Workflow Steps and Code Snippets
361 tagged steps and code snippets that match keyword seaborn
Snakemake workflow: dna-seq-gatk-variant-calling (v2.1.1)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | import sys sys.stderr = open(snakemake.log[0], "w") import common import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns calls = pd.read_table(snakemake.input[0], header=[0, 1]) samples = [name for name in calls.columns.levels[0] if name != "VARIANT"] sample_info = calls.loc[:, samples].stack([0, 1]).unstack().reset_index(1, drop=False) sample_info = sample_info.rename({"level_1": "sample"}, axis=1) sample_info = sample_info[sample_info["DP"] > 0] sample_info["freq"] = sample_info["AD"] / sample_info["DP"] sample_info.index = np.arange(sample_info.shape[0]) plt.figure() sns.stripplot(x="sample", y="freq", data=sample_info, jitter=True) plt.ylabel("allele frequency") plt.xticks(rotation="vertical") plt.savefig(snakemake.output.freqs) plt.figure() sns.stripplot(x="sample", y="DP", data=sample_info, jitter=True) plt.ylabel("read depth") plt.xticks(rotation="vertical") plt.savefig(snakemake.output.depths) |
Snakemake workflow: dna-seq-gatk-variant-calling (v2.1.1)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | import sys sys.stderr = open(snakemake.log[0], "w") import common import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns calls = pd.read_table(snakemake.input[0], header=[0, 1]) samples = [name for name in calls.columns.levels[0] if name != "VARIANT"] sample_info = calls.loc[:, samples].stack([0, 1]).unstack().reset_index(1, drop=False) sample_info = sample_info.rename({"level_1": "sample"}, axis=1) sample_info = sample_info[sample_info["DP"] > 0] sample_info["freq"] = sample_info["AD"] / sample_info["DP"] sample_info.index = np.arange(sample_info.shape[0]) plt.figure() sns.stripplot(x="sample", y="freq", data=sample_info, jitter=True) plt.ylabel("allele frequency") plt.xticks(rotation="vertical") plt.savefig(snakemake.output.freqs) plt.figure() sns.stripplot(x="sample", y="DP", data=sample_info, jitter=True) plt.ylabel("read depth") plt.xticks(rotation="vertical") plt.savefig(snakemake.output.depths) |
Snakemake workflow: dna-seq-gatk-variant-calling (v2.1.1)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | import sys sys.stderr = open(snakemake.log[0], "w") import common import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns calls = pd.read_table(snakemake.input[0], header=[0, 1]) samples = [name for name in calls.columns.levels[0] if name != "VARIANT"] sample_info = calls.loc[:, samples].stack([0, 1]).unstack().reset_index(1, drop=False) sample_info = sample_info.rename({"level_1": "sample"}, axis=1) sample_info = sample_info[sample_info["DP"] > 0] sample_info["freq"] = sample_info["AD"] / sample_info["DP"] sample_info.index = np.arange(sample_info.shape[0]) plt.figure() sns.stripplot(x="sample", y="freq", data=sample_info, jitter=True) plt.ylabel("allele frequency") plt.xticks(rotation="vertical") plt.savefig(snakemake.output.freqs) plt.figure() sns.stripplot(x="sample", y="DP", data=sample_info, jitter=True) plt.ylabel("read depth") plt.xticks(rotation="vertical") plt.savefig(snakemake.output.depths) |
Snakemake workflow: dna-seq-gatk-variant-calling (v2.1.1)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 | import sys sys.stderr = open(snakemake.log[0], "w") import common import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns calls = pd.read_table(snakemake.input[0], header=[0, 1]) samples = [name for name in calls.columns.levels[0] if name != "VARIANT"] sample_info = calls.loc[:, samples].stack([0, 1]).unstack().reset_index(1, drop=False) sample_info = sample_info.rename({"level_1": "sample"}, axis=1) sample_info = sample_info[sample_info["DP"] > 0] sample_info["freq"] = sample_info["AD"] / sample_info["DP"] sample_info.index = np.arange(sample_info.shape[0]) plt.figure() sns.stripplot(x="sample", y="freq", data=sample_info, jitter=True) plt.ylabel("allele frequency") plt.xticks(rotation="vertical") plt.savefig(snakemake.output.freqs) plt.figure() sns.stripplot(x="sample", y="DP", data=sample_info, jitter=True) plt.ylabel("read depth") plt.xticks(rotation="vertical") plt.savefig(snakemake.output.depths) |
In this repository, we present the code for the analysis of study of the transcription's impact on Escherichia coli chromosome.
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 | import bacchus.directional as bcd import bacchus.insulation as bci import bacchus.io as bcio import cooler import matplotlib.pyplot as plt import matplotlib.patches as patches import matplotlib.collections as mc import numpy as np import os import pandas as pd import scipy.sparse as sp import scipy.stats as st import seaborn as sns from random import choices mat_file = snakemake.input.mat rna_file = snakemake.input.rna annotation_file = snakemake.input.annotation cmap = snakemake.params.cmap dpi = snakemake.params.dpi text_file = str(snakemake.output.text_file) full_mat_file = str(snakemake.output.full_mat) zoom_1_file = str(snakemake.output.zoom1) zoom_2_file = str(snakemake.output.zoom2) full_mat_di_file = str(snakemake.output.full_mat_di) zoom_1_di_file = str(snakemake.output.zoom1_di) zoom_2_di_file = str(snakemake.output.zoom2_di) out_files_mat = [full_mat_file, zoom_1_file, zoom_2_file] out_files_mat_di = [full_mat_di_file, zoom_1_di_file, zoom_2_di_file] bor_trans = str(snakemake.output.bor_trans) trans_bor = str(snakemake.output.trans_bor) # Create outdir if necessary. os.makedirs(str(snakemake.params.outdir), exist_ok=True) def write_stats(text_file, text, writing_type="a"): with open(text_file, writing_type) as out: out.write(f"{text}\n") # Compute CIDs at 5kb resolution with 100kb window size. M5000 = cooler.Cooler(f"{mat_file}::/resolutions/{5000}").matrix( balance=True, sparse=True )[:] di5000 = bcd.directional_index(M5000, 20) l5000 = bcd.di_borders(di5000) write_stats( text_file, f"Numbers of CIDs at 5kb with 100kb window size: {len(l5000)}", "w", ) # Compute CIDs at 2kb resolution with 50kb window size. M2000 = cooler.Cooler(f"{mat_file}::/resolutions/{2000}").matrix( balance=True, sparse=True )[:] di2000 = bcd.directional_index(M2000, 25) l2000 = bcd.di_borders(di2000) write_stats( text_file, f"Numbers of CIDs at 2kb with 50kb window size: {len(l2000)}" ) # Compute CIDs at 1kb resolution using insulation score. M1000 = cooler.Cooler(f"{mat_file}::/resolutions/{1000}").matrix( balance=True, sparse=True )[:] di1000 = bcd.directional_index(M1000, 20) l1000 = bcd.di_borders(di1000) write_stats( text_file, f"Numbers of CIDs at 1kb with 50kb window size: {len(l1000)}" ) mat = cooler.Cooler(f"{mat_file}::/resolutions/{1000}").matrix( balance=True, sparse=False )[:] mat[np.isnan(mat)] = 0 final_borders_1000, lri_1000 = bci.get_insulation_score( mat, [10, 15, 20, 25, 30] ) write_stats( text_file, f"{len(final_borders_1000)} CIDs have been detected with insulation score at 1kb resolution.", ) rna, _ = bcio.extract_big_wig(rna_file, ztransform=False) annotation = pd.DataFrame( columns=["type", "start", "end", "strand", "gene_name", "rpkm"] ) n = 0 with open(annotation_file, "r") as file: for line in file: if line.startswith("#"): continue elif line.startswith(">"): break else: line = line.split("\t") if line[2] in ["gene", "tRNA", "rRNA"]: if line[2] == "gene": name = line[8].split("Name=")[-1].split(";")[0] annot = { "type": line[2], "start": int(line[3]), "end": int(line[4]), "strand": line[6], "gene_name": name, "rpkm": np.mean(rna[int(line[3]) : int(line[4])]), } annotation = annotation.append(annot, ignore_index=True) ### # Print matrices with CIDs borders (Fig 1e). ### starts = [0, 2500, 3000] ends = [len(mat), 3000, 3500] col = ["blue", "lime", "cyan"] for i in range(3): out_file, start, end = out_files_mat[i], starts[i], ends[i] vmax = 99 title = None fig, ax = plt.subplots(1, 1, figsize=(7, 7), dpi=dpi) # Axis values scaling_factor = 1.0 axis = "kb" # No end values given. if end == 0: end = len(mat) # Display plots im = ax.imshow( mat[start:end, start:end], cmap=cmap, vmin=0, vmax=np.nanpercentile(mat, vmax), extent=( start * scaling_factor, end * scaling_factor, end * scaling_factor, start * scaling_factor, ), ) # Legend ax.set_xlabel(f"Genomic coordinates ({axis:s})", fontsize=16) ax.set_ylabel(f"Genomic coordinates ({axis:s})", fontsize=16) ax.tick_params(axis="both", labelsize=16) # Title if title is not None: ax.set_title(title, size=18) # Colorbar cbar = plt.colorbar(im, shrink=0.33, anchor=(0, 0.5)) cbar.ax.tick_params(labelsize=16) first = True for i in [x * 5 for x in l5000]: if i in np.arange(start, end): # plt.axvline(i, lw=1, ls='dashed', c='blue') if first: s = i first = False ax.axvline( s, ymin=(end - s) / (end - start), ymax=1, c=col[0], lw=1, zorder=0.5, ) ax.axhline( s, xmin=0, xmax=1 - ((end - s) / (end - start)), c=col[0], lw=1, zorder=0.5, ) else: e = i ax.add_patch( patches.Rectangle( (s, s), e - s, e - s, edgecolor=col[0], fill=False ) ) s = i ax.axvline( s, ymin=(end - s) / (end - start), ymax=0, c=col[0], lw=1, zorder=0.5 ) ax.axhline( s, xmin=1, xmax=1 - ((end - s) / (end - start)), c=col[0], lw=1, zorder=0.5, ) first = True for i in [x * 5 for x in l2000]: if i in np.arange(start, end): # plt.axvline(i, lw=1, ls='dashed', c='cyan') if first: s = i first = False ax.axvline( s, ymin=(end - s) / (end - start), ymax=1, c=col[1], lw=1, zorder=0.5, ) ax.axhline( s, xmin=0, xmax=1 - ((end - s) / (end - start)), c=col[1], lw=1, zorder=0.5, ) else: e = i ax.add_patch( patches.Rectangle( (s, s), e - s, e - s, edgecolor=col[1], fill=False ) ) s = i ax.axvline( s, ymin=(end - s) / (end - start), ymax=0, c=col[1], lw=1, zorder=0.5 ) ax.axhline( s, xmin=1, xmax=1 - ((end - s) / (end - start)), c=col[1], lw=1, zorder=0.5, ) first = True for i in final_borders_1000: if i in np.arange(start, end): # plt.axvline(i, lw=1, ls='dashed', c='magenta') if first: s = i first = False ax.axvline( s, ymin=(end - s) / (end - start), ymax=1, c=col[2], lw=1, zorder=0.5, ) ax.axhline( s, xmin=0, xmax=1 - ((end - s) / (end - start)), c=col[2], lw=1, zorder=0.5, ) else: e = i ax.add_patch( patches.Rectangle( (s, s), e - s, e - s, edgecolor=col[2], fill=False ) ) s = i ax.axvline( s, ymin=(end - s) / (end - start), ymax=0, c=col[2], lw=1, zorder=0.5 ) ax.axhline( s, xmin=1, xmax=1 - ((end - s) / (end - start)), c=col[2], lw=1, zorder=0.5, ) # Savefig plt.savefig(out_file, dpi=dpi, bbox_inches="tight") plt.close() ### # Print full matrices with CIDs borders using DI only (Supp Fig 1f). ### for i in range(3): out_file, start, end = out_files_mat_di[i], starts[i], ends[i] vmax = 99 title = None fig, ax = plt.subplots(1, 1, figsize=(7, 7), dpi=dpi) # Axis values scaling_factor = 1.0 axis = "kb" # No end values given. if end == 0: end = len(mat) # Display plots im = ax.imshow( mat[start:end, start:end], cmap=cmap, vmin=0, vmax=np.percentile(mat, vmax), extent=( start * scaling_factor, end * scaling_factor, end * scaling_factor, start * scaling_factor, ), ) # Legend ax.set_xlabel(f"Genomic coordinates ({axis:s})", fontsize=16) ax.set_ylabel(f"Genomic coordinates ({axis:s})", fontsize=16) ax.tick_params(axis="both", labelsize=16) # Title if title is not None: ax.set_title(title, size=18) # Colorbar cbar = plt.colorbar(im, shrink=0.33, anchor=(0, 0.5)) cbar.ax.tick_params(labelsize=16) first = True for i in [x * 5 for x in l5000]: if i in np.arange(start, end): # plt.axvline(i, lw=1, ls='dashed', c='blue') if first: s = i first = False ax.axvline( s, ymin=(end - s) / (end - start), ymax=1, c=col[0], lw=1, zorder=0.5, ) ax.axhline( s, xmin=0, xmax=1 - ((end - s) / (end - start)), c=col[0], lw=1, zorder=0.5, ) else: e = i ax.add_patch( patches.Rectangle( (s, s), e - s, e - s, edgecolor=col[0], fill=False ) ) s = i ax.axvline( s, ymin=(end - s) / (end - start), ymax=0, c=col[0], lw=1, zorder=0.5 ) ax.axhline( s, xmin=1, xmax=1 - ((end - s) / (end - start)), c=col[0], lw=1, zorder=0.5, ) first = True for i in [x * 5 for x in l2000]: if i in np.arange(start, end): # plt.axvline(i, lw=1, ls='dashed', c='cyan') if first: s = i first = False ax.axvline( s, ymin=(end - s) / (end - start), ymax=1, c=col[1], lw=1, zorder=0.5, ) ax.axhline( s, xmin=0, xmax=1 - ((end - s) / (end - start)), c=col[1], lw=1, zorder=0.5, ) else: e = i ax.add_patch( patches.Rectangle( (s, s), e - s, e - s, edgecolor=col[1], fill=False ) ) s = i ax.axvline( s, ymin=(end - s) / (end - start), ymax=0, c=col[1], lw=1, zorder=0.5 ) ax.axhline( s, xmin=1, xmax=1 - ((end - s) / (end - start)), c=col[1], lw=1, zorder=0.5, ) first = True for i in [x * 5 for x in l1000]: if i in np.arange(start, end): # plt.axvline(i, lw=1, ls='dashed', c='cyan') if first: s = i first = False ax.axvline( s, ymin=(end - s) / (end - start), ymax=1, c=col[2], lw=1, zorder=0.5, ) ax.axhline( s, xmin=0, xmax=1 - ((end - s) / (end - start)), c=col[2], lw=1, zorder=0.5, ) else: e = i ax.add_patch( patches.Rectangle( (s, s), e - s, e - s, edgecolor=col[2], fill=False ) ) s = i ax.axvline( s, ymin=(end - s) / (end - start), ymax=0, c=col[2], lw=1, zorder=0.5 ) ax.axhline( s, xmin=1, xmax=1 - ((end - s) / (end - start)), c=col[2], lw=1, zorder=0.5, ) # Savefig plt.savefig(out_file, dpi=dpi, bbox_inches="tight") plt.close() ### # Transcription at borders. ### def get_borders_transcriptions(annotation, borders, size, step): borders_transcriptions = [] for i in annotation.index: if annotation.loc[i, "strand"] == "-": pos = annotation.loc[i, "end"] else: pos = annotation.loc[i, "start"] for j in borders: a = j * size + step if abs(pos - a) < 2500: borders_transcriptions.append(annotation.loc[i, "rpkm"]) return borders_transcriptions borders_trans_5000 = get_borders_transcriptions(annotation, l5000, 5000, 2500) borders_trans_2000 = get_borders_transcriptions(annotation, l2000, 5000, 1000) borders_trans_1000 = get_borders_transcriptions( annotation, final_borders_1000, 1000, 500 ) data = { "RPKM (log)": np.log( list(annotation.rpkm) + list(np.log(borders_trans_5000)) + list(np.log(borders_trans_2000)) + list(np.log(borders_trans_1000)) ), "Genes": list(np.repeat(f"All genes\nn={len(annotation)}", len(annotation))) + list( np.repeat(f"5kb\nn={len(borders_trans_5000)}", len(borders_trans_5000)) ) + list( np.repeat(f"2kb\nn={len(borders_trans_2000)}", len(borders_trans_2000)) ) + list( np.repeat(f"1kb\nn={len(borders_trans_1000)}", len(borders_trans_1000)) ), } data = pd.DataFrame(data) data.replace([np.inf, -np.inf, np.nan], 0, inplace=True) sns.violinplot(x="Genes", y="RPKM (log)", data=data, palette="tab10") plt.xlabel("Resolution of the matrix to detect the borders", size=14) plt.ylabel("RPKM (log)", size=14) plt.title( "Genes transcription of genes at less\nthan 5kb of a detected