Workflow Steps and Code Snippets
2 tagged steps and code snippets that match keyword preeclampsia
Snakemake workflow: Meta-analysis of GWAS of gestational duration, preterm and post-term deliveries (EGG Consortium) (v1.0.0)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 | import pandas as pd import numpy as np from scipy.special import chdtri import gzip import csv def not_number(s): if s != None: try: float(s) return False except ValueError: return True else: return True def select_format(repr_pheno, row): 'For each wildcard assign the correct formating function.' if repr_pheno== 'Preeclampsia': rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue= preeclampsia(row) if repr_pheno== 'POP': rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue= POP(row) if repr_pheno== 'miscarriage': rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue= miscarriage(row) if repr_pheno== 'GA_fetal': rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue= fet_GA(row) if repr_pheno== 'BW_maternal': rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue= BW_maternal(row) if repr_pheno== 'BW_fetal': rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue= BW_fetal(row) if repr_pheno== 'BW_maternal_effect': rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue= BW_maternal_adjusted_effect(row) if repr_pheno== 'BW_fetal_effect': rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue= BW_fetal_adjusted_effect(row) if repr_pheno== 'leiomyoma_uterus': rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue= leiomyoma_uterus(row) if repr_pheno== 'AMenopause': rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue= AMenopause(row) if repr_pheno in ['Oestradiol_fem', 'NLB', 'AFB', 'AMenarche', 'endometriosis']: rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue= UKBB_traits(row) if repr_pheno in ['SHBG_fem', 'Testosterone_fem', 'Testosterone_male', 'SHBG_male', 'CBAT_fem', 'CBAT_male']: rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue= pritchard(row) if repr_pheno == 'PCOS': rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue= PCOS(row) if repr_pheno in ['Ruth_CBAT_female', 'Ruth_CBAT_male', 'Ruth_SHBG_female', 'Ruth_SHBG_male', 'Ruth_Testosterone_female', 'Ruth_Testosterone_male', 'Ruth_oestradiol']: rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue= Ruth(row, repr_pheno) return [rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue] def AMenopause(row): 'REPROGEN Age at menopause.' EAF= float(row['EAF']) CHR= row['CHR'] if CHR== 'X': CHR= 23 CHR= int(CHR) POS= int(row['POS']) REF= row['Other_Allele'].upper() EFF= row['Effect_Allele'].upper() BETA= float(row['Effect']) pvalue= float(row['Pval']) SE= float(row['SE']) N= int(row['N']) rsid= '' return [rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue] def Ruth(row, repr_pheno): '' EAF= float(row['effect_allele_frequency']) CHR= row['chromosome'] if CHR== 'X': CHR= 23 CHR= int(CHR) POS= int(row['base_pair_location']) REF= row['other_allele'] EFF= row['effect_allele'] BETA= float(row['beta']) pvalue= float(row['p_value']) SE= float(row['standard_error']) N= np.where(repr_pheno== 'Ruth_SHBG_female', 189473, np.where(repr_pheno== 'Ruth_SHBG_make', 180726, np.where(repr_pheno== 'Ruth_Testosterone_female', 230454, np.where(repr_pheno== 'Ruth_SHBG_male',194453 , np.where(repr_pheno== 'Ruth_CBAT_female', 188507, np.where(repr_pheno== 'Ruth_SHBG_male', 178782, 206927)))))) rsid= row['variant_id'] return [rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue] def pritchard(row): '' EAF= float(row['A1_FREQ']) CHR= row['#CHROM'] if CHR== 'X': CHR= 23 if not_number(CHR): return [0, 0, 0 , 0, 0, 0, 0, 0, 0, 0] POS= int(row['POS']) CHR= int(CHR) REF= row['REF'] EFF= row['ALT'] N= int(row['OBS_CT']) if