=[] snv_info['fragment-end']=[] print("Start loop") for i, (new_targets, more_info) in enumerate(zip(all_targets, target_info)): print(i) prev_targets = list(map(int, snv_info['target_locs'][i].split(";"))) add_targets = [x for x in new_targets if x not in prev_targets] snv_info['add-targets'].append(";".join(list(map(str, add_targets)))) snv_info['strand'].append(more_info[1]) snv_info['fragment-start'].append(more_info[2]) snv_info['fragment-end'].append(more_info[3]) print("End loop") print(snv_info) write_snv_table(snv_info,outfile) ######################################################################## # Close files outfile.close() ######################################################################## # End timer t1 = time.time() td = (t1 - t0) / 60 log.info("Done in %0.2f minutes" % td) |
6
of
scripts/check_loci_plot_and_extend.py
tweaking chipseq workflow for ATACseq
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 | import os import pysam import argparse ############################################ ############################################ ## PARSE ARGUMENTS ############################################ ############################################ Description = 'Remove singleton reads from paired-end BAM file i.e if read1 is present in BAM file without read 2 and vice versa.' Epilog = """Example usage: bampe_rm_orphan.py <BAM_INPUT_FILE> <BAM_OUTPUT_FILE>""" argParser = argparse.ArgumentParser(description=Description, epilog=Epilog) ## REQUIRED PARAMETERS argParser.add_argument('BAM_INPUT_FILE', help="Input BAM file sorted by name.") argParser.add_argument('BAM_OUTPUT_FILE', help="Output BAM file sorted by name.") ## OPTIONAL PARAMETERS argParser.add_argument('-fr', '--only_fr_pairs', dest="ONLY_FR_PAIRS", help="Only keeps pairs that are in FR orientation on same chromosome.",action='store_true') args = argParser.parse_args() ############################################ ############################################ ## HELPER FUNCTIONS ############################################ ############################################ def makedir(path): if not len(path) == 0: try: #!# AVI: changed because of race conditions if directory exists, original code: os.makedirs(path) os.makedirs(path, exist_ok=True) except OSError as exception: if exception.errno != errno.EEXIST: raise ############################################ ############################################ ## MAIN FUNCTION ############################################ ############################################ def bampe_rm_orphan(BAMIn,BAMOut,onlyFRPairs=False): ## SETUP DIRECTORY/FILE STRUCTURE OutDir = os.path.dirname(BAMOut) makedir(OutDir) ## COUNT VARIABLES totalReads = 0; totalOutputPairs = 0; totalSingletons = 0; totalImproperPairs = 0 ## ITERATE THROUGH BAM FILE EOF = 0 SAMFin = pysam.AlignmentFile(BAMIn,"rb") #!# AVI: changed to new API from pysam.Samfile SAMFout = pysam.AlignmentFile(BAMOut, "wb",header=SAMFin.header) #!# AVI: changed to new API from pysam.Samfile currRead = next(SAMFin) #!# AVI: adapted for the use of the iterator, original code: currRead = SAMFin.next() for read in SAMFin.fetch(until_eof=True): #!# AVI: added .fetch() to explicitly use new API totalReads += 1 if currRead.qname == read.qname: pair1 = currRead; pair2 = read ## FILTER FOR READS ON SAME CHROMOSOME IN FR ORIENTATION if onlyFRPairs: if pair1.tid == pair2.tid: ## READ1 FORWARD AND READ2 REVERSE STRAND if not pair1.is_reverse and pair2.is_reverse: if pair1.reference_start <= pair2.reference_start: totalOutputPairs += 1 SAMFout.write(pair1) SAMFout.write(pair2) else: totalImproperPairs += 1 ## READ1 REVERSE AND READ2 FORWARD STRAND elif pair1.is_reverse and not pair2.is_reverse: if pair2.reference_start <= pair1.reference_start: totalOutputPairs += 1 SAMFout.write(pair1) SAMFout.write(pair2) else: totalImproperPairs += 1 else: totalImproperPairs += 1 else: totalImproperPairs += 1 else: totalOutputPairs += 1 SAMFout.write(pair1) SAMFout.write(pair2) ## RESET COUNTER try: totalReads += 1 currRead = next(SAMFin) #!