border", size=16, ) plt.xticks(size=12) plt.yticks(size=12) plt.savefig(bor_trans, bbox_inches="tight") plt.close() write_stats( text_file, f"p-value between 5kb borders and whole genome: {st.mannwhitneyu(np.log(list(annotation.rpkm)), np.log(borders_trans_5000))[1]}", ) write_stats( text_file, f"p-value between 2kb borders and whole genome: {st.mannwhitneyu(np.log(list(annotation.rpkm)), np.log(borders_trans_2000))[1]}", ) write_stats( text_file, f"p-value between 1kb borders and whole genome: {st.mannwhitneyu(np.log(list(annotation.rpkm)), np.log(borders_trans_1000))[1]}", ) ## # Transcription depending on distance borders ### annotation["dist_5kb"] = 0 annotation["dist_2kb"] = 0 annotation["dist_1kb"] = 0 annotation["log1p_rpkm"] = np.log1p(annotation["rpkm"]) for i in annotation.index: value = np.inf if annotation.loc[i, "strand"] == "+": for x in l5000: pos = annotation.loc[i, "start"] if pos < x * 5000: a = x * 5000 - pos elif pos > (x + 1) * 5000: a = pos - (x + 1) * 5000 else: a = -1 value = min(a, value) else: for x in l5000: pos = annotation.loc[i, "end"] if pos < x * 5000: a = x * 5000 - pos elif pos > (x + 1) * 5000: a = pos - (x + 1) * 5000 else: a = -1 value = min(a, value) annotation.loc[i, "dist_5kb"] = value for i in annotation.index: value = np.inf if annotation.loc[i, "strand"] == "+": for x in l2000: pos = annotation.loc[i, "start"] if pos < x * 5000: a = x * 5000 - pos elif pos > (x + 0.4) * 5000: a = pos - (x + 0.4) * 5000 else: a = -1 value = min(a, value) else: for x in l2000: pos = annotation.loc[i, "end"] if pos < x * 5000: a = x * 5000 - pos elif pos > (x + 0.4) * 5000: a = pos - (x + 0.4) * 5000 else: a = -1 value = min(a, value) annotation.loc[i, "dist_2kb"] = value for i in annotation.index: value = np.inf if annotation.loc[i, "strand"] == "+": for x in final_borders_1000: pos = annotation.loc[i, "start"] if pos < x * 1000: a = x * 1000 - pos elif pos > (x + 1) * 1000: a = pos - (x + 1) * 1000 else: a = -1 value = min(a, value) else: for x in final_borders_1000: pos = annotation.loc[i, "end"] if pos < x * 1000: a = x * 1000 - pos elif pos > (x + 1) * 1000: a = pos - (x + 1) * 1000 else: a = -1 value = min(a, value) annotation.loc[i, "dist_1kb"] = value bin_means_l3, bin_edges_l3, binnumber_l3 = st.binned_statistic( annotation.dist_1kb, annotation.rpkm, statistic="mean", bins=41, range=(-5000, 200000), ) bin_means_l2, bin_edges_l2, binnumber_l2 = st.binned_statistic( annotation.dist_2kb, annotation.rpkm, statistic="mean", bins=41, range=(-5000, 200000), ) bin_means_l1, bin_edges_l1, binnumber_l1 = st.binned_statistic( annotation.dist_5kb, annotation.rpkm, statistic="mean", bins=41, range=(-5000, 200000), ) def bootstrap_down(data): l = np.zeros((10000)) for i in range(10000): l[i] = np.mean(choices(data, k=len(data))) return np.percentile(l, 5) def bootstrap_up(data): l = np.zeros((10000)) for i in range(10000): l[i] = np.mean(choices(data, k=len(data))) return np.percentile(l, 95) bin_perc5_l1, bin_edges_l1, binnumber_l1 = st.binned_statistic( annotation.dist_5kb, annotation.rpkm, statistic=bootstrap_down, bins=41, range=(-5000, 200000), ) bin_perc95_l1, bin_edges_l1, binnumber_l1 = st.binned_statistic( annotation.dist_5kb, annotation.rpkm, statistic=bootstrap_up, bins=41, range=(-5000, 200000), ) bin_perc5_l2, bin_edges_l2, binnumber_l2 = st.binned_statistic( annotation.dist_2kb, annotation.rpkm, statistic=bootstrap_down, bins=41, range=(-5000, 200000), ) bin_perc95_l2, bin_edges_l2, binnumber_l2 = st.binned_statistic( annotation.dist_2kb, annotation.rpkm, statistic=bootstrap_up, bins=41, range=(-5000, 200000), ) bin_perc5_l3, bin_edges_l3, binnumber_l3 = st.binned_statistic( annotation.dist_1kb, annotation.rpkm, statistic=bootstrap_down, bins=41, range=(-5000, 200000), ) bin_perc95_l3, bin_edges_l3, binnumber_l3 = st.binned_statistic( annotation.dist_1kb, annotation.rpkm, statistic=bootstrap_up, bins=41, range=(-5000, 200000), ) plt.plot(bin_edges_l1[1:] / 1000, bin_means_l1, label="5kb") plt.fill_between( bin_edges_l1[1:] / 1000, bin_perc5_l1, bin_perc95_l1, alpha=0.5 ) plt.plot(bin_edges_l2[1:] / 1000, bin_means_l2, label="2kb") plt.fill_between( bin_edges_l2[1:] / 1000, bin_perc5_l2, bin_perc95_l2, alpha=0.5 ) plt.plot(bin_edges_l3[1:] / 1000, bin_means_l3, label="1kb") plt.fill_between( bin_edges_l3[1:] / 1000, bin_perc5_l3, bin_perc95_l3, alpha=0.5 ) plt.xlabel("Distance from the closest border (kb)", size=14) plt.ylabel("Mean RPKM", size=14) plt.xlim(0, 50) plt.title( "Genes transcription depending on\nthe distance to the closest border", size=16, ) plt.xticks(size=12) plt.yticks(size=12) plt.legend() plt.savefig(trans_bor, bbox_inches="tight") plt.close() |
4
of
scripts/CIDs_analysis_resolution.py
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 | import bacchus.hic as bch import bacchus.io as bcio import bacchus.plot as bcp import cooler import copy import matplotlib.pyplot as plt import matplotlib.patches as patches import numpy as np import os from os.path import join import pandas as pd from scipy import ndimage import seaborn as sns # Import snakemake parameters. annotation_file = snakemake.input.annotation mat_wt_file = str(snakemake.input.cool_wt) mat_rf_file = str(snakemake.input.cool_rf) rna_wt_file = snakemake.input.rna_wt rna_rf_file = snakemake.input.rna_rf cov_wt_file = snakemake.input.cov_wt cov_rf_file = snakemake.input.cov_rf gc_file = snakemake.input.gc epod_file = snakemake.input.EPODs res = int(snakemake.params.res) cmap = snakemake.params.cmap outdir = str(snakemake.params.outdir) width = snakemake.params.width pos = snakemake.params.positions # Create outdir if necessary. os.makedirs(outdir, exist_ok=True) def import_annotation_gff(annotation_file): """Function to create a table of the gene positions from the gff file.""" annotation = pd.DataFrame( columns=["type", "start", "end", "strand", "name"] ) with open(annotation_file, "r") as file: for line in file: # Header. if line.startswith("#"): continue # Stop at the fasta sequences. elif line.startswith(">"): break else: line = line.split("\t") if line[2] in ["gene", "tRNA", "rRNA"]: if line[2] == "gene": name = line[8].split("Name=")[-1].split(";")[0] # Extract gene position. annot = { "type": line[2], "start": int(line[3]), "end": int(line[4]), "strand": line[6], "gene_name": name, } annotation = annotation.append(annot, ignore_index=True) return annotation # Import files. annotation = import_annotation_gff(annotation_file) mat_wt = cooler.Cooler(f"{mat_wt_file}::/resolutions/{res}").matrix( balance=True, sparse=False )[:] mat_wt[np.isnan(mat_wt)] = 0 mat_rf = cooler.Cooler(f"{mat_rf_file}::/resolutions/{res}").matrix( balance=True, sparse=False )[:] mat_rf[np.isnan(mat_rf)] = 0 rna_wt, _ = bcio.extract_big_wig(rna_wt_file, binning=100) rna_rf, _ = bcio.extract_big_wig(rna_rf_file, binning=100) cov_wt, _ = bcio.extract_big_wig(cov_wt_file, binning=1000) cov_rf, _ = bcio.extract_big_wig(cov_wt_file, binning=1000) gc_content = pd.read_csv(gc_file, sep="\t", header=None).iloc[:, 1] epod = pd.read_csv(epod_file, sep="\t", header=None) # Make the rotation of the matrix to plot them mat_wt_rot = copy.copy(mat_wt) mat_wt_rot = bch.interpolate_white_lines(mat_wt_rot) mat_wt_rot[np.isnan(mat_wt_rot)] = 0 mat_wt_rot = ndimage.rotate(mat_wt_rot, 45, reshape=True) mat_rf_rot = copy.copy(mat_rf) mat_rf_rot = bch.interpolate_white_lines(mat_rf_rot) mat_rf_rot[np.isnan(mat_rf_rot)] = 0 mat_rf_rot = ndimage.rotate(mat_rf_rot, 45, reshape=True) def plot_region( M1, M1_rot, M2, M2_rot, rna1, rna2, cov1, cov2, annotation, binning, width, zoom_ini, outfile, split=False, ): rna_binning = 100 pal = sns.color_palette("Paired") # Defined values to specify the borders of the matrices and tables zoom = [zoom // binning for zoom in zoom_ini] width = width / 1000 row1 = len(M1_rot) // 2 - int(np.sqrt(2) * width) row2 = len(M1_rot) // 2 + int(np.sqrt(2) * width) col1 = int(zoom[0] * np.sqrt(2)) col2 = int(zoom[1] * np.sqrt(2)) annotation_zoom = annotation[ np.logical_and( annotation.start > zoom_ini[0], annotation.end < zoom_ini[1] ) ] ymax = np.nanmax( np.concatenate( ( rna1[zoom_ini[0] // rna_binning : zoom_ini[1] // rna_binning], rna2[zoom_ini[0] // rna_binning : zoom_ini[1] // rna_binning], ) ) ) max_cov = np.nanmax(cov1) * 1.02 min_cov = np.nanmin(cov1) * 0.98 # Define panels depending on split or not. if split and ymax > 1500: a = 4 fig, ax = plt.subplots( 7, 2, figsize=(16, 12), gridspec_kw={"height_ratios": [1, 30, 1, 6, 12, 3, 3]}, sharex=False, ) # Parameters to merge panel 2 and 3. d = 0.02 D = 0.04 for j in range(2): ax[a - 1, j].set_xlim(zoom_ini[0] // 1000, zoom_ini[1] // 1000) ax[a - 1, j].tick_params(axis="both", labelsize=15) ax[a - 1, j].spines["bottom"].set_visible(False) ax[a - 1, j].spines["top"].set_visible(False) ax[a - 1, j].spines["right"].set_visible(False) ax[a - 1, j].set_ylim(ymax - 525, ymax) ax[a - 1, j].get_xaxis().set_visible(False) # Add the small cut between the two panels kwargs = dict( transform=ax[a - 1, j].transAxes, color="k", clip_on=False ) ax[a - 1, j].plot((-d, +d), (-D, +D), **kwargs) # top-left diagonal kwargs.update( transform=ax[a, j].transAxes ) # switch to the bottom axes ax[a, j].plot( (-d, +d), (1 - d, 1 + d), **kwargs ) # bottom-left diagonal # Plot the RNA on the split panel ax[a - 1, 0].fill_between( np.arange( zoom_ini[0] // 1000, zoom_ini[1] // 1000, rna_binning / 1000 ), rna1[zoom_ini[0] // rna_binning : zoom_ini[1] // rna_binning], color="black", ) ax[a - 1, 1].fill_between( np.arange( zoom_ini[0] // 1000, zoom_ini[1] // 1000, rna_binning / 1000 ), rna2[zoom_ini[0] // rna_binning : zoom_ini[1] // rna_binning], color="black", ) else: a = 3 fig, ax = plt.subplots( 6, 2, figsize=(16, 12), gridspec_kw={"height_ratios": [1, 30, 1, 15, 3, 3]}, sharex=False, ) # Plot expressed genes - blue are forward - red are reversed for j in range(2): ax[0, j].set_xlim(zoom_ini[0], zoom_ini[1]) ax[0, j].get_xaxis().set_visible(False) ax[0, j].get_yaxis().set_visible(False) ax[2, j].set_xlim(zoom_ini[0], zoom_ini[1]) ax[2, j].get_xaxis().set_visible(False) ax[2, j].get_yaxis().set_visible(False) pos = 1 for i in range(len(annotation_zoom)): # Extract annotation information annot = annotation_zoom.iloc[ i, ] strand = annot.strand start = annot.start // rna_binning end = annot.end // rna_binning name = annot.gene_name # Defined color depending on the strand if strand == "+": color = pal.as_hex()[1] else: color = pal.as_hex()[5] # Print it only if it transcribed (10% most transcribed genes) if np.mean(rna1[start:end]) >= 120.7628998139441: pos = pos * -1 for j in range(2): ax[0, j].add_patch( patches.Rectangle( (start * 100, 0), (end - start) * 100, 1, edgecolor=color, facecolor=color, fill=True, ) ) ax[0, j].text( x=(start + ((end - start) / 2)) * 100, y=pos + 0.5, s=name, rotation=90 * pos, wrap=True, ) color = pal.as_hex()[3] for i in epod.index: start = epod.loc[i, 3] end = epod.loc[i, 4] if ( (start > zoom_ini[0]) and (start < zoom_ini[1]) or (end > zoom_ini[0]) and (end < zoom_ini[1]) ): start = max(start, zoom_ini[0]) // rna_binning end = min(end, zoom_ini[1]) // rna_binning for j in range(2): ax[2, j].add_patch( patches.Rectangle( (start * 100, 0), (end - start) * 100, 1, edgecolor=color, facecolor=color, fill=True, ) ) # ax[2, j].text( # x=(start + ((end - start) / 2)) * 100, # y=pos + 0.5, # s="EPOD", # rotation=90 * pos, # wrap=True, # ) # Plot the matrices ax[1, 0].set_ylabel("Genomic distance (kb)", fontsize=15) for j in range(2): ax[1, j].get_xaxis().set_visible(False) ax[1, j].tick_params(axis="both", labelsize=15) # Plot the matrice 1 im = ax[1, 0].imshow( M1_rot[row1:row2, col1:col2], cmap=cmap, interpolation="none", vmin=0, vmax=np.nanpercentile(M1[zoom[0] : zoom[1], zoom[0] : zoom[1]], 97), extent=(col1 / np.sqrt(2), col2 / np.sqrt(2), width, -width), ) # Plot the matrice 2 ax[1, 1].imshow( M2_rot[row1:row2, col1:col2], cmap=cmap, interpolation="none", vmin=0, vmax=np.nanpercentile(M1[zoom[0] : zoom[1], zoom[0] : zoom[1]], 97), extent=(col1 / np.sqrt(2), col2 / np.sqrt(2), width, -width), ) # RNAseq legends and plot at the bottom panel. ax[a, 0].set_ylabel("RNA count (CPM)", fontsize=15) for j in range(2): # ax[a, j].set_xlabel("Genomic coordinates (kb)", size=15) ax[a, j].get_xaxis().set_visible(False) ax[a, j].tick_params(axis="both", labelsize=15) ax[a, j].set_xlim(zoom_ini[0] // 1000, zoom_ini[1] // 1000) ax[a, j].spines["top"].set_visible(False) ax[a, j].spines["right"].set_visible(False) if split: if ymax > 1500: ax[a, j].set_ylim(0, 1050) else: ax[a, j].set_ylim(0, 1500) else: ax[a, j].set_ylim(0, ymax) # Plot RNA at the bottom panel ax[a, 0].fill_between( np.arange(zoom_ini[0] // 1000, zoom_ini[1] // 1000, rna_binning / 1000), rna1[zoom_ini[0] // rna_binning : zoom_ini[1] // rna_binning], color="black", ) ax[a, 1].fill_between( np.arange(zoom_ini[0] // 1000, zoom_ini[1] // 1000, rna_binning / 1000), rna2[zoom_ini[0] // rna_binning : zoom_ini[1] // rna_binning], color="black", ) # GC content gc_binning = 100 for j in range(2): ax[a + 1, j].plot( np.arange( zoom_ini[0] // 1000, zoom_ini[1] // 1000, gc_binning / 1000 ), gc_content[ (zoom_ini[0] + 250) // gc_binning : (zoom_ini[1] + 250) // gc_binning ], color="black", ) ax[a + 1, j].set_xlim(zoom_ini[0] // 1000, zoom_ini[1] // 1000) ax[a + 1, j].tick_params(axis="both", labelsize=15) ax[a + 1, j].get_xaxis().set_visible(False) ax[a + 1, 0].set_ylabel("GC", fontsize=15) # Coverage cov_binning = 1000 ax[a + 2, 0].plot( np.arange(zoom_ini[0] // 1000, zoom_ini[1] // 1000, cov_binning / 1000), cov1[ (zoom_ini[0] + 250) // cov_binning : (zoom_ini[1] + 250) // cov_binning ], color="black", ) ax[a + 2, 1].plot( np.arange(zoom_ini[0] // 1000, zoom_ini[1] // 1000, cov_binning / 1000), cov2[ (zoom_ini[0] + 250) // cov_binning : (zoom_ini[1] + 250) // cov_binning ], color="black", ) for j in range(2): ax[a + 2, j].set_xlim(zoom_ini[0] // 1000, zoom_ini[1] // 1000) ax[a + 2, j].set_ylim(min_cov, max_cov) ax[a + 2, j].set_xlabel("Genomic coordinates (kb)", size=15) ax[a + 2, j].tick_params(axis="both", labelsize=15) ax[a + 2, 0].set_ylabel("HiC\ncoverage\n(CPM)", fontsize=15) # Colorbar cbar = fig.colorbar( im, ax=ax.ravel().tolist(), shrink=0.3, anchor=(1.2, 0.75) ) cbar.ax.tick_params(labelsize=15) # Save the fig and adjust margins if split and ymax > 1500: plt.subplots_adjust(wspace=0.2, hspace=0.1) else: plt.subplots_adjust(wspace=0.2, hspace=0.1) plt.savefig(outfile, bbox_inches="tight", dpi=200) for split in [True, False]: if split: outfile = join( outdir, f"region_{pos[0]}_{pos[1]}_split.pdf", ) else: outfile = join( outdir, f"region_{pos[0]}_{pos[1]}.pdf", ) position = [int(p) * 1000 for p in pos] plot_region( mat_wt, mat_wt_rot, mat_rf, mat_rf_rot, rna_wt, rna_rf, cov_wt, cov_rf, annotation, res, width, position, outfile, split=split, ) |