not_number(row['BETA']): return [0, 0, 0 , 0, 0, 0, 0, 0, 0, 0] if not_number(row['SE']): return [0, 0, 0 , 0, 0, 0, 0, 0, 0, 0] if not_number(row['P']): return [0, 0, 0 , 0, 0, 0, 0, 0, 0, 0] BETA= float(row['BETA']) SE= float(row['SE']) pvalue= float(row['P']) rsid= row['ID'] return [rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue] def leiomyoma_uterus(row): '' EAF= float(row['EAF']) CHR= row['CHR'] if CHR== 'X': CHR= 23 if not_number(CHR): return [0, 0, 0 , 0, 0, 0, 0, 0, 0, 0] POS= int(row['POS']) CHR= int(CHR) REF= row['REF'] EFF= row['EFF'] N= row['TOTALSAMPLESIZE'] BETA= float(row['beta']) SE= float(row['se']) pvalue= float(row['pvalue']) rsid= '' return [rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue] def preeclampsia(row): '' CHR= row['CHR'] if CHR== 'X': CHR= 23 if not_number(CHR): return [0, 0, 0 , 0, 0, 0, 0, 0, 0, 0] POS= int(row['POS']) CHR= int(CHR) REF= row['REF'].upper() EFF= row['EFF'].upper() N= 4630 + 373345 rsid= row['rsid'] BETA= float(row['beta']) SE= float(row['se']) EAF= float(row['EAF']) pvalue= float(row['pvalue']) return [rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue] def BW_fetal_adjusted_effect(row): 'Define each header for Birth weight fetal effect.' EAF= float(row['eaf']) CHR= row['chr'] if CHR== 'X': CHR= 23 CHR= int(CHR) POS= int(row['pos']) REF= row['nea'].upper() if REF== 'R': REF= 'D' EFF= row['ea'].upper() if EFF== 'R': EFF= 'D' BETA= float(row['beta']) pvalue= float(row['p']) SE= float(row['se']) N= int(row['n_ownBW']) rsid= row['RSID'] return [rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue] def BW_maternal_adjusted_effect(row): 'Define each header for Birth weight fetal effect.' EAF= float(row['eaf']) CHR= row['chr'] if CHR== 'X': CHR= 23 CHR= int(CHR) POS= int(row['pos']) REF= row['nea'].upper() if REF== 'R': REF= 'D' EFF= row['ea'].upper() if EFF== 'R': EFF= 'D' BETA= float(row['beta']) pvalue= float(row['p']) SE= float(row['se']) N= int(row['n_offBW']) rsid= row['RSID'] return [rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue] def BW_maternal(row): 'Define each header for Birth weight maternal effect.' EAF= float(row['eaf']) CHR= row['chr'] if CHR== 'X': CHR= 23 CHR= int(CHR) POS= int(row['pos']) REF= row['nea'] EFF= row['ea'] if REF== 'R': REF= 'D' if EFF== 'R': EFF= 'D' BETA= float(row['beta']) pvalue= float(row['p']) SE= float(row['se']) N= int(row['n']) rsid= row['SNP'] return [rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue] def BW_fetal(row): 'Define each header for Birth weight maternal effect.' EAF= float(row['eaf']) CHR= row['chr'] if CHR== 'X': CHR= 23 CHR= int(CHR) POS= int(row['pos']) REF= row['nea'] EFF= row['ea'] if REF== 'R': REF= 'D' if EFF== 'R': EFF= 'D' BETA= float(row['beta']) pvalue= float(row['p']) SE= float(row['se']) N= int(row['n']) rsid= row['rsid'] return [rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue] def PCOS(row): 'Define each header for PCOS excluding 23andme.' EAF= float(row['EAF']) CHR= row['CHR'] if CHR== 'X': CHR= 23 CHR= int(CHR) POS= int(row['POS']) REF= row['REF'] EFF= row['EFF'] BETA= float(row['beta']) pvalue= float(row['pvalue']) SE= float(row['se']) N= int(round(float(row['TOTALSAMPLESIZE']))) rsid= '' return [rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue] def UKBB_traits(row): 'Define each header for UKBB traits (hormones).' if row['low_confidence_variant']== 'true': return [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] CHR= row['variant'].split(':')[0] if CHR== 'X': CHR= 23 POS= row['variant'].split(':')[1] if any([not_number(t) for t in [row['minor_AF'], CHR, POS, row['beta'], row['pval'], row['se'], row['n_complete_samples']]]): return [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] CHR= int(CHR) POS= int(POS) REF= row['variant'].split(':')[2] EFF= row['variant'].split(':')[3] BETA= float(row['beta']) pvalue= float(row['pval']) SE= float(row['se']) N= int(row['n_complete_samples']) if row['minor_allele']== EFF: EAF= float(row['minor_AF']) else: EAF= 1- float(row['minor_AF']) rsid= '' return [rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue] def AP_repr(row): 'Define each header for BOLT-LMM sumstats.' EAF= float(row['EAF']) CHR= row['CHR'] if CHR== 'X': CHR= 23 CHR= int(CHR) POS= int(row['POS']) REF= row['A2'] EFF= row['A1'] BETA= float(row['Beta']) pvalue= float(row['P']) SE= float(row['se']) N= row['N'] rsid= row['SNP'] return [rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue] def POP(row): 'Define each header for pelvic organ prolapse.' if not row['CHR'].isdigit(): return [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] EAF= float(row['EAF']) MAF= np.where(EAF> 0.5, 1 - EAF, EAF) if MAF < 0.005: return [0, 0, 0, 0, 0, 0, 0, 0, 0, 0] if row['CHR']== 'X': row['CHR']= 23 CHR= int(row['CHR']) POS= int(row['POS']) REF= row['REF'] EFF= row['EFF'] BETA= float(row['BETA']) pvalue= float(row['pvalue']) SE= float(row['SE']) N= float(row['N']) rsid= '' return [rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue] def fet_GA(row): 'Define each header for Fetal gestational duration.' EAF= '' if row['Chr']== 'X': row['Chr']= 23 CHR= int(row['Chr']) POS= int(row['Pos']) REF= row['Non_effect_allele'].upper() EFF= row['Effect_allele'].upper() BETA= float(row['Effect']) pvalue= float(row['P']) SE= float(row['StdErr']) N= int(row['N']) rsid= row['Rsid'] return [rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue] def miscarriage(row): 'Define each header for Miscarriage.' EAF= row['Freq1'] CHR= row['MarkerName'].split(':')[0] if CHR== 'X': CHR= 23 CHR= int(CHR) POS= int(row['MarkerName'].split(':')[1]) REF= row['Allele2'].upper() EFF= row['Allele1'].upper() BETA= float(row['Effect']) pvalue= float(row['P-value']) SE= float(row['StdErr']) N= 49996 + 174109 rsid= '' return [rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue] def format_list(input, output): with gzip.open(input, 'rt', newline='') as f: print(input) dialect = csv.Sniffer().sniff(f.readline(), delimiters= ' \t') f.seek(0) input_file= csv.DictReader(f, dialect= dialect) df_list= list() with open(output, 'w') as csvfile: writer = csv.writer(csvfile, delimiter= '\t') writer.writerow([g for g in ['ID', 'rsid', 'CHR', 'POS', 'EAF', 'N', 'REF', 'EFF', 'BETA', 'SE', 'pvalue']]) for row in input_file: rsid, CHR, POS, EAF, N, REF, EFF, BETA, SE, pvalue= select_format(snakemake.wildcards.repr_pheno, row) if CHR== 0: continue if len(REF) >1: REF= 'I' if len(EFF) >1: EFF= 'I' if REF== 'I': EFF= 'D' if EFF== 'I': REF= 'D' if REF> EFF: ID= str(CHR) + ':' + str(POS) + ':' + EFF + ':' + REF BETA= -1 * float(BETA) ref= EFF eff= REF EAF= 1 - float(EAF) else: ID= str(CHR) + ':' + str(POS) + ':' + REF + ':' + EFF BETA= float(BETA) eff= EFF ref= REF df_list.append([ID, rsid, CHR, POS, EAF, N, ref, eff, BETA, SE, pvalue]) if len(df_list)== 1000: with open(output, 'a', newline= '') as file_handler: writer1= csv.writer(file_handler, delimiter= '\t') for item in df_list: writer1.writerow(item) df_list= list() with open(output, 'a', newline= '') as file_handler: writer1= csv.writer(file_handler, delimiter= '\t') for item in df_list: writer1.writerow(item) format_list(snakemake.input[0], snakemake.output[0]) |
Snakemake workflow for the project Exploring the Impact of Parity and its Interaction with History of Preterm Delivery on Gestational Duration