# AVI: adapted for the use of the iterator, original code: currRead = SAMFin.next() except: StopIteration EOF = 1 ## READS WHERE ONLY ONE OF A PAIR IS IN FILE else: totalSingletons += 1 pair1 = currRead currRead = read if not EOF: totalReads += 1 totalSingletons += 1 pair1 = currRead ## CLOSE ALL FILE HANDLES SAMFin.close() SAMFout.close() LogFile = os.path.join(OutDir,'%s_bampe_rm_orphan.log' % (os.path.basename(BAMOut[:-4]))) SamLogFile = open(LogFile,'w') SamLogFile.write('\n##############################\n') SamLogFile.write('FILES/DIRECTORIES') SamLogFile.write('\n##############################\n\n') SamLogFile.write('Input File: ' + BAMIn + '\n') SamLogFile.write('Output File: ' + BAMOut + '\n') SamLogFile.write('\n##############################\n') SamLogFile.write('OVERALL COUNTS') SamLogFile.write('\n##############################\n\n') SamLogFile.write('Total Input Reads = ' + str(totalReads) + '\n') SamLogFile.write('Total Output Pairs = ' + str(totalOutputPairs) + '\n') SamLogFile.write('Total Singletons Excluded = ' + str(totalSingletons) + '\n') SamLogFile.write('Total Improper Pairs Excluded = ' + str(totalImproperPairs) + '\n') SamLogFile.write('\n##############################\n') SamLogFile.close() ############################################ ############################################ ## RUN FUNCTION ############################################ ############################################ bampe_rm_orphan(BAMIn=args.BAM_INPUT_FILE,BAMOut=args.BAM_OUTPUT_FILE,onlyFRPairs=args.ONLY_FR_PAIRS) |
Workflow for transcript expression analysis.
2 3 4 5 6 7 8 9 10 11 12 13 14 15 | import pandas as pd import seaborn as sns #import matplotlib #matplotlib.use("Agg") import matplotlib.pyplot as plt #from pysam import VariantFile #daten = pd.read_csv('sleuth_matrix.csv', sep='\t') sleuth_matrix = pd.read_csv(snakemake.input[0], sep='\t') sns.boxenplot(data=sleuth_matrix, scale = "linear"); plt.title("Boxenplots der (normalisierten) Counts aller Samples") #plt.savefig('boxenplot.svg') plt.savefig(snakemake.output[0]) |
RADSeq tool with Snakemake workflow integration for analysis of RAD sequencing data. (latest)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | import sys import gzip import pysam from graph_tool.all import * import numpy as np import graph_operations import likelihood_operations sys.stderr = open(snakemake.log[0], "w") sample = snakemake.wildcards.get('sample') # input bam = snakemake.input.get("bam") reads = snakemake.input.get("fastq") # required output vcf = open(snakemake.output.get("vcf", ""), "w") vcf_header = "#CHROM\tPOS\tID\tREF\tALT\tQUAL\tFILTER\tINFO\tFORMAT\t{}\n".format(sample) vcf.write(vcf_header) # optional output graph_xml = snakemake.output.get("graph_xml", "") output_figure = snakemake.output.get("graph_figure", "") connected_components_xml = snakemake.output.get("connected_components_xml", "") connected_components_figure = snakemake.output.get("connected_components_figure", "") dir_subgraphs = snakemake.output.get("components_subgraphs", "") # params for ploidy, threshold, noise and cluster-size threshold = snakemake.params.get("threshold_max_edit_distance", "") ploidy = snakemake.params.get("ploidy", "") # a diploid chromosome set is determined for the prototype noise_small = snakemake.params.get("treshold_seq_noise_small", "") noise_large = snakemake.params.get("treshold_seq_noise_large", "") cluster_size = snakemake.params.get("treshold_cluster_size", "") # get reads format format = "" # format of reads if reads.endswith((".fastq", ".fq", ".fastq.gz", ".fq.gz")): format = "fastq" if reads.endswith((".fasta", ".fa", ".fasta.gz", ".fa.gz")): format = "fasta" # default value of threshold for maximum distance value if threshold == "": threshold = 23 else: threshold = int(threshold) # default value of noise if not noise_small: noise_small = 1 if not noise_large: noise_large = 1 # init graph graph = Graph(directed=True) # set graph properties for (name, prop, prop_type) in graph_operations.set_properties(): if name.startswith("g_"): vars()[name] = graph.new_graph_property(prop_type) graph.graph_properties[prop] = vars()[name] if name.startswith("v_"): vars()[name] = graph.new_vertex_property(prop_type) graph.vertex_properties[prop] = vars()[name] if