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 | import os import bacchus.blob as bcb import bacchus.hic as bch import bacchus.io as bcio import numpy as np import copy import pandas as pd import matplotlib.pyplot as plt from matplotlib_venn import venn2 import scipy import scipy.stats as st import seaborn as sns import cooler mat_file = snakemake.input.mat rna_file = snakemake.input.rna cov_file = snakemake.input.cov gc_file = snakemake.input.gc frags_file = snakemake.input.frags epod_file = snakemake.input.EPODs out_bed = str(snakemake.output.bed) text_file = str(snakemake.output.text_file) gc_plot = str(snakemake.output.gc) cov_plot = str(snakemake.output.cov) RS_plot = str(snakemake.output.RS) rna_plot = str(snakemake.output.rna) dist_bar = str(snakemake.output.dist_bar) dist_line = str(snakemake.output.dist_line) venn_plot = str(snakemake.output.venn_plot) # Create outdir if necessary. os.makedirs(str(snakemake.params.outdir), exist_ok=True) def write_stats(text_file, text, writing_type="a"): with open(text_file, writing_type) as out: out.write(f"{text}\n") # Import data mat = cooler.Cooler(f"{mat_file}::/resolutions/500").matrix(balance=True)[:] mat[np.isnan(mat)] = 0 rna, _ = bcio.extract_big_wig(rna_file, ztransform=False) rna500, _ = bcio.extract_big_wig(rna_file, binning=500, ztransform=False) rna500 = np.log10(rna500[:-2] + 1e-10) cov, _ = bcio.extract_big_wig(cov_file, binning=500) cov = cov[:-2] gc_content = pd.read_csv(gc_file, sep="\t", header=None).iloc[:, 1] frags = pd.read_csv(frags_file, sep="\t") epod_data = pd.read_csv(epod_file, sep="\t", header=None) mask = bch.mask_white_line(mat) mat[mask] = np.nan mat[:, mask] = np.nan # Save TIDs positions. blobs, blob_score = bcb.find_blobs( mat, size=5, n_mads=10, refine=1 / 3, rna=rna ) with open(out_bed, "w") as out: for blob in blobs: out.write(f"blob\t{blob.start * 500}\t{blob.end * 500}\n") # Save stats on TIDs. write_stats( text_file, f"Numbers of blobs without interpolation: {len(blobs)}", "w" ) write_stats( text_file, f"Cumulative size of the blobs without interpolation: {np.sum([x.size for x in blobs]) * 0.5}kb", ) # Mask bins within a TIDs or not. blob_mask = np.repeat(False, len(mat)) for i in blobs: for j in range(i.start, i.end): blob_mask[j] = True blob_mask_r = np.repeat(False, len(mat)) for i, v in enumerate(blob_mask): if v: blob_mask_r[i] = False else: blob_mask_r[i] = True # GC content gc_content = np.array(gc_content[np.arange(0, len(gc_content), 5)]) gc_blob = gc_content[blob_mask] gc_other = gc_content[blob_mask_r] data = {"GC": gc_content, "blobs": blob_mask} data = pd.DataFrame(data) sns.violinplot(x="blobs", y="GC", data=data, palette="tab10") plt.xlabel("Blobs", size=14) plt.ylabel("GC content %", size=14) plt.title("GC content distribution in blobs", size=16) plt.xticks(size=12) plt.yticks(size=12) plt.savefig(gc_plot, bbox_inches="tight") plt.close() write_stats(text_file, f"Blob GC content: {np.mean(gc_blob)}") write_stats(text_file, f"Other GC content: {np.mean(gc_other)}") write_stats(text_file, f"Global GC content: {np.mean(gc_content)}") write_stats(text_file, f"T-test blob-other: {st.ttest_ind(gc_blob, gc_other)}") write_stats(text_file, f"T-test blob-all: {st.ttest_ind(gc_blob, gc_content)}") # Restriction sites start_pos = frags.start_pos[1:] frags = np.zeros(len(gc_content)) for i in start_pos: frags[i // 500] += 1 data["frags"] = frags sns.boxplot(x="blobs", y="frags", data=data, palette="tab10") plt.xlabel("Blobs", size=14) plt.ylabel("Restriction site", size=14) plt.title("Restriction sites distribution in blobs", size=16) plt.xticks(size=12) plt.yticks(size=12) plt.savefig(RS_plot, bbox_inches="tight") plt.close() write_stats(text_file, f"Blob RS: {np.mean(frags[blob_mask])}") write_stats(text_file, f"Other RS: {np.mean(frags[blob_mask_r])}") write_stats(text_file, f"Global RS: {np.mean(frags)}") write_stats( text_file, f"T-test blob-other: {st.ttest_ind(frags[blob_mask], frags[blob_mask_r])}", ) write_stats( text_file, f"T-test blob-all: {st.ttest_ind(frags[blob_mask], frags)}" ) # Coverage data["cov"] = cov sns.violinplot(x="blobs", y="cov", data=data, palette="tab10") plt.xlabel("Blobs", size=14) plt.ylabel("HiC Coverage (CPM)", size=14) plt.title("Coverage distribution in blobs", size=16) plt.xticks(size=12) plt.yticks(size=12) plt.savefig(cov_plot, bbox_inches="tight") plt.close() write_stats(text_file, f"Blob coverage: {np.mean(cov[blob_mask])}") write_stats(text_file, f"Other coverage: {np.mean(cov[blob_mask_r])}") write_stats(text_file, f"Global coverage: {np.mean(cov)}") write_stats( text_file, f"T-test blob-other: {st.ttest_ind(cov[blob_mask], cov[blob_mask_r])}", ) write_stats(text_file, f"T-test blob-all: {st.ttest_ind(cov[blob_mask], cov)}") # Transcription data["rna"] = rna500 sns.violinplot(x="blobs", y="rna", data=data, palette="tab10") plt.xlabel("Blobs", size=14) plt.ylabel("Transcription (CPM)", size=14) plt.title("Transcription distribution in blobs", size=16) plt.xticks(size=12) plt.yticks(size=12) plt.ylim(-8, 6) plt.savefig(rna_plot, bbox_inches="tight") plt.close() write_stats(text_file, f"Blob transcription: {np.mean(rna500[blob_mask])}") write_stats(text_file, f"Other transcription: {np.mean(rna500[blob_mask_r])}") write_stats(text_file, f"Global transcription: {np.mean(rna500)}") write_stats( text_file, f"T-test blob-other: {st.ttest_ind(rna500[blob_mask], rna500[blob_mask_r])}", ) write_stats( text_file, f"T-test blob-all: {st.ttest_ind(rna500[blob_mask], rna500)}" ) # TIDs distribution tid_data = pd.read_csv(out_bed, sep="\t", header=None) ori = (3925744 + 3925975) // 2 ter = 1590754 macrodomain = [x * 5000 for x in [45, 231, 393, 546, 685, 842]] x = np.arange(0, 4_641_652, 500) y = np.zeros(len(x)) for i in tid_data.index: start = tid_data.loc[i, 1] end = tid_data.loc[i, 2] for k in np.arange(start, end, 500): y[k // 500] = 1 # Bar plot fig, ax = plt.subplots(figsize=(20, 5)) ax.fill_between(x / 1_000_000, y, color="k", alpha=1) plt.xticks(size=16) plt.xlabel("Genomics coordinates (Mb)", size=18) ax.yaxis.set_visible(False) ax.set_title("TIDs distribution", size=20) for i in macrodomain[:-1]: plt.axvline( x=i / 1_000_000, c="green", linestyle="dashed", alpha=0.5, linewidth=3 ) plt.axvline( x=macrodomain[-1] / 1_000_000, c="green", linestyle="dashed", alpha=0.5, label="macrodomain", linewidth=3, ) plt.axvline( x=ori / 1_000_000, c="r", linestyle="dashed", alpha=0.5, label="ori", linewidth=3, ) plt.axvline( x=ter / 1_000_000, c="blue", linestyle="dashed", alpha=0.5, label="ter", linewidth=3, ) plt.legend() plt.savefig(dist_bar) plt.close() # Line plot bins = np.arange(0, 4_641_652, 50_000) hist, x_bins = np.histogram(x, bins, weights=y) fig, ax = plt.subplots(figsize=(15, 5)) ax.plot(x_bins[:-1] / 1_000_000, hist * 1, color="k") ax.set_xlabel("Genomic coordinates (Mb)", size=16) ax.set_ylabel("Ratio of TID in a 10kb bin (%)", size=16) ax.tick_params(labelsize=16) ax.set_title("TIDs distribution", size=20) ax.set_xlim(0, 4_641_652 / 1_000_000) for i in macrodomain[:-1]: plt.axvline(x=i / 1_000_000, c="k", linestyle="dashed", alpha=0.5) plt.axvline( x=macrodomain[-1] / 1_000_000, c="k", linestyle="dashed", alpha=0.5, label="macrodomain", ) plt.axvline( x=ori / 1_000_000, c="r", linestyle="dashed", alpha=0.5, label="ori" ) plt.axvline( x=ter / 1_000_000, c="blue", linestyle="dashed", alpha=0.5, label="ter" ) plt.legend() plt.savefig(dist_line) plt.close() # Venn Diagramm x = np.arange(0, 4_641_652, 5) y_tid = np.zeros(len(x)) y_epod = np.zeros(len(x)) for i in tid_data.index: start = tid_data.loc[i, 1] end = tid_data.loc[i, 2] for k in np.arange(start, end, 5): y_tid[k // 5] = 1 for i in epod_data.index: start = epod_data.loc[i, 3] end = epod_data.loc[i, 4] for k in np.arange(start, end, 5): y_epod[k // 5] = 1 epod_only = 0 tid_only = 0 both = 0 none = 0 for i in x: k = i // 5 if (y_epod[k] == 1) & (y_tid[k] == 1): both += 5 elif (y_epod[k] == 0) & (y_tid[k] == 1): tid_only += 5 elif (y_epod[k] == 1) & (y_tid[k] == 0): epod_only += 5 elif (y_epod[k] == 0) & (y_tid[k] == 0): none += 5 venn2( subsets=(epod_only // 1000, tid_only // 1000, both // 1000), set_labels=("EPODs", "TIDs"), ) plt.savefig(venn_plot) plt.close() |