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 | library(dplyr) library(data.table) #### Loading data #### dat = fread(snakemake@input[[1]]) # Swedish Medical Birth Register p_id = fread(snakemake@input[[2]]) # Multi-Generation Register edu = fread(snakemake@input[[3]]) # Education Register #### Creating variables #### ## PTB < 37 weeks dat = dat %>% mutate(PTB = ifelse(GRDBS< (37*7),1,0)) ## Sex # male as ref # 1=Pojke (boy); 2=Flicka (girl) dat = dat %>% mutate(KON = ifelse(KON == 1, "M","F")) dat$KON = factor(dat$KON, level = c("M","F")) ## Maternal age categorized: # < 20 # 20-29 # 30-39 # >= 40 # Maternal age categorization dat = dat %>% mutate(MALDER_c = ifelse(MALDER<20,1,0), MALDER_c = ifelse(MALDER>=20 & MALDER<=29,0,MALDER_c), MALDER_c = ifelse(MALDER>=30 & MALDER<=39,2,MALDER_c), MALDER_c = ifelse(MALDER>=40,3,MALDER_c)) dat$MALDER_c = as.factor(dat$MALDER_c) ## Finding father to each child in the multi-generation register and the fathers age f_id = p_id %>% select(LopnrBarn, LopnrFar, FoddArBioFar) # selecting columns of interest colnames(f_id) = c("lpnr_BARN","lpnr_far", "ar_far") dat = left_join(dat,f_id,by="lpnr_BARN") # adding fathers info from parents.csv to mfr data rm(f_id) dat = dat %>% mutate(FALDER = AR-ar_far) # calculating how old the father was when their child was born ## Nationality # As maternal citizenship and the mothers birth country dat = dat %>% mutate(swe_citizenship =as.numeric(MNAT %in% c('SVERIGE'))) %>% mutate(mor_birth_country_NORDIC = as.numeric(MFODLAND %in% c('SVERIGE','NORGE','FINLAND','ISLAND','DANMARK'))) ## First child (parity 0) born preterm dat = dat %>% group_by(lpnr_mor) %>% arrange(parity_clean) %>% mutate(PTB_first_born = any(row_number() == 1 & PTB ==1)*1) %>% mutate(PTB_first_born = ifelse(dplyr::first(parity_clean)!=1,NA,PTB_first_born)) #parity_clean == 1 is parity 0 ## Previous preterm delivery dat = dat %>% group_by(lpnr_mor) %>% arrange(parity_clean )%>% mutate(prev_PTD = ifelse(dplyr::lag(PTB)==1,1,0)) dat = dat %>% group_by(lpnr_mor) %>% arrange(parity_clean) %>% mutate(diff_p = parity_clean - dplyr::lag(parity_clean)) %>% mutate(prev_PTD = ifelse(diff_p == 1,prev_PTD,NA)) ## Mother was born preterm herself barn = dat %>% pull(lpnr_BARN) mor_also_barn_in_mfr = dat[dat$lpnr_mor %in% barn,] mor_also_barn_in_mfr = mor_also_barn_in_mfr %>% select(lpnr_mor) mor_also_barn_in_mfr = unique(mor_also_barn_in_mfr) mor_as_barn = inner_join(dat,mor_also_barn_in_mfr, by = c("lpnr_BARN" ="lpnr_mor")) # The pregnancies in which the mothers where born mor_as_barn = mor_as_barn %>% mutate(mother_herself_PTB = ifelse(PTB == 1, 1,0)) %>% select(lpnr_BARN,mother_herself_PTB) #lpnr_BARN here are barn that also are mothers in mfr dat = full_join(dat, mor_as_barn, by = c("lpnr_mor" ="lpnr_BARN")) dat = select(dat, -lpnr_mor.y) ## Diabetes dat = dat %>% mutate(diab1 = ifelse(DIABETES != 1 | is.na(DIABETES), 0,1)) #diabetes according to mfr variable Diabetes test = dat[grepl("O24|E10|E11|E12|E13|E14|648A|250A|250B|250C|250D|250E|250F|250G|250H|250X|25000| 25001| 25002| 25003| 25004| 25005| 25006| 25007| 25008| 2500",paste(dat$MDIAG1,dat$MDIAG2,dat$MDIAG3,dat$MDIAG4,dat$MDIAG5,dat$MDIAG6,dat$MDIAG7,dat$MDIAG8,dat$MDIAG9,dat$MDIAG10,dat$MDIAG11,dat$MDIAG12)),] #ICD codes (ICD-10-SE,ICD9-SE,ICD-8) related to diabetes, extracted from maternal icd diagnosis in mfr mor_with_diabetes = test %>% pull(sq) # rows of mothers that have diabetes according to icd codes dat = dat %>% mutate(diab2 = ifelse(sq %in% mor_with_diabetes,1,0)) dat = dat %>% mutate(diab = ifelse(diab1==1 | diab2 ==1,1,0)) # mother will have diabetes based on icd codes and the mfr variable Diabetes dat = select(dat, -diab1,-diab2) ## BMI print("s1") dat1 = dat %>% mutate(BMI = MVIKT / (MLANGD/100)^2) # BMI #source("/home/karin/Parity_Project1/scripts/functions/1_cleaning_modules.R") source(snakemake@params[[1]]) #fun_mBmiQC modified to not