name.startswith("e_"): vars()[name] = graph.new_edge_property(prop_type) graph.edge_properties[prop] = vars()[name] # set ploidy, sequencing error and heterozygosity graph.graph_properties["ploidy"] = ploidy graph.graph_properties["ins-error-rates"] = snakemake.params.get("err_ins", "") graph.graph_properties["del-error-rates"] = snakemake.params.get("err_del", "") graph.graph_properties["subst-heterozygosity"] = snakemake.params.get("heterozyg_subst", "") graph.graph_properties["ins-heterozygosity"] = snakemake.params.get("heterozyg_ins", "") graph.graph_properties["del-heterozygosity"] = snakemake.params.get("heterozyg_del", "") # create first empty node for graph node = graph.add_vertex() v_id[node] = "{idx}_{sample}".format(idx=0, sample=sample) v_name[node] = "" v_seq[node] = "" v_q_qual[node] = "" # add reads as vertices of the graph if reads.endswith(".gz"): with gzip.open(reads, "rt") as _reads: graph = graph_operations.set_nodes(graph, _reads, format, sample) else: with open(reads, "rU") as _reads: graph = graph_operations.set_nodes(graph, _reads, format, sample) # add edges from all-vs-all alignment of reads (please see rule minimap2) verbose = pysam.set_verbosity(0) # https://github.com/pysam-developers/pysam/issues/939 bam = pysam.AlignmentFile(bam, "rb") pysam.set_verbosity(verbose) for read in bam.fetch(until_eof=True): graph = graph_operations.set_edges(graph, read, threshold) bam.close() graph.remove_vertex(0) # write log files sys.stderr.write( "graph construction summary for sample {}:" "\n nodes:\t{}\n edges:\t{}\n".format(sample, graph.num_vertices(), graph.num_edges())) graph_operations.save_and_draw_graph(graph, xml_out=graph_xml, figure_out=output_figure) # in case subgraph directory is expected as optional output, but some samples do not produce # subgraphs. This way the empty directories for these samples preserved and are not removed by snakemake. graph_operations.set_dir(dir_subgraphs) # step 1: extract connected components message = "CONNECTED COMPONENTS based on the graph construction from the edit distances (minimap2)" connected_components = graph_operations.get_components(graph, message, snakemake.wildcards.get('sample'), dir_subgraphs, connected_components_xml, connected_components_figure, v_color="component-label") graph = None loc_nr = 0 for (comp, comp_nr) in connected_components: # step 2: likelihood of allele fractions alleles = likelihood_operations.get_candidate_alleles(comp, comp.vertices(), noise_small, noise_large, cluster_size) n = len(alleles) vafs_candidates = list(likelihood_operations.get_candidate_vafs(n, ploidy)) nodes = list([comp.vertex_index[node] for node in comp.vertices()]) read_allele_likelihoods = {} # calculate the likelihood over ALL reads vafs_likelihoods = [likelihood_operations.calc_vafs_likelihood(comp, vafs, nodes, alleles, read_allele_likelihoods) for vafs in vafs_candidates] if not vafs_likelihoods: # case empty list, e.g. if the treshold-seq-noise value is set too large continue max_likelihood_idx = np.argmax(vafs_likelihoods) # obtain ML solution for step 2 max_likelihood_vafs = vafs_candidates[max_likelihood_idx] # write to log file sys.stderr.write( "\n\nStats for component {} in sample {} with {} alleles and ploidy = {}:\n".format(comp_nr, sample, n, ploidy)) sys.stderr.write("\n\tMaximum vafs likelihood:\n") for vaf, allele in zip(max_likelihood_vafs, alleles): sys.stderr.write("\t\t{} for allele {}\n".format(vaf, allele)) # step 3: likelihood of loci given alleles and fractions loci_candidates = list(likelihood_operations.get_candidate_loci(n, ploidy, max_likelihood_vafs)) loci_likelihoods = {} loci_likelihoods = [ likelihood_operations.calc_loci_likelihoods(comp, max_likelihood_vafs, alleles, loci, loci_likelihoods) for loci in loci_candidates ] max_likelihood_idx = np.argmax(loci_likelihoods) max_likelihood_loci = loci_candidates[max_likelihood_idx] # write to log file sys.stderr.write("\n\tMaximum loci likelihood calculations:\n") sys.stderr.write("\t\tloci_likelihoods:\n\t\t\t{}\n\t\tmax_likelihood_idx:\n\t\t\t{}" "\n\t\tmax_likelihood_loci:\n\t\t\t{}\n".format(loci_likelihoods, max_likelihood_idx, max_likelihood_loci)) # step 4: results output to VCF file loci_alleles = likelihood_operations.get_sorted_loci_alleles(alleles, max_likelihood_loci) gt_indices = likelihood_operations.get_gt_indices(alleles, max_likelihood_loci, loci_alleles) for gt_idx_locus in list(set(gt_indices)): vcf.write("{chrom}\t{pos}\t.