4
of
scripts/TIDs_analysis.py
MAGqual is a command line tool to evaluate the quality of metagenomic bins and generate recommended metadata in line with the MIMAG standards (v0.1.1-beta)
11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 | import pandas as pd import glob import argparse import os from shutil import copyfile import seaborn as sns import matplotlib.pyplot as plt def qual_cluster(comp, cont): if (comp >90) and (cont<5): qual = "High Quality" elif (comp >= 50) and (cont <10): qual = "Medium Quality" elif (comp <50) and (cont <10): qual = "Low Quality" else: qual = "Failed" return qual def gen_qual(comp, cont): if (comp - (cont*5)) >= 50: genome = "y" else: genome = "n" return genome def bsearch(bakta_loc, cluster): length = 0 loc = str(bakta_loc + str(cluster) + '/' + str(cluster) + '.txt') #don't copy this bit change it ! # loc = str(str(cluster) + '.txt') #don't copy this bit change it ! for name in glob.glob(loc): bakta_file = name with open(bakta_file, 'r') as bakta_log: for line in bakta_log: if "Length:" in line: length = int(line.split(":")[1]) if "Count:" in line: count = int(line.split(":")[1]) if "N50:" in line: N50 = int(line.split(":")[1]) if "Software:" in line: software = line.split(":")[1].strip() if "Database" in line: db = line.split(":")[1].strip() bakta_v = "Bakta " + software + " DB " + db row_dict = {"length" : length, "contigs" : count, "N50": N50, "bakta_v" : bakta_v} return pd.Series(row_dict) parser = argparse.ArgumentParser(description='') parser.add_argument('output', help='output directory for the organised bins', type=str) parser.add_argument('checkm_log', help='checkm output log file (TAB SEPARATED', type=str) parser.add_argument('bakta_loc', help='directory containing all bakta output for all clusters', type=str) parser.add_argument('seqkit_log', help='file containing the seqkit output for all clusters', type=str) parser.add_argument('bin_loc', help='directory containing fasta files for all clusters', type=str) parser.add_argument('jobid', help='prefix for current jobs', type=str) args = parser.parse_args() output = args.output checkm_log = args.checkm_log bakta_loc = args.bakta_loc seqkit_log = args.seqkit_log bin_loc = args.bin_loc job_id = args.jobid comp_software = "CheckM v.1.0.13" comp_approach = "Marker gene" colour_dict = dict({'High Quality':'#50C5B7', 'Near Complete':'#9CEC5B', 'Medium Quality': '#F0F465', 'Low Quality': "#F8333C", 'Failed': '#646E78'}) # ============================================================================= # CHECKM PARSE # ============================================================================= checkm_df = pd.read_csv(checkm_log, sep = "\t") checkm_df['Quality'] = checkm_df.apply(lambda x: qual_cluster(x['Completeness'], x['Contamination']), axis=1) checkm_df[['Size_bp', 'No_contigs', 'N50_length', '16S_Software']] = checkm_df.apply(lambda x: bsearch(bakta_loc, x["Bin Id"]), axis = 1) checkm_df = checkm_df.set_index("Bin Id") high_clusters = checkm_df[checkm_df['Quality'].str.contains("High Quality")].index.values.tolist() med_qual_clusters = checkm_df[checkm_df['Quality'].str.contains("Medium Quality")].index.values.tolist() low_qual_clusters = checkm_df[checkm_df['Quality'].str.contains("Low Quality")].index.values.tolist() NA = checkm_df[checkm_df['Quality'].str.contains("Failed")].index.values.tolist() all_clusters = high_clusters + med_qual_clusters + low_qual_clusters + NA checkm_df = checkm_df.drop(checkm_df.columns[[1, 2, 3, 4, 5, 6, 7, 8, 9]], axis=1) # ============================================================================= # SEQKIT PARSE # ============================================================================= seqkit_df = pd.read_csv(seqkit_log, sep = "\t") seqkit_df = seqkit_df[["file", "max_len"]] seqkit_df["file"] = seqkit_df["file"].str.replace('.fasta','', regex=True) seqkit_df["file"] = seqkit_df["file"].str.split("/").str[-1] seqkit_df.set_index("file", inplace=True) seqkit_df.rename(columns={"max_len":"Max_contig_length"}, inplace = True) checkm_df = pd.merge(checkm_df, seqkit_df, left_index=True, right_index=True, how="left") # ============================================================================= # BAKTA PARSE # ============================================================================= high_qual_clusters= [] near_comp_clusters = [] r16s_comp_clusters = [] trna_num = {} for cluster in all_clusters: loc = str(bakta_loc + cluster + '/' + cluster + '.tsv') #change this too # loc = str(str(cluster) + '.tsv') #don't copy this bit change it ! for name in glob.glob(loc): bakta_file = name with open(bakta_file, 'r') as bakta_in: trna_set = set() rna_set = set() rrna_16S = "N" for line in bakta_in: if "tRNA-Ala" in line: trna_set.add("tRNA-Ala") if "tRNA-Arg" in line: trna_set.add("tRNA-Arg") if "tRNA-Asn" in line: trna_set.add("tRNA-Asn") if "tRNA-Asp" in line: trna_set.add("tRNA-Asp") if "tRNA-Cys" in line: trna_set.add("tRNA-Cys") if "tRNA-Gln" in line: trna_set.add("tRNA-Gln") if "tRNA-Glu" in line: trna_set.add("tRNA-Glu") if "tRNA-Gly" in line: trna_set.add("tRNA-Gly") if "tRNA-His" in line: trna_set.add("tRNA-His") if "tRNA-Ile" in line: trna_set.add("tRNA-Ile") if "tRNA-Leu" in line: trna_set.add("tRNA-Leu") if "tRNA-Lys" in line: trna_set.add("tRNA-Lys") if "tRNA-Met" in line: trna_set.add("tRNA-Met") if "tRNA-Phe" in line: trna_set.add("tRNA-Phe") if "tRNA-Pro" in line: trna_set.add("tRNA-Pro") if "tRNA-Ser" in line: trna_set.add("tRNA-Ser") if "tRNA-Thr" in line: trna_set.add("tRNA-Thr") if "tRNA-Trp" in line: trna_set.add("tRNA-Trp") if "tRNA-Tyr" in line: trna_set.add("tRNA-Tyr") if "tRNA-Val" in line: trna_set.add("tRNA-Val") if ("5S ribosomal RNA" in line) and ("partial" not in line): rna_set.add('5S') if ("16S ribosomal RNA" in line) and ("partial" not in line): rna_set.add('16S') rrna_16S = "Y" if ("23S ribosomal RNA" in line) and ("partial" not in line): rna_set.add('23s') if rrna_16S == "Y": r16s_comp_clusters.append(cluster) if cluster in high_clusters: if (len(trna_set) >= 18) and (len(rna_set) == 3): high_qual_clusters.append(cluster) else: near_comp_clusters.append(cluster) # adds high qual that fail trna/rna trna_num.update({cluster : len(trna_set)}) # ============================================================================= # Add these new qualities to the checkm dataframe # ============================================================================= checkm_df.loc[checkm_df.index.isin(near_comp_clusters), "Quality"] = "Near Complete" checkm_df.loc[checkm_df.index.isin(r16s_comp_clusters), "16S_Recovered"] = "Y" checkm_df["16S_Recovered"] = checkm_df["16S_Recovered"].fillna("N") # Sort