remove "bad" BMI, just set them as NA. print("s2") year_matrix = NULL dat2 = fun_mBmiQC(as.data.frame(dat1)) # setting bad BMI to NA print("s3") dat = dat2 rm(dat1,dat2) ## Smoking dat = dat %>% mutate(smoking = ifelse((ROK1 ==1 | is.na(ROK1)) & (ROK0 == 1 | is.na(ROK0)) ,0,1), smoking = ifelse(ROK2 == 1 |is.na(ROK2),smoking,2)) # 0 = Not smoking, 1 = Smoking 3 months prior to the current pregnancy or/and Smoking at admission to maternal health, 2 = Smoking in pregnancy week 30-32 ## Preeclampsia test = dat[grepl("O14|O11|O15|642E|642F|642H|63703 |63704 | 63709| 63710|6612",paste(dat$MDIAG1,dat$MDIAG2,dat$MDIAG3,dat$MDIAG4,dat$MDIAG5,dat$MDIAG6,dat$MDIAG7,dat$MDIAG8,dat$MDIAG9,dat$MDIAG10,dat$MDIAG11,dat$MDIAG12)),] #ICD codes (ICD-10-SE,ICD9-SE,ICD-8) related to preeclampsia, extracted from maternal icd diagnosis in mfr mor_with_preeclampsia = test %>% pull(sq) # rows of mothers that have preeclampsia according to icd codes dat = dat %>% mutate(preeclamspia = ifelse(sq %in% mor_with_preeclampsia,1,0)) ## Education # find the maximum edu + filtering edu = edu %>% group_by(LopNr) %>% filter(n()==1) # can not tell which of the rows are the ture one when ID for the same person exist in several rows, are removed edu = as.data.frame(edu) edu_grades = edu[grep("SUN2000", names(edu))] # education based on SUN2000 edu_grades[, "max"] <- apply(edu_grades, 1, max, na.rm=TRUE) # Finding highest education for each person edu = cbind(edu, edu_grades[,"max"]) names(edu)[names(edu) == 'edu_grades[, "max"]'] = "max_grade" # Remove reused LopNr based on AterPnr edu_rm = edu[grep("Ater", names(edu))] edu_rm = edu_rm %>% mutate(remove = ifelse(rowSums(edu_rm == 1,na.rm = TRUE) > 0, F, T)) edu = edu[edu_rm$remove,] # Remove reused LopNr based on SenPnr edu_rm = edu[grep("Sen", names(edu))] #nr = ncol(edu_rm) edu_rm = edu_rm %>% mutate(remove = ifelse(rowSums(edu_rm == 0,na.rm = TRUE) >0 , F, T)) edu = edu[edu_rm$remove,] #nrow(edu) == 5828310 #Join with mfr edu_max = edu[grep("LopNr|max_grade", names(edu))] d_mor = left_join(dat, edu_max, by = c("lpnr_mor" = "LopNr") ) names(d_mor)[names(d_mor) == 'max_grade'] = "max_grade_mor" d_mor_far = left_join(d_mor, edu_max, by = c("lpnr_far" = "LopNr") ) names(d_mor_far)[names(d_mor_far) == 'max_grade'] = "max_grade_far" d_mor_far_child = left_join(d_mor_far, edu_max, by = c("lpnr_BARN" = "LopNr") ) names(d_mor_far_child)[names(d_mor_far_child) == 'max_grade'] = "max_grade_child" dat = d_mor_far_child rm(edu_grades,edu_max,d_mor,d_mor_far,d_mor_far_child) # Max_grade in categories dat = dat %>% mutate(max_grade_mor_c = ifelse(max_grade_mor==2 | max_grade_mor==1,1,0), # 9 years or less max_grade_mor_c = ifelse(max_grade_mor==3 | max_grade_mor ==4,2,max_grade_mor_c), # Gymnasial utbilding (additional 2-3 years) max_grade_mor_c = ifelse(max_grade_mor >=5,3,max_grade_mor_c)) # 0 is nas # Eftergymnasial utbildning (shorter than 3 years, 3 years or longer, postgraduate education) dat = dat %>% mutate(max_grade_far_c = ifelse(max_grade_far==2 | max_grade_far==1,1,0), max_grade_far_c = ifelse(max_grade_far==3 | max_grade_far ==4,2,max_grade_far_c), max_grade_far_c = ifelse(max_grade_far >=5,3,max_grade_far_c)) # 0 is nas ## Parity, grouping after parity 4 dat = dat %>% mutate(Parity_logreg = ifelse(as.numeric(parity_clean)<5,parity_clean,4)) #### Saving #### fwrite(dat, snakemake@output[[1]], sep=",") |
topic
preeclampsia
Preeclampsia is persistent high blood pressure that develops during pregnancy or the postpartum period and is often associated with high levels of protein in the urine OR the new development of decreased blood platelets, trouble with the kidneys or liver, fluid in the lungs, or signs of brain trouble such as seizures and/or visual disturbances.