\t{ref}\t{alt}\t.\t.\t.\tGT\t{gt}\n".format(chrom="LOC{}".format(loc_nr), pos="1", ref=loci_alleles[0], alt=', '.join(loci_alleles[1:]) if len(loci_alleles) > 1 else ".", gt=likelihood_operations.get_genotype(gt_idx_locus))) loc_nr += 1 |
Use an ensemble of variant callers to call variants from ATAC-seq data (v0.3.3)
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 | import sys import pysam import argparse import warnings import numpy as np import pandas as pd from pathlib import Path import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score, precision_score from sklearn.metrics import roc_curve def phred(vals): """ apply the phred scale to the vals provided """ with np.errstate(divide='raise'): try: return -10*np.log10(1-vals) except FloatingPointError: return np.float64(30) return -10*np.ma.log10(1-vals).filled(-3) # fill all infinite values with a phred scale of 30 def plot_line(lst, show_discards=False): plt.clf() roc = np.copy(lst.T) roc[1] = phred(roc[1]) max_val = phred(max(roc[2])/(max(roc[2])+1)) # discard inf or na cols inf_or_na_cols = np.isinf(roc).any(axis=0) | np.isnan(roc).any(axis=0) # warn the user if we're discarding the majority of points discarded = np.sum(inf_or_na_cols)/roc.shape[1]*100 if (not show_discards and discarded != 0) or discarded >= 50: warnings.warn("Discarding NaN or Inf points ({}% of points)".format(discarded)) roc = roc[:,~(inf_or_na_cols)] # perform a simple linear regression p = np.polyfit(roc[0], roc[1], 1) r_squared = 1 - (sum((roc[1] - (p[0] * roc[0] + p[1]))**2) / ((len(roc[1]) - 1) * np.var(roc[1], ddof=1))) p = np.poly1d(p) # plot the points and the line plt.scatter(roc[0], roc[1], color='r', label="_nolegend_") if max(roc[0]) <= 1: plt.xlabel("RF Probability") elif max(roc[0]) <= np.pi/2: plt.xlabel("Reverse Arcsin of RF Probability") else: plt.xlabel("Phred-Scaled RF Probability") plt.ylabel("Phred-Scaled Precision (QUAL)") plt.plot( roc[0], p(roc[0]), label=str(p)+"\nr-squared: "+str(round(r_squared, 2))+ \ ("\ndiscarded: "+str(int(discarded))+"%" if show_discards else "") ) plt.hlines(max_val, min(roc[0]), max(roc[0]), colors='g', linestyles='dashed') plt.legend(frameon=False, loc='lower right') plt.tight_layout() def eqbin_mean(grp, log=True, pseudo=True, discards_ok=False, inverse=False): if inverse: return np.arcsin(grp.mean()) else: if log: if discards_ok or not pseudo: return phred(grp).mean() else: return phred(grp.sum()/(len(grp) + pseudo)) else: return grp.mean() def tpr_probs(df, bins=15, eqbin=True, log=True, pseudo=True, discards_ok=False, inverse=False): """ bin the sites and calculate an accuracy (predicted positive value) for that bin """ # retrieve only predicted positives df = df[df['varca~CLASS:']>=0.5] if eqbin: bin_size = int(len(df)/bins) # create bins (ie each grp) and add a single false positive to it so we don't get Inf lst = np.array([ ( eqbin_mean(grp['varca~prob.1'], log, pseudo, discards_ok, inverse), precision_score( np.append(grp['varca~truth'].values, 0) if pseudo else grp['varca~truth'], np.append(grp['varca~CLASS:'].values, 1) if pseudo else grp['varca~CLASS:'] ), grp['varca~prob.1'].size ) for grp in (df.iloc[i:i+bin_size] for i in range(0,len(df)-bin_size+1,bin_size)) ]) else: if log: df = df.copy() df['varca~prob.1'] = phred(df['varca~prob.1']) start = phred(0.5) if log else 0.5 # get the end excluding inf values (in case log == True) end = df.loc[df['varca~prob.1'] != np.inf, 'varca~prob.1'].max() # create bins (ie each grp) and add a single false positive to it so we don't get Inf lst = np.array([ ( grp[1]['varca~prob.1'].mean(), precision_score( np.append(grp[1]['varca~truth'].values, 0) if pseudo else grp['varca~truth'], np.append(grp[1]['varca~CLASS:'].values, 