out legend order label_order = ["High Quality", "Near Complete", "Medium Quality", "Low Quality", "Failed"] labels_all = checkm_df["Quality"].unique().tolist() for item in label_order: if item not in labels_all: label_order.remove(item) labels_list = label_order # ============================================================================= # Basic plot # ============================================================================= checkm_df["Purity"] = 100 - checkm_df["Contamination"] plt.figure(figsize=(15, 10)) ax = sns.scatterplot(data = checkm_df, x="Completeness", y="Purity", hue='Quality', size = 'Size_bp', sizes=(20, 800), alpha = 0.6, palette=colour_dict, hue_order= labels_list) sns.move_legend(ax, "upper left", bbox_to_anchor=(1, 1)) plt.xlabel('Completeness (%)', size = 24) plt.ylabel('Purity (%)', size = 24) plt.xlim(0) plt.legend(prop={'size': 20}) plt.tight_layout() plt.tick_params(labelsize=18) plt.savefig(job_id + '_mag_qual.png') # ============================================================================= # COPYING FILES INTO QUAL DIRECTORIES # ============================================================================= location = bin_loc new_loc = output + "/" + job_id + "/" os.makedirs(new_loc + "high_qual", exist_ok=True) os.makedirs(new_loc + "near_comp", exist_ok=True) os.makedirs(new_loc + "med_qual", exist_ok=True) os.makedirs(new_loc + "low_qual", exist_ok=True) os.makedirs(new_loc + "failed", exist_ok=True) for high in high_qual_clusters: file = location + high + ".fasta" copyfile(file, new_loc +"high_qual/"+high+".fasta") for nc in near_comp_clusters: file = location + nc + ".fasta" copyfile(file, new_loc +"near_comp/"+nc+".fasta") for med in med_qual_clusters: file = location + med + ".fasta" copyfile(file, new_loc+"med_qual/"+med+".fasta") for low in low_qual_clusters: file = location + low + ".fasta" copyfile(file, new_loc+"low_qual/"+low+".fasta") for NA_bin in NA: file = location + NA_bin + ".fasta" copyfile(file, new_loc+"failed/"+NA_bin+".fasta") # ============================================================================= # OUTPUT CREATED HERE # ============================================================================= magqual_df = checkm_df[["Quality", "Completeness", "Contamination", "16S_Recovered", "16S_Software", "Size_bp", "No_contigs", "N50_length", "Max_contig_length"]].copy() magqual_df["tRNA_Extracted"] = pd.Series(trna_num) magqual_df["tRNA_Software"] = magqual_df["16S_Software"] magqual_df["Completeness_Approach"] = comp_approach magqual_df["Completeness_Software"] = comp_software magqual_df = magqual_df.reindex(columns=["Quality", "Completeness", "Contamination", "Completeness_Software","Completeness_Approach", "16S_Recovered", "16S_Software", "tRNA_Extracted", "tRNA_Software", "Size_bp", "No_contigs", "N50_length", "Max_contig_length"]) magqual_df.to_csv("analysis/" + job_id + "_mag_qual_statistics.csv") print("-" * 12) print(" NUMBER MAGs") print("-" * 12) print("High Quality:", len(high_qual_clusters)) print("Near Complete:", len(near_comp_clusters)) print("Med Quality:", len(med_qual_clusters)) print("Low Quality:", len(low_qual_clusters)) print("Failed:", len(NA), "\n") print("-" * 12) print(" MAG IDs") print("-" * 12) print("High Quality: " , ", ".join([str(x) for x in high_qual_clusters])) print("Near Complete: ", ", ".join([str(x) for x in near_comp_clusters])) print("Med Quality: ", ", ".join([str(x) for x in med_qual_clusters])) print("Low Quality: ", ", ".join([str(x) for x in low_qual_clusters])) print("Failed: ", ", ".join([str(x) for x in NA])) |
Snakemake pipelines for replicating sstar analysis
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 | import numpy as np import matplotlib.pyplot as plt import pandas as pd import matplotlib matplotlib.use("Agg") import seaborn as sns sns.set_style("darkgrid") from sklearn import metrics sstar_1src_accuracy = pd.read_csv(snakemake.input.sstar_1src_accuracy, sep="\t").dropna() sprime_1src_accuracy = pd.read_csv(snakemake.input.sprime_1src_accuracy, sep="\t").dropna() skovhmm_1src_accuracy = pd.read_csv(snakemake.input.skovhmm_1src_accuracy, sep="\t").dropna() sstar_1src_accuracy_grouped = sstar_1src_accuracy.groupby(['demography', 'scenario', 'sample', 'cutoff'], as_index=False) sprime_1src_accuracy_grouped = sprime_1src_accuracy.groupby(['demography', 'sample', 'cutoff'], as_index=False) skovhmm_1src_accuracy_grouped = skovhmm_1src_accuracy.groupby(['demography', 'sample', 'cutoff'], as_index=False) sstar_1src_accuracy_mean = sstar_1src_accuracy_grouped.mean() sprime_1src_accuracy_mean = sprime_1src_accuracy_grouped.mean() skovhmm_1src_accuracy_mean = skovhmm_1src_accuracy_grouped.mean() sstar_1src_accuracy_mean.to_csv(snakemake.output.sstar_1src_accuracy_mean, sep="\t", index=False) sprime_1src_accuracy_mean.to_csv(snakemake.output.sprime_1src_accuracy_mean, sep="\t", index=False) skovhmm_1src_accuracy_mean.to_csv(snakemake.output.skovhmm_1src_accuracy_mean, sep="\t", index=False) sprime_1src_accuracy_mean['scenario'] = ['true'] * len(sprime_1src_accuracy_mean) skovhmm_1src_accuracy_mean['scenario'] = ['true'] * len(skovhmm_1src_accuracy_mean) sstar_2src_accuracy = pd.read_csv(snakemake.input.sstar_2src_accuracy, sep="\t").dropna() sprime_2src_accuracy = pd.read_csv(snakemake.input.sprime_2src_accuracy, sep="\t").dropna() archaicseeker2_2src_accuracy = pd.read_csv(snakemake.input.archaicseeker2_2src_accuracy, sep="\t").dropna() sstar_2src_accuracy_grouped = sstar_2src_accuracy.groupby(['demography', 'sample', 'cutoff', 'src'], as_index=False) sprime_2src_accuracy_grouped = sprime_2src_accuracy.groupby(['demography', 'sample', 'cutoff', 'src'], as_index=False) archaicseeker2_2src_accuracy_grouped = archaicseeker2_2src_accuracy.groupby(['demography', 'sample', 'cutoff', 'src'], as_index=False) sstar_2src_accuracy_mean = sstar_2src_accuracy_grouped.mean() sprime_2src_accuracy_mean = sprime_2src_accuracy_grouped.mean() archaicseeker2_2src_accuracy_mean = archaicseeker2_2src_accuracy_grouped.mean() sstar_2src_accuracy_mean.to_csv(snakemake.output.sstar_2src_accuracy_mean, sep="\t", index=False) sprime_2src_accuracy_mean.to_csv(snakemake.output.sprime_2src_accuracy_mean, sep="\t", index=False) archaicseeker2_2src_accuracy_mean.to_csv(snakemake.output.archaicseeker2_2src_accuracy_mean, sep="\t", index=False) methods1 = ['sstar', 'sprime', 'skovhmm'] demography1 = ['HumanNeanderthal', 'BonoboGhost'] samples = ['nref_10_ntgt_1', 'nref_50_ntgt_1'] scenarios = ['true', 'const', 'ref_tgt_only'] accuracy1 = { 'sstar': sstar_1src_accuracy_mean, 'sprime': sprime_1src_accuracy_mean, 'skovhmm': skovhmm_1src_accuracy_mean, } methods2 = [ 'sstar', 'sprime', 'archaicseeker2' ] demography2 = ['HumanNeanderthalDenisovan', 'ChimpBonoboGhost'] accuracy2 = { 'sstar': sstar_2src_accuracy_mean, 'sprime': sprime_2src_accuracy_mean, 'archaicseeker2': archaicseeker2_2src_accuracy_mean, } fig, axs = plt.subplots(nrows=2, ncols=3, constrained_layout=True, figsize=(7.5,4), dpi=350) gridspec = axs[0, 0].get_subplotspec().get_gridspec() for a in axs[:,2]: a.remove() markers = { 'nref_10_ntgt_1': {'symbol':'.', 'size': 6}, 'nref_50_ntgt_1': {'symbol':'*', 'size': 6}, } colors = { 'sstar': {'true': 'blue', 'const': 'cyan', 'ref_tgt_only': 'purple'}, 'skovhmm': 'green', 'sprime': 'orange', 'archaicseeker2': 