1) if pseudo else grp['varca~CLASS:'] ), grp[1]['varca~prob.1'].size ) for grp in df.groupby(pd.cut(df['varca~prob.1'], pd.interval_range(start, end, bins))) ]) return lst def strip_type(caller): """ strip the -indel or -snp from the end of a caller name """ vartype = '' if caller.endswith('-snp'): caller = caller[:-len('-snp')] vartype = 'snp' elif caller.endswith('-indel'): caller = caller[:-len('-indel')] vartype = 'indel' # if there is still a dash, get everything after it i = caller.rfind('-') if i != -1: caller = caller[i+1:] return caller, vartype def isnan(val): return type(val) is float and np.isnan(val) def get_calls(prepared, callers=None, pretty=False): """ get the alleles in each row of prepared at the location (CHROM/POS) of loc when choosing an alt allele, choose from the callers in the order given """ # keep track of the contigs that we've seen contigs = set() # whether we've read the header yet read_header = False # iterate through each row in the df and check whether they match loc for chunk in prepared: # do some special stuff (parsing the header) on the very first iteration if not read_header: # if callers is None, retrieve the callers from the columns of the dataframe if callers is None: callers = [ caller[:-len('~ALT')] for caller in chunk.columns if caller.endswith('~ALT') and not caller.startswith('pg-') ] # what types of variants are we dealing with? let's count how many # times they appear in the caller names vartypes = {'snp': 0, 'indel': 0} # also, let's retrieve the callers as a dictionary pretty_callers = {} for caller in callers: pretty_caller, vartype = strip_type(caller) # don't beautify the callers if the user didn't request it pretty_callers[caller] = pretty_caller if pretty else caller # keep track of how often each vartype appears if vartype in vartypes: vartypes[vartype] += 1 callers = pretty_callers # retrieve the first CHROM/POS location and yield whether we are reading indels or snps loc, predict = yield max(vartypes, key=vartypes.get) read_header = True # now iterate through each row (and also convert the POS column to an int) for idx, row in chunk.iterrows(): # check if we already passed the row -- ie we either: # 1) moved onto a new contig or # 2) moved passed the position while ( idx[0] != loc[0] and loc[0] in contigs ) or ( idx[0] == loc[0] and idx[1] > loc[1] ): # return None if we couldn't find loc in the df loc, predict = yield None if idx == loc: # we found it! found = False # now, we must figure out which caller to get the alleles from for caller in callers: ref, alt = row[caller+"~REF"], row[caller+"~ALT"] # TODO: make this work for an arbitrary number of variant types for multilabel classification using the other CLASS values in classified # right now, this only works if there's a single binary label if not isnan(ref) and ( (isnan(alt) + predict) % 2 ): found = True break if found: loc, predict = yield callers[caller], ref, alt else: # if we know there is a variant here, but none of the other # callers found it, just label it as a non-variant # TODO: figure out the alt allele from inspecting the ref genome? loc, predict = yield 'varca', row['REF'], float('nan') # save the current contig so that we know which ones we've seen contigs.add(idx[0]) def prob2qual(prob, vartype): # values are from linear model that we created from using the "-i" option if vartype == 'snp': return 0.6237*phred(prob)+8.075 elif vartype == 'indel': return 0.8463*phred(prob)+2.724 else: # we shouldn't ever encounter this situation, but just in case... return phred(prob) def main(prepared, classified, callers=None, cs=1000, all_sites=False, pretty=False, vartype=None): """ use the results of the prepare pipeline and the classify pipeline to create a VCF with all of the classified sites """ # first, get a generator that can read through each call in the prepared df prepared = get_calls( pd.read_csv( prepared, sep="\t", header=0, index_col=["CHROM", "POS"], dtype=str, chunksize=cs, na_values=".", usecols=lambda col: col in ['CHROM', 'POS', 'REF'] or col.endswith('~REF') or col.endswith('~ALT') ), callers, pretty ) # flush out the first item in the generator: the vartype if vartype is None: vartype = next(prepared) else: # if the user already gave us the vartype, then just discard this next(prepared) # also retrieve the classifications as a df classified = pd.read_csv( classified, sep="\t", header=0, index_col=["CHROM", "POS"], dtype={'CHROM':str, 'POS':int}, chunksize=cs, na_values="." ) # keep track of how many sites in the classifications df we've had to skip skipped = 0 # keep track of how many sites we skipped but were predicted to have a variant no_alts = 0 # iterate through each site in the classifications df, get its alleles, and # then return them in a nice-looking dictionary for chunk in classified: for idx, row in chunk.iterrows(): try: # get the alleles for this CHROM/POS location call = prepared.send((idx, row['varca~CLASS:'])) except StopIteration: call = None # we found a variant but couldn't find an alternate allele! no_alts += not (call is None or (isnan(call[2]) + row['varca~CLASS:']) % 2) # check: does the site appear in the prepared pipeline? # and does this site have a variant? if call is None or (not all_sites and isnan(call[2])): skipped += 1 continue caller, ref, alt = call qual = prob2qual( row['varca~prob.'+str(int(not isnan(alt)))], vartype ) # construct a dictionary with all of the relevant details yield { 'contig': str(idx[0]), 'start': idx[1], 'stop': idx[1]+len(ref), 'qual': qual, 'alleles': (ref, "." if isnan(alt) else alt), 'info': {'CALLER':caller} } if skipped: warnings.warn( "Ignored {:n} classification sites that didn't have a variant.".format(skipped) ) if no_alts: warnings.warn( "Ignored {:n} sites that we predicted to have variants but didn't appear in any of the callers.".format(no_alts) ) def write_vcf(out, records): """ write the records to the output vcf """ vcf = pysam.VariantFile(args.out, mode='w') # write the necessary VCF header info vcf.header.info.add("CALLER", 1, 'String', "The caller from which this site was taken") contigs = set() for rec in records: # handle pysam increasing the start and end sites by 1 rec['start'] -= 1 rec['stop'] -= 1 # parse the record into a pysam.VariantRecord try: record = vcf.new_record( **rec, samples=None, id=None, filter=None ) except ValueError: # add the contig if it hasn't already been added if rec['contig'] not in contigs: vcf.header.contigs.add(rec['contig']) contigs.add(rec['contig']) else: raise # now, try again record = vcf.new_record( **rec, samples=None, id=None, filter=None ) # write the record to a file vcf.write(record) return vcf if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "-o", "--out", default=sys.stdout, help="the filename to save the vcf (or bcf) to" ) parser.add_argument( "classified", type=Path, help="a sorted, results.tsv.gz file from the output of the classify pipeline" ) parser.add_argument( "prepared", type=Path, nargs="?", default=sys.stdin, help="a sorted, merge.tsv.gz file from the prepare pipeline (if not supplied, this is read from stdin)" ) parser.add_argument( '-c', "--callers", default=None, help="a comma separated list of the callers from which to choose alleles, supplied in order of priority (default: all of the callers in the file, in the order they appear)" ) parser.add_argument( '-s', "--chunksize", type=np.uint32, default=100000, help="how many rows to read into memory at once (default: 100,000)" ) parser.add_argument( '-a', '--all', action='store_true', help="whether to also write non-variant sites to create a gVCF (default: no)" ) parser.add_argument( '-p', '--pretty', action='store_true', help="should caller names appear in the vcf by their pretty form (with all dashes intelligently removed) or their original caller ID form? (default: the original form)" ) parser.add_argument( '-t', '--type', choices=['indel', 'snp'], default=None, help="whether to recalibrate QUAL values assuming your data are SNPs or indels (default: infer from callers)" ) parser.add_argument( '-i', '--internal', action='store_true', help="For testing and internal use: recalibrate the QUAL scores (assumes varca~truth column exists in classified)" ) args = parser.parse_args() callers = None if args.callers is not None: callers = args.callers.split(",") if not args.internal: import matplotlib matplotlib.use('Agg') vcf = write_vcf(args.out, main(args.prepared, args.classified, callers, args.chunksize, args.all, args.pretty, args.type)) else: if not sys.flags.interactive: sys.exit("ERROR: You must run this script in python's interactive mode (using python's -i flag) when providing the -i flag to this script.") try: df = pd.read_csv(args.classified, sep="\t", header=0, index_col=["CHROM", "POS"], usecols=['CHROM', 'POS', 'varca~truth', 'varca~prob.1', 'varca~CLASS:'], low_memory=False).sort_values(by='varca~prob.1') except ValueError: df = pd.read_csv(args.classified, sep="\t", header=0, index_col=["CHROM", "POS"], usecols=['CHROM', 'POS', 'breakca~truth', 'breakca~prob.1', 'breakca~CLASS:'], low_memory=False).sort_values(by='breakca~prob.1') df.columns = ['varca~truth', 'varca~prob.1', 'varca~CLASS:'] plt.ion() plot_line(tpr_probs(df)) |
A tool for generating bacterial genomes from metagenomes with nanopore long read sequencing
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 | import sys import os import argparse import pysam fastaf = snakemake.input[0] out = open(snakemake.output[0], 'w') #knobs smooth_gap_width = 150000 contig_edge_margin = 150000 min_smoothed_aln_len = 10000 min_aln_len = 5000 #align print("Aligning...".format(t=str(snakemake.threads))) os.system("nucmer -p {delta} -b 4000 -l 2000 --maxmatch {fa} {fa}".format( #-t {threads} back to mummer3, no more multithreading : ( threads = str(snakemake.threads), delta = snakemake.params['delta'], fa = fastaf )) os.system("show-coords -T {delta}.delta -L 2000 | sed '1,5d' > coords.tsv".format( delta = snakemake.params['delta'] )) #the 1,5d gets rid of the header and identity hit as well print("Trimming genome...") max_tiglen = 0 with open('coords.tsv') as coords: lines = coords.readlines() smoothed_lines = [] if len(lines) > 0: aln_start_line = lines[0].strip().split("\t") prev_line = lines[0].strip().split("\t") #goal: identify corner-cutting parallel off-diagonals. # print(prev_line) for l in lines[1:] + [lines[0]]: #just so we don't miss the last item s = l.strip().split("\t") #print(s) tigname = s[-1] #store the name of the tig. this repeats nugatorily. if int(s[1]) > max_tiglen: #keep track of the largest alignment coordinate found, used as the tig length max_tiglen = int(s[1]) if int(s[0]) > int(s[1]): #ignore inversions # print('ignoring') continue if int(s[1]) - int(s[0]) < min_aln_len: # print('ignoring') continue if abs(int(s[0]) - int(prev_line[1])) < smooth_gap_width and \ abs(int(s[2]) - int(prev_line[3])) < smooth_gap_width: # print("joining") pass else: # print("terminating") newline = aln_start_line newline[1] = prev_line[1] newline[3] = prev_line[3] if int(newline[1]) - int(newline[0]) > min_smoothed_aln_len: # print("storing") smoothed_lines.append(newline) aln_start_line = s prev_line = s #print("output") #for s in smoothed_lines: # print(s) if len(smoothed_lines) > 0: #is it a corner cutting parallel off-diagonal? if int(smoothed_lines[0][0]) < contig_edge_margin and int(smoothed_lines[0][3]) > max_tiglen - contig_edge_margin: if int(smoothed_lines[-1][2]) < contig_edge_margin and int(smoothed_lines[-1][1]) > max_tiglen - contig_edge_margin: #out.write("It's overcircularized!") out.write(tigname + ":" + smoothed_lines[0][0] + '-' + smoothed_lines[-1][0] + "\n") out.write("done\n") |
pysam
pysam - a python module for reading, manipulating and writing genomic data sets. pysam is a lightweight wrapper of the htslib C-API and provides facilities to read and write SAM/BAM/VCF/BCF/BED/GFF/GTF/FASTA/FASTQ files as well as access to the command line functionality of the samtools and bcftools packages. The module supports compression and random access through indexing. This module provides a low-level wrapper around the htslib C-API as using cython and a high-level API for convenient access to the data within standard genomic file formats. See: http://www.htslib.org https://github.com/pysam-developers/pysam http://pysam.readthedocs.org/en/stable