'magenta', } linestyles = { 'const': 'dotted', 'true': 'solid', 'ref_tgt_only': (0, (3, 1, 1, 1, 1, 1)), } titles = { 'HumanNeanderthal': 'Human-Neanderthal model', 'BonoboGhost': 'Bonobo-Ghost model', 'HumanNeanderthalDenisovan': 'Human-Neanderthal-Denisovan model', 'ChimpBonoboGhost': 'Chimpanzee-Ghost-Bonobo model', } zorders = { 'sstar': 2, 'skovhmm': 5, 'sprime': 10, } j = 0 for d in demography1: for s in samples: for sc in scenarios: for m in methods1: if m == 'sstar': color = colors[m][sc] else: color = colors[m] df = accuracy1[m][ (accuracy1[m]['demography'] == d) & (accuracy1[m]['sample'] == s) & (accuracy1[m]['scenario'] == sc) ].sort_values(by='recall', ascending=False) recall = df['recall'] precision = df['precision'] if (m == 'sprime') or (m == 'skovhmm'): if sc != 'true': continue if d == 'BonoboGhost': axs[0,j].plot(recall, precision, marker=markers[s]['symbol'], ms=markers[s]['size'], c=color, zorder=zorders[m]) else: axs[0,j].plot(recall, precision, marker=markers[s]['symbol'], ms=markers[s]['size'], c=color) axs[0,j].set_xlabel('Recall (%)', fontsize=10) axs[0,j].set_ylabel('Precision (%)', fontsize=10) axs[0,j].set_xlim([-5, 105]) axs[0,j].set_ylim([-5, 105]) axs[0,j].set_title(titles[d], fontsize=8, weight='bold') if j == 0: axs[0,j].text(-35, 110, 'B', fontsize=10, weight='bold') axs[0,j].plot([0,100],[2.25,2.25], c='red', alpha=0.5) if j == 1: axs[0,j].text(-35, 110, 'C', fontsize=10, weight='bold') axs[0,j].plot([0,100],[2,2], c='red', alpha=0.5) f_scores = np.linspace(20, 80, num=4) lines, labels = [], [] for f_score in f_scores: x = np.linspace(1, 100) y = f_score * x / (2 * x - f_score) (l,) = axs[0,j].plot(x[y >= 0], y[y >= 0], color="black", alpha=0.4, linestyle='dotted', zorder=1) axs[0,j].annotate("F1={0:0.0f}%".format(f_score), xy=(101, y[45] + 2), fontsize=8) j += 1 j = 0 for d in demography2: for s in samples: for m in methods2: if m == 'sstar': color = colors[m]['true'] else: color = colors[m] src1_df = accuracy2[m][ (accuracy2[m]['demography'] == d) & (accuracy2[m]['sample'] == s) & (accuracy2[m]['src'] == 'src1') ].sort_values(by='recall', ascending=False) src2_df = accuracy2[m][ (accuracy2[m]['demography'] == d) & (accuracy2[m]['sample'] == s) & (accuracy2[m]['src'] == 'src2') ].sort_values(by='recall', ascending=False) src1_recall = src1_df['recall'] src1_precision = src1_df['precision'] src2_recall = src2_df['recall'] src2_precision = src2_df['precision'] axs[1,j].plot(src1_recall, src1_precision, marker=markers[s]['symbol'], ms=markers[s]['size'], c=color, markerfacecolor='white') axs[1,j].plot(src2_recall, src2_precision, marker=markers[s]['symbol'], ms=markers[s]['size'], c=color, linestyle='dashdot') axs[1,j].set_xlabel('Recall (%)', fontsize=10) axs[1,j].set_ylabel('Precision (%)', fontsize=10) axs[1,j].set_xlim([-5, 105]) axs[1,j].set_ylim([-5, 105]) axs[1,j].set_title(titles[d], fontsize=8, weight='bold') if j == 0: axs[1,j].text(-35, 110, 'D', fontsize=10, weight='bold') axs[1,j].plot([0,100],[0.2,0.2], c='red', alpha=0.5) axs[1,j].plot([0,100],[4,4], c='red', linestyle='dotted') if j == 1: axs[1,j].text(-35, 110, 'E', fontsize=10, weight='bold') axs[1,j].plot([0,100],[2,2], c='red', alpha=0.5) axs[1,j].plot([0,100],[2,2], c='red', linestyle='dotted') f_scores = np.linspace(20, 80, num=4) lines, labels = [], [] for f_score in f_scores: x = np.linspace(1, 100) y = f_score * x / (2 * x - f_score) (l,) = axs[1,j].plot(x[y >= 0], y[y >= 0], color="black", alpha=0.4, linestyle='dotted', zorder=1) axs[1,j].annotate("F1={0:0.0f}%".format(f_score), xy=(101, y[45] + 2), fontsize=8) j += 1 # legend subfig = fig.add_subfigure(gridspec[:,2]) handles, labels = subfig.gca().get_legend_handles_labels() sstar_line = plt.Line2D([0], [0], label='sstar (full)', color=colors['sstar']['true']) sstar_line2 = plt.Line2D([0], [0], label='sstar (constant)', color=colors['sstar']['const']) sstar_line3 = plt.Line2D([0], [0], label='sstar (only ref & tgt)', color=colors['sstar']['ref_tgt_only']) skovhmm_line = plt.Line2D([0], [0], label='SkovHMM', color=colors['skovhmm']) sprime_line = plt.Line2D([0], [0], label='SPrime', color=colors['sprime']) archaicseeker2_line = plt.Line2D([0], [0], label='ArchaicSeeker2.0', color=colors['archaicseeker2']) baseline1 = plt.Line2D([0], [0], label='baseline/src1 baseline', color='red', alpha=0.5) baseline2 = plt.Line2D([0], [0], label='src2 baseline', color='red', linestyle='dotted') f1_curves = plt.Line2D([0], [0], label='iso-F1 curves', color='black', alpha=0.4, linestyle='dotted') nref_10_ntgt_1 = plt.Line2D([0], [0], marker=markers['nref_10_ntgt_1']['symbol'], ms=5, label='Nref = 10', color='black', linewidth=0) nref_50_ntgt_1 = plt.Line2D([0], [0], marker=markers['nref_50_ntgt_1']['symbol'], ms=5, label='Nref = 50', color='black', linewidth=0) src1 = plt.Line2D([0], [0], label='src1', color='black', marker='o', ms=4, markerfacecolor='white') src2 = plt.Line2D([0], [0], label='src2', color='black', marker='o', ms=4, linestyle='dotted') handles.extend([sstar_line, sstar_line2, sstar_line3, skovhmm_line, sprime_line, archaicseeker2_line, baseline1, baseline2, f1_curves, nref_10_ntgt_1, nref_50_ntgt_1, src1, src2]) subfig.legend(handles=handles, fontsize=8, handlelength=1.5) fig.set_constrained_layout_pads(w_pad=4 / 72, h_pad=4 / 72, hspace=0, wspace=0.1) plt.savefig(snakemake.output.accuracy, bbox_inches='tight') |
Snakemake workflow: dna-seq-gatk-variant-calling
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | import common import matplotlib.pyplot as plt import pandas as pd import numpy as np import seaborn as sns calls = pd.read_table(snakemake.input[0], header=[0, 1]) samples = [name for name in calls.columns.levels[0] if name != "VARIANT"] sample_info = calls.loc[:, samples].stack([0, 1]).unstack().reset_index(1, drop=False) sample_info = sample_info.rename({"level_1": "sample"}, axis=1) sample_info = sample_info[sample_info["DP"] > 0] sample_info["freq"] = sample_info["AD"] / sample_info["DP"] sample_info.index = np.arange(sample_info.shape[0]) plt.figure() sns.stripplot(x="sample", y="freq", data=sample_info, jitter=True) plt.ylabel("allele frequency") plt.xticks(rotation="vertical") plt.savefig(snakemake.output.freqs) plt.figure() sns.stripplot(x="sample", y="DP", data=sample_info, jitter=True) plt.ylabel("read depth") plt.xticks(rotation="vertical") plt.savefig(snakemake.output.depths) |
seaborn
-------------------------------------- seaborn: statistical data visualization ======================================= [![PyPI Version](https://img.shields.io/pypi/v/seaborn.svg)](https://pypi.org/project/seaborn/) [![License](https://img.shields.io/pypi/l/seaborn.svg)](https://github.com/mwaskom/seaborn/blob/master/LICENSE) [![DOI](https://joss.theoj.org/papers/10.21105/joss.03021/status.svg)](https://doi.org/10.21105/joss.03021) [![Tests](https://github.com/mwaskom/seaborn/workflows/CI/badge.svg)](https://github.com/mwaskom/seaborn/actions) [![Code Coverage](https://codecov.io/gh/mwaskom/seaborn/branch/master/graph/badge.svg)](https://codecov.io/gh/mwaskom/seaborn) Seaborn is a Python visualization library based on matplotlib. It provides a high-level interface for drawing attractive statistical graphics. Documentation ------------- Online documentation is available at [seaborn.pydata.org](https://seaborn.pydata.org). The docs include a [tutorial](https://seaborn.pydata.org/tutorial.html), [example